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(Near) Real-time analysis (sTanrorD

Car Speed

Down Force

Requirements © -2

® Fast analysis during the season (“online”)
e Can sacrifice some accuracy

e Can run expensive analyses before the season (“offline”)
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Nonlinear analysis Design optimization

Requirements

® Stringent accuracy requirement

© Want to minimize the overall computational cost of analyses
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Model reduction problem types [Nz

Real-time analysis Repeated analyses

® Fast-turnaround design ° Nonlinear analysis
® “In-field” analysis © Design optimization

® Model predictive control © Parameter space sampling

Multiple objectives: error and cost

Real-time analysis Repeated analyses

Online cost more important: Error more important:

minimize error minimize total cost
subjectto onlinecost < 7 subjectto error < e
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Model reduction

Real-time analysis

® Fast-turnaround design
® “In-field” analysis

® Model predictive control

Multiple objectives

Real-time analysis

Online cost more important:

minimize error
subjectto onlinecost < 7

Model reduction-based solvers

problem types (Gravronn

Repeated analyses

® Nonlinear analysis
® Design optimization

© Parameter space sampling

- error and cost

Repeated analyses

Error more important:

minimize total cost
subjectto error < e
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Offline/online strateqy (stAnFoRD

Real-time analysis

1) Offline
o Sample input space v High offline cost okay

e Build surrogate model

2) Online V' Very low online cost

e Analysis with surrogate model

D Input space
O Full-order model evaluation

Surrogate model
evaluation

Online trajectory
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Surrogate modeling strategies

1) Data fitting (response surfaces, Kriging)
o Directly model input-output map
x “Blind” to problem physics

x Impractical for large-dimensional input spaces
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Input
2) Reduced-order modeling
o Approximately solve state equations, then compute outputs

v Robust: queries the physics online

v Can apply arbitrary excitations/boundary conditions
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Reduced-order modeling (sranroro

® Linear dynamical systems: "mature”
x" = Ax" + Bu"
y" = x" + Du”
SVD-based Krylov-based

® Balanced truncation ® Partial realization
® Hankel norm approximation © Pade approximation

® Balanced POD ® Rational interpolation

® Nonlinear systems: major problems remain
1. Accuracy

2. Computational cost
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Nonlinear example: Ahmed body

@ Navier-Stokes simulation
e ¢ =20deg
® V=60m/s

e Re =4.29x10°
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® DES turbulence model
® 146,517 nodes
® 837,894 tetrahedra

® Full-order model (FOM): 879,102 degrees of freedom
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 POD/Galerkin reduced-order model (ROM): 400 degrees of freedom
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6 Ahmed body: POD/Galerkin results [[Nae

— FOM (879,102 dofs)
— ROM: Galerkin (400 dofs)

= naccurate

O 0.05 0.1 0.15

Time (s)

® CPU time (first 0.1 s of simulated time)
® FOM: 9,292 5
e ROM POD/Galerkin: 24,984 s = computationally expensive
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Methodology (Sranroro

» Consecutively introduce approximations that satisfy 2 properties

-

. Full-order model > data collection ——compression
I I
l projection (dimension reduction)

ll. Reduced-order model —— data collection —— compression

l system approximation (complexity reduction)

lll. Reduced-order model + system approximation

1. Consistency: In the limit of no compression, reproduce exactly the
solution of the previous model for sampled problems

2. Optimality: Minimize an error measure with respect to the
previous model (a priori convergence)
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Mathematical framework rﬁmfgﬁe

e Nonlinear PDE
L(u;x,t)=0

® Semi-discretized PDE in space (ODE)
L9 u;t) =0
® Fully-discretized PDE with implicit time integration
R(y™ ™ y" .., y%it") =0
* FOM: sequence of nonlinear systems of equations of general form
R(y) =0

e R:RV - RN (w)— R(w) ® dimension N “large”
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Projection (sravrono

|. Full-order model > data collection ——compression
I |
projection (dimension reduction)

v
ll. Reduced-order model —— data collection —— compression

l system approximation (complexity reduction)

lll. Reduced-order model + system approximation
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Petrov-Galerkin Projection (stAnFoRD

® To decrease the dimension, search for a solution in the affine

subspace: y@+range(®,) of dimension n, < N
y~yW oy,
e Enforce residual orthogonal to n,-~dimensional subspace range('¥)

\UTR(_)/(O) + (Dyyr) — ()

® Solve reduced system by Newton’s method for k=1, ...,K (converged)

q;TJ(k)cpyp(k) — _y T Rk
y kD) — k) 4 (k) plk)
dR

RO = RO + 0,y 1), S0 = =2 (4O 1 0,
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Proposition

The projection approximation is consistent if:

1.0, is a POD basis computed with snapshots (y-y*”) collected

during the evaluation of Model |

2. y is sufficiently close to y‘*
r dR

dw
continuous, with Q c RN an open set containing y — y{?

3. The reduced Jacobian — ()P, : Q — R is Lipschitz

.. The reduced Jacobian at the solution wTZ_VIT/(ywy is

nonsingular

1: Defines data and procedure for computing @,
2—4: Newton’s method convergence conditions
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% Proper orthogonal decomposition F([gg\,r;lfg&g

e Given n, “snapshots” x/, the first k POD vectors satisfy:

span{¢'}i_; = arg _min Z | (1= Ns)x]1°

Seg(k, /v)

® [1s: orthogonal projection onto 8
© G(k, N): set of n-dimensional subspaces of R"

°® = [¢p" .- ¢*|: POD basis in matrix form

® Properties

e *“No compression”: k = n, and range(®) = range ([x* x"™¥])

» Efficient computation by singular value decomposition (SVD)
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Projection optimality

e Want solution p® to satisfy for some norm ©

FﬁTANFORD
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p'¥) = arg min b, p — (J(k)) R¥9)|g (1)

pER™Y

o Galerkin: W= @ satisfies (1) with ©=J® only if J©

o Petrov-Galerkin: W= J®®, satisfies (1) with ©=J®T.

if J nonsingular

o Least-squares Petrov-Galerkin projection

SPD

e Equivalent to globally convergent Gauss-Newton method for

min [[R(y + ®yy,)|l2

oY is state-dependent, changes each Newton iteration

e Can only be introduced on fully discrete system
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Ahmed body: ROM results (stanroro

— FOM (879,102 dofs)

— ROM: Galerkin (400 dofs)

ROM: Petrov-Galerkin (400 dofs)

03 1 M
.
028 - |

0271 -~

v accurate/stable!
(relative RMS error = 1.31%)

0.26

725

O e 0.1 0.15 0.2 0.25

% CPU time (first 0.1 5)
» FOM. g,2925
» ROM: Galerkin. 24,973 s
» ROM: Petrov-Galerkin. 24,984 s ™ remains expensive
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System approximation (sranroro

|. Full-order model > data collection ——compression
I |
l projection (dimension reduction)

ll. Reduced-order model —— data collection —— compression

system approximation (complexity reduction)

v
lll. Reduced-order model + system approximation
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Computational bottleneck (Stanroro

® Reduced-order Newton iterations are

[J(k)q)y]T[J(k)q)y]p(k) — _[J(k)¢y]TR(k)
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Computational bottleneck (Stanroro

e Reduced-order Newton iterations are

[J(k)q)y]T[J(k)q;y]p(k) — _[J(k)cpy]TR(k)
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Computational bottleneck (Stanroro

® Reduced-order Newton iterations are

[J(k)q)y]T[J(k)q;y]p(k) — _[J(k)q)y]TR(k)
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Computational bottleneck (Stanroro

® Reduced-order Newton iterations are

[J(k)q)y]T[J(k)q;y]p(k) — _[J(k)q)y]TR(k)
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Computational bottleneck (Stanroro

® Reduced-order Newton iterations are

[J(k)q)y]T[J(k)q)y]p(k) — _[J(k)¢y]TR(k)

® Operation count at each iteration scales with large dimension N

= Expensive even though reduced equations are of small dimension
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System approximation (sranroro

o Tensor approximations: R® e range(®;), ¥ O, € range(D))

RW =D, Rr(k) J) (Dy =, JAQ

I Invariant I
iteration-dependent

® Newton iterations become

[J(k)q)y]T[J(k)q)y]p(k) — _[J(k)cpy]TR(k)
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System approximation (sranroro

e Tensor approximations: R e range(Py), SO D, e range(® )

k k)
RM =@, R JOD =D, »

I Invariant I
iteration-dependent

® Newton iterations become

( jr(k))T CDJTCDJ Jr(k) p(k) = -( -jr(k))T(DJTCDRRr(k)
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System approximation (sranroro

e Tensor approximations: R e range(Py), SO D, e range(® )

k k)
RM =@, R JOD =D, »

I Invariant I
iteration-dependent

® Newton iterations become

( jr(k))T CDJTCDJ Jr(k) p(k) = -( -jr(k))T(DJTCDRRr(k)
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System approximation (sranroro

o Tensor approximations: R® e range(®;), ¥ O, € range(D))

RW =D, Rr(k) J) ch =, JAQ

I Invariant I
iteration-dependent

® Newton iterations become

( jr(k))T CDJTCDJ Jr(k) p(k) = -( -jr(k))T(DJTCDRRr(k)
HEE =
o Form @ /®, ® ,'®,, offline: online operations independent of N!

e Similar: Barrault et al., 2004; Grepl et al., 2007; Nguyen & Peraire,

2008; Chatarantabut & Sorensen, 2009; Galbally et al., 2010
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® Tensor approximations

RK=®,R ¥ JK) CDyz ®, Jr(k)

~ ~
~ ~

® Property 1: Optimality

> R W, ] computed online by gappy data reconstruction

® Property 2: Consistency

> O, ©, computed offline by POD with specific snapshots
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Gappy data reconstruction

e Goal: accurately reconstruct vector F € RY [Everson &
° Given: 1) a basis Z = [z' - Z"] Sirovich, 1995]
2) some sampled entries of the vector
Fi, i€l with|ll=g>pandg< N
® Define restriction: F=I[F];,, iel

Z=[z" - 2P

Example

N=7
pP=3
gd=4
I={1,4,5,7}
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Gappy data reconstruction

Least squares minimization on sampled entries

F, = arg min ||[Zx — F||5
XERP

Reconstruct all entries of the vector
F ~ ZF,
Optimality

» error ||ZF, -F||, monotonically decreases as p increases

Apply at each Newton iteration to reconstruct

1. R®, with F.=R® and Z = @,

2. JOO, withF.=J®andZ =0,

Model reduction-based solvers K. Carlberg & C. Farhat
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% Reduced mesh: CFD, 2nd order flux ﬂsgmgﬁgmg

o RW and J® ®, computed at sample nodes

® To do this, must compute the state at:
1. Sample nodes

2. Neighbors of sample nodes
3. of sample nodes
® In general, this depends on the Jacobian’s sparsity pattern

Model reduction-based solvers K. Carlberg & C. Farhat
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Reduced mesh: CFD

Model reduction-based solvers
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® Gappy POD "“fills in” the rest of the mesh
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System approximation consistency

Proposition

The system approximation is consistent if ®, and ®,are POD

bases computed with snapshots that satisfy:

1. R® from the Model Il simulation is a snapshot for @,
2.JO®,p® from the Model Il simulation is a snapshot for @,
3.Each column of JO® from the Model Il simulation is a

snapshot for @,

» Leads to hierarchy of snapshot collection procedures
characterized by tradeoffs between consistency and offline
cost/storage

Model reduction-based solvers K. Carlberg & C. Farhat



1D

Snapshots fory

Snapshots for R®

Snapshots for J0O,

# simulations

# snapshots per
Newton iteration

consistency
conditions satisfied

® ();,(),: snapshot saved during Model |, Il

e () snapshot saved at each Newton iteration

Model reduction-based solvers K. Carlberg & C. Farhat
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Snapshots fory

Snapshots for R®

Snapshots for J0O,

# simulations

# snapshots per
Newton iteration

consistency
conditions satisfied

X Procedure o: satisfies no consistency conditions
X Procedure 3: consistent, but prohibitive cost
v" Procedure 2: similar cost as 1, more consistency conditions
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Performance assessment
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initial displacement |
® Full-order model: 12,000 degrees of freedom (1000 bays)

© Qutput of interest: downward velocity at tip

® Truncation of POD bases

» ®,:n =26 (99% of y-y” snapshot energy)

> Op, ®,: ng=n;=28 (99% of R, snapshot energy)
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Consistency importance (stanroro

® |/|=28 (interpolation)

0.15 -

Q.1 4

= =l o —I1 —Ii.2

* |ll.o, which satisfies no consistency conditions, is unstable
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Consistency importance (stanroro

Total

e (U
(%) Newton it

l 3.44 601

11l.0 unstable

conditions
satisfied

1.1 6.31 603

>~
@)
-
D)
)
L
n
-
@)
)
-

1.2 6.01 891

© Model Il: Good accuracy, but insufficient speed-up
® Model lll.o: inaccurate, perhaps because not consistent

® Models Ill.3, Ill.2: accurate, promising speed-ups

= Meeting more consistency conditions improves accuracy/stability
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Least-squares v. interpolation  [fiINie

© n,=26,ng=n=28

Speed-up over Model
I

111.0 LT | 02 | 1O | i 1.2

Relative error e (%)

interpolation unstable

least 4.95

squares

4.03

® Increasing |I| improves accuracy, even stabilizing 111.0

= | east-squares reconstruction performs better than interpolation
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% System-approximated Gauss-Newton| ey

® Conclusions
» Carefully build approximations to be consistent & optimal
» Least-squares Petrov-Galerkin led to accuracy

» System approximation led to low computational complexity

e Future work

» Currently implementing in AERO-F flow solver
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Repeated analyses (Sranroro

Real-time analysis Repeated analyses

® Fast-turnaround design ° Nonlinear analysis
® “In-field” analysis © Design optimization

® Model predictive control © Parameter space sampling

Multiple objectives: error and cost

Real-time analysis Repeated analyses

Online cost more important: Error more important:

minimize error minimize total cost
subjectto onlinecost < 7 subjectto error < e

Model reduction-based solvers K. Carlberg & C. Farhat



Offline/online strateqgy (stAnFoRD

Real-time analysis Repeated analyses

1) Offline

« Sample input space v High offline cost X May preclude

okay total cost savings
e Build surrogate model

X May not be
accurate enough

2) Online v Very low online cost

o Analysis with surrogate

Input space

Full-order model evaluation

Surrogate model
evaluation

Online trajectory
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Methodology (Sranroro

® Guiding philosophy
1. Avoid extra computations

2. Fully exploit data generated from previous analyses

3. Use data to accelerate solver convergence to required tolerance
® Procedure

1. Execute only required analyses (no offline sampling)
2. Build a POD basis on-the-fly
3. Use the POD basis within an iterative method to accelerate analyses

Iteration cost proportional to circle size

D Input space
O  Accelerated analyses

== Trajectory

Model reduction-based solvers K. Carlberg & C. Farhat



Repeated analyses (Gravronn

® Fori=1,...,Nmat and j=1,...,Nrns, solve
A () — p(i)

» AU) ¢ RN*Nsparse, SPD, and “nearby”

® Solve each system by preconditioned conjugate gradient (PCG)

) — arg min HXUJ) — V|l a0
veS

» S = Ky k-dimensional Krylov subspace of R"

» Current PCG acceleration approach: augmented CG methods

Model reduction-based solvers K. Carlberg & C. Farhat



Augmented CG methods (s1ansorD

NGINEERING

S=Kx+)Y
® Choices of Y

1. All previous search directions

» Multi-RHS [O’Leary, 1980; Saad, 1987; Farhat et al., 1994; Erhel, et al., 2000]

» Multi-matrices [Rey, 1994; Roux, 1995; Farhat, 1995; Farhat et al., 2000, Risler et al., 2000]

X Large cost/storage for many linear systems

2. Approximated extreme eigenvectors (deflation)
» Multi-RHS [Chapman et al., 1997; Saad et al., 2000]

» Multi-matrices [Rey et al., 1998; Parks et al., 2007]

X Only effective if a few eigenvalues hamper convergence

® Goals: 1) Feasibility

2) Effective in the general case
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0 Proper orthogonal decomposition [N

e Given 1) n,, snapshots w;, 2) n,, weights 7j, 3) a ©-norm

e The first n< n, POD vectors satisfy:

span{¢;}/_; = arg _ min

* M3 : ©-orthogonal projection onto S

* G(n, N): set of n-dimensional subspaces of R"

e ®(n) =[¢p1 --- ¢n|: n-dimensional POD basis in matrix form

® Key properties

1. Optimal ordering
» First n POD basis vectors span optimal n-dimensional space

2. © -orthonormality: ®(n)' ©@d(n) =/

Model reduction-based solvers K. Carlberg & C. Farhat



POD strategy (Sranrore

e Align POD with minimizing the error for a nearby “target system”

AxU) = pU)

® To do this, choose three ingredients to be:
1. Snapshots w;: all previous search directions

2. Weights 7j: estimate the solution for the target problem
Ny
V)~ 3L =" yw,
j=1

3.0 : matrix for the target problem A

Model reduction-based solvers K. Carlberg & C. Farhat



POD bases and key properties [N

e Compute one POD basis for each RHS
®;(n) = [¢) -+ oY]
© Key properties

1. Optimal ordering

= POD vectors optimally ordered to minimize error at target

2. A -orthonormality
b;(n) " Ad;(n) = I

- ®:(n)TADd;(n) ~ I for A) near A
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POD-augmented CG algorithm S

S = Ky + range(®;(n))
1. Directly solve n;-dimensional reduced equations (n. small)
b;(m) " AVS®;(ny)x = &;(ny) " HUY)
57 = @j(ny)x
» Accurate (Property 1) and low cost (n.small)

2. Iteratively solve n-dimensional reduced equations (n> n.)

o:(n)TADD (n)k = &;(n)7 (b("f) ~ A<">>~<1("’f))

9 =5 4 oy(m)s
» Use augmented CG without forming reduced matrix

» More accurate (Property 1) and low cost (Property 2)
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POD-augmented CG algorithm S

3. Iteratively solve full state equations to specified tolerance
Ag = plid) — A g{id)
g0 = 89 4 &
» Maintain A”-conjugacy to old search directions using

augmented PCG [Farhat et al., 1994]

 Multiple-RHS
» Sequentially execute Stages 1-3 for j=1,...,NrHs
» Stage 1 approximation space includes search directions from

all previous RHS
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Implementation (sravrono

e p =# mat before recomputing POD basis (data compression)

pP=29 Iteration cost proportional to circle size

initial
parameters

Q
. final

Q parameters

Stage 1 basis | Stage 2 basis | Compute POD?

W

144 v
®(n,) ®(n)
np+2:(n+1)p—1 : (W, ®&(n)]
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% Example: V-22 Osprey wing panel (sTANFORD

* Finite element model with 56,916 degrees of freedom
» 13 design variables (5 shape, 8 material)
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% Example: V-22 Osprey wing panel r(gmgggmg

® Problem Statement: nmar=11, Nrus=14

» Given: 10 randomly-chosen (not necessarily nearby)
previously-queried designs and designs for i=11:

Design A Design B

» Compute: X1 j =1, ..., nrys satisfying
1B(1LI) — AGD (L)),
|6
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Results: Design B, ngus =1 (Sranroro

Design A

©
>
9
»n
o
-
o
=
e
<
O
o

. . . | -5
100 150 10
lterations Relative residual

Model reduction-based solvers K. Carlberg & C. Farhat



Results: Design A, Nrus = 14 (Sranroro
first RHS

—POD-aug CG
—PCG ’

M

|

-

N
\V)

Relative residual
(@]

5 10 15 20 25 30
lterations
first RHS |
—=POD-aug CG
-—=PCG

M
el
-)
|
(@)
Relative residual

107°

50 100 150
lterations
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Results: Design B, ngus =1 (Sranroro

—POD-aug CG
——=PCG

©
>
9
)
()
S
)
=
e
<
)
oC

I200 300 1 0—5
terations } )
Relative residual
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Results: Design B, ngus = 14 (Sranroro
first RHS

—POD-aug CG
—PCG |

Relative residual

20 40 60 80 100 120 14
lterations

first RHS |
—=POD-aug CG
——=PCG

Relative residual

* ‘ ‘ ‘ > 4 6 8 10 12 14
100 200 300
lterations # RHS
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e A POD-based augmented conjugate gradient method
» Accelerates convergence to inexact tolerances
» Efficiency due to choice of POD snapshots, weights, and norm

» Highest speedups for modest tolerances, few right-hand sides

e Future work

» Combine with other augmented CG approaches

» Deflation: include approximated eigenvectors in stage 1

» Extend to systems with non-SPD matrices
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Questions?

® Thanks to Charbel Bou-Mosleh, David Amsallem, and Julien

Cortial for their contributions to this research.
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