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Nonlinear ODE, implicit time integration

total Newton iterations

degrees of freedom
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Reduced-order model (ROM): computed unknowns

total Newton iterations

degrees of freedom

Exploit spatial-behavior data to decrease # unknowns.
Can we do more?
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Goal

total Newton iterations

degrees of freedom

Exploit temporal-behavior data to decrease total Newton iterations.
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Main idea

m full-order model
m 1st- or 2nd-order nonlinear ODE
m implicit time integator

m computational complexity

m each time step, solve a large-scale system of nonlinear
equations with a Newton-like method

m spatial complexity: cost of each Newton iteration
(i.e., linear-system solve)

m temporal complexity: number of Newton iterations

m ROM: use spatial-behavior data to decrease spatial complexity
m goals

exploit temporal-behavior data to decrease temporal complexity
introduce no additonal error to ROM solution
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Outline

Motivation

Problem formulation
m full-order model
m reduced-order model

Temporal-complexity reduction
B overview
m offline/online decomposition
m algorithm sketch

3 Numerical experiments
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Parameterized, nonlinear ODE

for simplicity, consider first-order ODEs

x =1 (x;t, p)
x(0; ) = x° ()

state: x = x(t; ) € RV

f nonlinear in x

inputs: u € D

initial condition: x° (1) € RV
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Implicit time integration

m for simplicity, consider only single-stage methods

m system of nonlinear equations solved at each time step:
R"(w";u)=0, n=1,.,M

= unknowns w": state or velocity at t € [t"7, ¢"]

m after computing w”, explicitly update the state:

X" = ’an_l + Bwn
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Full-order model: computational burden

Solve
R"(w",u)=0, n=1,..M

with a Newton-like method
m solve one N-dimensional linear system per Newton iteration

m spatial complexity: cost of each linear-system solve
m direct solver: O (w?N) flops®
m iterative solver: O (LwN) flops?
m N large — spatial complexity large
m temporal complexity: total number of Newton iterations
m N large — M large — temporal complexity large

o
1w: average number of nonzeros per row of %iw

2] average number of linear-solver iterations per Newton iteration
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Projection-based model reduction

= Offline: exploit knowledge of spatial behavior to compute
basis ® € RV*N with N < N (e.g., POD)

m Online: approximate state by X in low-dim trial subspace:

(8 1) = x° (1) + OK(t; ) (1)
X(t; 1) = OX(t; ) (2)

m substituting (1)—(2) into ODE (with x = X) yields
% = f (X0 () + % t, ) . (3)

m ODE (3) may not be solvable, because image(f) ¢ range(®)
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Project, then discretize in time

Goal: compute solution to overdetermined ODE

m enforce orthogonality of ODE residual to range of W € RNV

Uox=WTf (x0 () + 0% t, )

f= (7o) WTE (O () + 0% ) (4)

m solve (4) with the same implicit numerical integrator
-1
(WT0) WTR™ (WO () + @) =0, n=1,...M
= " e RN generalized unknowns at time step n
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Discretize in time, then project

Goal: compute solution to overdetermined ODE

apply time integrator to overdetermined ODE

minimize discrete residual over the trial subspace
[LeGresley, 2006, Carlberg et al., 2011]

" = arg min |[R" (w® (1) + ®y; p) ||
yeRN

m solve with nonlinear least-squares method, e.g., Gauss—Newton

Problem: spatial complexity still scales with N
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Hyperreduction

Goal: reduce spatial complexity by approximating nonlinear terms

m collocation [Astrid et al., 2008, Ryckelynck, 2005, LeGresley, 2006]
R"=2ZzTZR"

Z (sampling matrix): selected rows of Iyxy
m empirical interpolation/gappy POD

[Astrid et al., 2008, Bos et al., 2004, Chaturantabut and Sorensen, 2010,

Galbally et al., 2009, Drohmann et al., 2012, Carlberg et al., 2011]
T _ +
F= o (zor)t Zf

or
R" = &g (Z®R)" ZR"
®r, ®r: bases that exploit observed spatial behavior
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Example: Ahmed body

1044 mm

N

(a) Ahmed body [Hinterberger et al., 2004]

compressible Navier=Stokes (finite volume, AERO-F)

m DES turbulence model m 3-point BDF integrator
m Re = 4.48 x 10° (implicit)

s M, =0.175 m FOM: N =1.73 x 10’
GNAT nonlinear ROM [Carlberg et al., 2011]

m discretize in time, then project (minimize discrete residual)
m hyperreduction: gappy POD applied to residual
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Example: GNAT nonlinear model reduction [carlberg et al., 2012]

(c) full-order (1.73 x 107 dofs)
surface pressure at t = 0.1 seconds

(d) GNAT (283 dofs)

error in cost, Newton iterations
model .
drag | core-hours per time step
full-order model 6810 4.0
reduced-order model | 0.68% 16 2.75
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Complexity reduction

m spatial complexity: decreased by factor of 637

m temporal complexity: decreased by factor of 1.5

Can we do more?
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Overview

Goal: exploit temporal-behavior data to
reduce temporal complexity

during ROM simulation, apply gappy POD in the time domain
to generate a forecast for the generalized unknowns

use the forecast as an accurate initial guess for the
Newton-like solver

+ good guess — few Newton its — low temporal complexity

+ introduces no additional error
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Offline: compute time-evolution POD bases V;

collect snapshots of the temporal behavior of the
Jjth generalized unknown:

‘;\VJn(M)’ n:l,...,Mv ’Ule{ﬂl}ri?[m

o ‘ ‘ ‘ ‘ ‘ M
n

example with 3 training configurations (nain = 3)
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Offline: compute time-evolution POD bases V;

H compute SVD of temporal-behavior snapshots

0 ‘ M
n
‘;\V_jl (/‘_Ll) e ‘;\le (ID’"train)
. . T
: : = UL,V
ﬁ/jM (lal) T ‘;‘\/JM (ﬁ”train)

truncate: keep only aj < ngrin vectors: V; = U;(:,1: aj)
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Time-evolution bases: example

m implicit linear multi-step scheme: w" = x"

® one training configuration (ngpajn = 1)
m POD model reduction

Here, the time-evolution bases V; are the right singular vectors
generated when computing ®:

X () - XM ()| = uzvT

md=U
mV,=V( )forj=1.., M
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Online: compute forecast, use as initial guess

compute forecast by gappy POD in time domain:
match generalized unknowns at previous « time steps

W; so far; : forecast
Viin—o,1) -+ WVj(n—a,aj) w2
zj = arg min : . : z— :
R . .
“ Wi(n—1,1) - W(n—1a) wrt |l

B use forecast W;z; as an accurate initial guess for Newton solver
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Online algorithm sketch

1: forn=1,..., M do

2:  if forecast is available then

3 use forecast as initial guess for generalized unknowns
4:  end if

5:  solve reduced-order equations with a Newton-like method
6: if # Newton iterations > 7 then {recompute forecast}

.

compute forecast using generalized unknowns at previous
« time steps

8 end if

9: end for

m many Newton iterations: heuristic for poor forecast
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Clamped-free truss structure, geometric nonlinearity

(a) initial displacement (red) (b) external forces

M ()% + C () + £ (x; 1) = F(t; p)

m M: mass matrix

m C =aM + BV, f"(x%): Rayleigh damping matrix

m "t internal force, nonlinear in x

m % sum of three sinusoidal forces, activated at n = M/2
m N = 9000 degrees of freedom in full-order model

m implicit midpoint rule: w” = X(t"1 4 1/2At)
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Clamped-free truss structure, geometric nonlinearity

(c) initial displacement (red) (d) external forces
9 inputs:

m 3 material properties: density, bar cross-sectional area,
modulus of elasticity

m 2 geometrical parameters: base width a, base height b
m 1 initial-displacement magnitude

m 3 external-force magnitudes
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Three reduced-order models compared

Galerkin projection
OTM ()X + OC ()X + &TFM (X0 (1) + 0%; 1) = ST F(t; )

Galerkin projection + collocation

o727z (M ()% + C ()% + £ (x0 (1) + B 1) — FEH(t; u)) ~0
Galerkin projection 4+ gappy POD approximation of residual

T g (Z0R)T Z (M ()& + C () DK + £ (x° (1) + %; u)) -
dTop (ZOR)T ZF(t; 1))

m forecasting: memory a = 12, Newton threshold 7 =0
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Case 1 (ideal): fixed inputs, no truncation of bases
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m all responses nearly exact (as expected)
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Case 1: forecasting drastically improves performance

total Newton its || wall-time speedup
ROM method relative no no
error forecast forecast
forecast forecast
Galerkin 8.64 x 10712 99 2 1.01 1.84
Gal + Gappy || 8.64 x 10712 99 2 36.4 69.3
Gal + coll 2.12x 1075 100 16 36.5 61.9

+ forecast ‘perfect’: computation only at first time step for
ROMs 1 and 2
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Case 2: unforced dynamics, varying structure

m six varied inputs: material properties, geometry, initial cond
m six randomly chosen training configurations

m two randomly chosen online configurations

m 99.99% energy criterion for POD

—0.2
—0.3 —0.4
gOA %06
gos —full-order model g, —full-order model
Tos —8alerk|n g —galerkln
—Ga —Ga
207 Gal. + coIFpy a1 Gal. + coIFpy
wn wn
'-50.3 '-31.2
—0.9 —1.4
-1 5 10 . 15 20 25 165 5 10 . 15 20 25
time time
(e) online configuration 1 (f) online configuration 2
+ all relative errors less than 1%
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Case 2: forecasting improves performance by ~ 60%

Newton its wall-time speedup
online ROM
config method no forecast no forecast
forecast forecast

Galerkin 82 49 0.998 1.71

1 Gal + Gappy 82 48 58.2 82.4

Gal + coll 82 48 59.4 80.8

Galerkin 82 48 1.03 1.55

2 Gal + Gappy 82 48 54.0 86.1

Gal + coll 82 48 55.5 88.7

+ forecasting cuts Newton steps nearly in half
+ wall-time speedup increases by roughly 60%

- performance less impressive than ideal case
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Case 2: temporal behavior similar across input variation

m temporal behavior of first generalized unknown W,
(bold=online; thin=training):

-
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(g) online configuration 1 (h) online configuration 2

m temporal behavior similar across input variation: this explains
the method’s effectiveness

-+ method seems to handle frequency shifts

Temporal-complexity reduction Carlberg, Ray, van Bloemen Waanders 33 /39



Case 3: forced dynamics, fixed structure

m four varied inputs: external-force magnitudes, initial condition
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(i) online configuration 1 (j) online configuration 2

+ relative errors roughly 1.5%
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Case 3: forecasting improves performance by ~ 50%

Newton its wall-time speedup
online ROM
config method no forecast no forecast
forecast forecast

Galerkin 100 60 1.02 1.47

1 Gal + Gappy 100 61 52.7 75.2

Gal + coll 100 71 495 70.9

Galerkin 100 60 1.02 1.52

2 Gal + Gappy 100 61 52.1 73.2

Gal + coll 100 68 54.3 71.8

+ forecasting cuts Newton steps by 40%
-+ wall-time speedup increases by roughly 50%

- performance again slightly worse (richer dynamics)

Temporal-complexity reduction Carlberg, Ray, van Bloemen Waanders 35 /39



Case 4: forced dynamics, varying structure

m nine varied inputs: external-force magnitudes, initial condition

0

—0.2
—05 —full-order model
1 —04 — Galerkin
= —gal + Gany
2
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T-3 512
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4 5 0. 15 20 25 3 0. 15 ) %5
time time
(k) online configuration 1 (1) online configuration 2

ROMs increasingly inaccurate after forces activated (t = 12.5)

m relative errors between 5% and 17%
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Case 4: forecasting improves performance by ~ 35%

Newton its wall-time speedup
online ROM no no
config method forecast forecast forecast forecast
Galerkin 104 109 1.21 1.38
1 Gal + Gappy 124 94 8.0 9.48
Gal + coll 120 90 8.12 11
Galerkin 95 62 1.04 1.47
2 Gal + Gappy 95 64 7.47 10.4
Gal + coll 100 73 7.36 9.98

- forecasting method does not always help: number of Newton
steps increases in one case

+ forecasting cuts Newton steps by 25% in most cases

+ wall-time speedup increases by roughly 35%
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Conclusions

use temporal-behavior data to reduce ROM simulation time
m offline: compute time-evolution bases
m online:
use gappy POD to forecast generalized unknowns
use forecast as initial guess in ROM Newton solver
+ observed decrease in temporal complexity
+ observed decrease in ROM simulation wall time

+ no additional error introduced
m best performance occurs in the case of:

smooth dynamics (low frequency)
H temporal behavior similar across input variation

accurate ROM
m Reference: K. Carlberg, J. Ray, and B. van Bloemen
Waanders. ‘Decreasing the temporal complexity for nonlinear,
implicit reduced-order models by forecasting,’ arXiv e-Print
1209.5455 (2012). (submitted to CMAME)
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Questions?

total Newton iterations

degrees of freedom
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