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!   Two main problems arise in nonlinear model reduction:

1. Accuracy/Stability: projection does not always preserve 

stability or capture nonlinearities

2. Computational complexity: reduced-order operators are 

expensive to assemble, even though they have small 

dimension

TECHNICAL ISSUES



!  Ahmed body

! Navier-Stokes Simulation

" ! = 20 deg 

" V = 60 m/s

" Re = 4.29 x 106

ILLUSTRATION: AHMED BODY ROM

  

" DES turbulence model

" 146,517 nodes

" 837,894 tetrahedra

! FOM: 879,102 dofs

! POD/Galerkin ROM (typical): 400 dofs (0.046% size of FOM)



AHMED BODY POD/GALERKIN RESULTS
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inaccurate/unstable
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METHODOLOGY

! Consecutively introduce approximations that satisfy 2 properties

I. Full-order model

II. Reduced-order model

III. Reduced-order model + system approximation

data collection compression

data collection compression

projection (dimension reduction)

system approximation (complexity reduction)

1. Consistency: In the limit of no compression, reproduce exactly 
the solution of the previous model for sampled problems

2. Optimality: Minimize an error measure with respect to the 
previous model (a priori convergence)
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!  (Nonlinear) partial differential equation   

!  Semi-discretized partial differential equation (ODE)   

L (u; x, t) = 0

Ld (y; t) = 0 (dimension = N) 

!  Fully-discretized PDE with implicit time integration

MATHEMATICAL FRAMEWORK

R(yn+1; yn, …, yn; tn) = 0 (dimension = N)

" Full-order model: sequence of N-dimensional nonlinear problems

R(y) = 0 (dimension = N) 



PROJECTION

I. Full-order model

II. Reduced-order model

III. Reduced-order model + system approximation

data collection compression

data collection compression

projection (dimension reduction)

system approximation (complexity reduction)

!  Projection leads to “Model II”



PETROV-GALERKIN PROJECTION

! To decrease the dimensionality, search for a solution in the 

affine subspace: y(0)+range("y) of dimension ny<<N

y#y(0)+"yyr  R(y(0)+"yyr)=0

! Enforce residual orthogonal to ny-dimensional subspace range($)

$TR(y(0)+"yyr)=0

! Solve via Newton’s method for k=1,…,K (until converged)

$TJ(k)"yp(k)=-$TR(k)

yr
(k+1)=yr

(k)+%(k)p(k)

" R(k)& R(y(0)+"yyr 
(k)),    J(k) & dR/dy(y(0)+"yyr 

(k))



! " = [!1 ...
 !

nx]; "T"=I

COMPRESSION VIA POD

! Proper orthogonal decomposition (POD) method

! Given nx “snapshots” xi, the first k POD vectors satisfy: 

    Find k ' nx orthonormal vectors minimizing

J(!1 , !2 , …, !k) = ( || xj
 – ( (xj, !i) !i

 ||22

j=1

nx

i=1

k

! Properties

! “No compression”: k = nx and range (") = range ([x1 ...
 xnx])

! Efficient computation by singular value decomposition (SVD)

! Consistency issue: what should the snapshots be?



PROJECTION CONSISTENCY

Proposition

If "y is a POD basis computed with snapshots (y-y(0)) collected 

during the evaluation of Model I, and y is sufficiently close to y(0), 

then the projection approximation is consistent

Defines data and procedure for computing 
right reduced-order basis "y



! Least-squares Petrov-Galerkin projection

! Equivalent to globally convergent Gauss-Newton method for

! $ is state-dependent, changes each Newton iteration

! Cannot be introduced at ODE level

! Improved accuracy, stability over Galerkin in the general case

PROJECTION OPTIMALITY

! Optimality: would like solution p(k) to satisfy for some norm )

p(k)=arg minp*+ny || "yp-(J(k))-1R(k)||)

! Galerkin: $= "y satisfies (1) with )= J(k) only if J(k) SPD

! Petrov-Galerkin: $= J(k)"y satisfies (1) with )= J(k)TJ(k) 

    if J(k) nonsingular

(1)

min ||R(y+ "yyr)||2 
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! CPU time (first 0.1 s)

" FOM. 9,292 s 

" ROM: Galerkin. 24,973 s

" ROM: Petrov-Galerkin. 24,984 s

! accurate/stable! 
   (relative RMS error = 1.31%)

remains expensive



SYSTEM APPROXIMATION

I. Full-order model

II. Reduced-order model

III. Reduced-order model + system approximation

data collection compression

data collection compression

projection (dimension reduction)

system approximation (complexity reduction)

!  System approximation leads to “Model III”



SYSTEM APPROXIMATION

! Tensor approximations: R(k) * range("R), J(k) "y
 * range("J)

! Newton iterations become

J(k) "y # "J Jr
(k)

#

R(k) # "R Rr
(k)

#
invariant

iteration-dependent

[J(k) "y]T[J(k) "y ] p(k) = -[J(k) "y]TR k)



! Form "J
T"J, "J

T"R offline: online operations independent of N!

! Similar: Barrault et al., 2004; Grepl et al., 2007; Nguyen & Peraire, 

2008; Chatarantabut & Sorensen, 2009; Galbally et al., 2010

SYSTEM APPROXIMATION

! Tensor approximations: R(k) * range("R), J(k) "y
 * range("J)

! Newton iterations become

J(k) "y # "J Jr
(k)

#

R(k) # "R Rr
(k)

#
invariant

iteration-dependent

(Jr
(k))T "J

T"JJr
(k)

 p(k) = -(Jr
(k))T"J

T"RRr
(k)

=



SYSTEM APPROXIMATION

! Tensor approximations

J(k) "y # "J Jr
(k) 

#

R(k) # "R Rr
(k)

#

! Property 2: Consistency 

" "R, "J computed offline by POD with specific snapshots

! Property 1: Optimality 

" Rr
(k), Jr

(k) computed online by gappy data reconstruction



GAPPY DATA RECONSTRUCTION

! Goal: accurately reconstruct vector F *+N

! Given: 1) a basis Z =[z1,…, zp]

               2) some sampled entries of the vector

Fi, i * I with | I |=q ,p and q<<N

! Define restriction:               F&[F]i, i * I 
Z&[z1,…,zp]

Example

F= Z= F= Z=N=7
q=4
I={1,4,5,7}

[Everson & 
Sirovich, 1995]



! Least squares minimization on sampled entries
Fr=arg minx|| Z x - F ||2 = Z (ZT Z)-1ZTF

! Optimality

" error ||ZFr -F||2 monotonically decreases as p increases

GAPPY DATA RECONSTRUCTION

! Reconstructed vector
F # Z Fr

! Apply at each Newton iteration to compute

"  Rr
(k), with Z = "R

"  Jr
(k), with Z = "J



SYSTEM APPROXIMATION CONSISTENCY

Proposition

If "R and "J are POD bases computed with snapshots satisfying 

the following conditions:

1. R(k) from the Model II simulation is a snapshot used for "R

2. J(k)"yp(k) from the Model II simulation is a snapshot used for "J

3. Each column of J(k)"y from the Model II simulation is a 
snapshot used for "J

then the system approximation is consistent

! Leads to hierarchy of snapshot collection procedures characterized

     by tradeoffs between consistency and offline cost/storage



SNAPSHOT COLLECTION HIERARCY

" ()I ,()II : snapshot saved during Model I, II

" ()(k): snapshot saved at each Newton iteration

ID 0 1 2 3

Snapshots for y yI-yI
(0) yI-yI

(0) yI-yI
(0) yI-yI

(0)

Snapshots for R(k) RI
(k) RII

(k) RII
(k) RII

(k)

Snapshots for J(k)"y RI
(k) RII

(k) [J(k)"yp(k)]II [J(k)"y]II

# simulations 1 2 2 2

# snapshots per 
Newton iteration

1 1 2 1+ ny

consistency 
conditions satisfied

none 1 1, 2 1, 2, 3



SNAPSHOT COLLECTION HIERARCY

ID 0 1 2 3

Snapshots for y yI-yI
(0) yI-yI

(0) yI-yI
(0) yI-yI

(0)

Snapshots for R(k) RI
(k) RII

(k) RII
(k) RII

(k)

Snapshots for J(k)"y RI
(k) RII

(k) [J(k)"yp(k)]II [J(k)"y]II

# simulations 1 2 2 2

# snapshots per 
Newton iteration

1 1 2 1+ ny

consistency 
conditions satisfied

none 1 1, 2 1, 2, 3

! Procedure 0: most common, yet satisfies no consistency conditions
! Procedure 3: consistent, but prohibitive cost for most problems
# Procedure 2: similar cost as 1, more consistency conditions



" A = (" T" )-T"J
T"J(" T" )-1,   B = (" T" )-T"J

T"R( " T" )-1

! The approximated Newton iterations are  

!  Offline
1. Collect snapshots by evaluating 

Model I, Model II

2. Compute POD bases "y, "R, "J

3. Determine sample indices I for 

gappy reconstruction

4. Compute matrices A, B

PROCEDURE

[J   " ]TA [J   " ] p(k) = -[J   " ]TBR  .(k)(k)(k) (k)
yyy

!  Online (each Newton step)
1. Compute r<<n required 

state vector entries

2. Compute restricted 

quantities by evaluating R(k) 

and J(k)"y at q << n indices 

3. Solve for p(k)

J J J J J J R R



 16 nonlinear 3D bars
per bay

!  Geometrically nonlinear structural dynamics   

PERFORMANCE ASSESSMENT

! Full-order model: 12,000 degrees of freedom (1000 bays)

! Output of interest: downward velocity at tip

! Truncation of POD bases

" "y: ny=26 (99% of yI-yI
(0) snapshot energy) 

" "R, "y: nR=nJ=28 (99% of RI
(k) snapshot energy)

initial displacement



COMPARISON WITH TRUNCATION 

Model eI (%) Total 
Newton it

Speed-up 
over I

II 3.44 601 1.03

III.0 unstable – –

III.1 6.31 603 158

III.2 6.01 891 122

! Model II: Good accuracy, but insufficient speed-up

! Model III.0: inaccurate, perhaps because not consistent

! Models III.1, III.2: accurate, promising speed-ups

Meeting more consistency conditions improves accuracy/stability
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LEAST SQUARES V. INTERPOLATION 

! Increasing | I | improves accuracy, even stabilizing III.0

Least-squares reconstruction seems better than interpolation

| I |
Relative error eI (%) Speed-up over Model 

I

III.0 III.1 III.2 III.0 III.1 III.2

28 unstable 6.31 6.01 120 158 122

42 4.95 3.77 3.63 137 152 119

56 4.03 3.50 3.44 129 136 116

! ny=26, nR=nJ=28

interpolation

least 
squares



! Approximations are consecutively introduced and satisfy 

consistency and optimality conditions:

1. Least-squares Petrov-Galerkin projection 

2. System approximation

! Numerical experiments indicate

" Petrov-Galerkin projection improves accuracy/stability

" Tensor approximations are accurate/stable when they 

satisfy at least some consistency conditions

" Orders of magnitude speed-ups achieved

CONCLUSIONS



QUESTIONS?

K. Carlberg, C. Bou-Mosleh, and C. Farhat, “Efficient Nonlinear 
Model Reduction via a Least-Squares Petrov-Galerkin 
Projection and Compressive Tensor Approximations”, 
International Journal of Numerical Methods in Engineering, 
submitted.

! For more details, see forthcoming paper:


