
8th World Congress on Structural and Multidisciplinary Optimization
June 1-5, 2009, Lisbon, Portugal

An Adaptive POD-Krylov Reduced-Order Model for
Structural Optimization

Kevin Carlberg, Charbel Farhat

Stanford University, Stanford, CA, 94305, USA.

Email: carlberg@stanford.edu, cfarhat@stanford.edu

1. Abstract
We present an adaptive proper orthogonal decomposition (POD)-Krylov reduced-order model (ROM)
for structural optimization. At each step of the optimization loop, we compute approximate solutions
to the structural state and sensitivity equations using a novel POD-augmented conjugate gradient (CG)
algorithm. This algorithm consists of three stages. In the first two stages, the solution component in
the POD subspace is computed using a CG algorithm. Here, fast convergence is ensured due to well-
conditioned reduced equations. This property results from using an energy inner product to compute
the POD basis. In the third stage, the solution is refined in an adaptively-computed Krylov subspace
using an augmented preconditioned CG algorithm. The dimension of the Krylov subspace is increased
until the prescribed tolerance is satisfied. This methodology can be considered a reduced-order modeling
technique, as it efficiently computes approximate states and sensitivities in the sum of two subspaces. The
ROM is well-suited for optimization settings because its accuracy is continually improved as the optimum
is approached. We report on the benchmarking of the proposed method for a direct sensitivity analysis
of a parameterized V-22 tiltrotor wing panel. The results highlight the ability of the proposed method to
compute approximate solutions to the structural state and sensitivity equations at a significantly lower
cost than the typical augmented preconditioned CG method.

2. Keywords: augmented Krylov subspace method, proper orthogonal decomposition, reduced-order
model, surrogate-based optimization

3. Introduction
Optimization techniques have become indispensable tools for the design, damage detection, and control
of structures. However, executing an optimization procedure can be prohibitively expensive, as it often
incurs repeated analyses of a high-fidelity (e.g. detailed finite element) model of the structure in different
configurations. Consequently, much attention has been given to decreasing the computational cost of
solving structural optimization problems. In particular, two fields have made progress to this end using
different approaches: surrogate-based optimization (SBO) and Krylov subspace recycling methods.
SBO algorithms employ a surrogate model of the structure in lieu of the high-fidelity model to execute
the optimization. A surrogate model is typically required to both approximate the behavior of the
high-fidelity model and be inexpensive to evaluate. Common choices include data fits of the high-fidelity
response (e.g. Kriging, radial-basis functions) and lower-fidelity models (e.g. reduced-order models, lower
element order). Surrogates are often constructed from high-fidelity simulations executed at reference
configurations determined either from a design of experiments or from previous iterates of the SBO
algorithm. In general, such models are accurate near these reference configurations; however, they often
lack global accuracy. To this effect, basis updating and subspace/operator interpolation methods have
been developed to improve the robustness of proper orthogonal decomposition (POD)-based [1][2] and
modal decomposition-based [3] reduced-order surrogate models. Yet, such improvements do not guarantee
global accuracy. As a result, SBO algorithms can be ineffective. Specifically, inaccurate surrogates
usually result in small trust regions and incorrectly estimated minima, which lead to (many) costly high-
fidelity simulations to correct the surrogate. This slows the convergence of SBO algorithms and limits
their potential for cost savings. To mitigate these problems, a method to incrementally improve the
surrogate (without re-evaluating the high-fidelity model) until it becomes sufficiently accurate would be
advantageous. This idea can be refined by noting that surrogates should capture only trends in most
regions of the design space, as high accuracy is important only near the optimum [4]. These observations
suggest that the “optimal surrogate” satisfies the abstract problem

minimize
available surrogates

α× error + (1− α)× cost, (1)

1



where α ∈ [0, 1] and α→ 1 as the optimum is approached.
Krylov subspace recycling methods have also been developed to decrease the cost of solving repeated
analyses problems such as those arising in structural optimization. Such algorithms seek to accelerate
convergence when solving multiple linear systems of equations. They accomplish this objective by reusing
information generated during the solution of previous systems. In structural optimization, these linear
systems arise from a finite element analysis at each optimization iteration and are characterized by non-
invariant symmetric positive-definite (SPD) matrices. First, block Krylov [5] and successive right-hand
side [6][7][8] methods were developed to treat multiple right-hand sides with an invariant matrix. These
methods can be considered ‘augmented Krylov subspace methods’ [9] because they project the linear
system onto the subspace

K = Km + Y. (2)

Here, the standard Krylov subspace Km has been augmented with another subspace Y, which in this case
is the Krylov subspace generated during the solution for previous right-hand sides. These ideas were also
extended to solve multiple systems with non-invariant matrices. First, approximate orthogonalization
techniques and projection methods were introduced in [10][11] and [12][13], respectively. An efficient
full orthogonalization method was then proposed in [14]. However, because the Krylov subspaces from
previous systems can have relatively large dimensions, retaining the accumulation of the corresponding
bases can be costly, particularly when the iterative solver is not based on a domain decomposition
approach. Thus, truncation methods that retain a subset of the old Krylov vectors were investigated.
First, deflation techniques for systems with invariant [15][16] and non-invariant [17][18] matrices were
considered. For these methods, Y corresponds to the approximated eigenvectors associated with the
extreme eigenvalues of the governing matrices. Recently, a method was developed that computes Y as the
subspace of small dimension that most accurately represents the Krylov subspace in the orthogonalization
step of conjugate gradient (CG) [19].
Existing Krylov subspace recycling techniques appear to be tailored to improve convergence toward the
“exact” solution of a linear system of equations. As such, they are not necessarily the most efficient
solvers within optimization loops, where computing solutions that are only sufficiently accurate (e.g.
satisfy relaxed tolerances) in the sense of Eq.(1) often result in the fastest computational strategies.
In this paper, we present a method for accelerating the solution of structural optimization problems that
combines concepts from surrogate modeling and Krylov subspace recycling. The approach efficiently com-
putes solutions of the structural state and sensitivity equations to any prescribed tolerance. The proposed
methodology relies on a novel POD-augmented CG algorithm where Y in Eq.(2) is a POD basis that is
computed to approximately minimize the solution error at the new configuration. Therefore, in contrast
to other Krylov subspace recycling methods, this approach directly aims to efficiently compute solutions
that satisfy (loose) tolerances appropriate for optimization. Additionally, the method can be combined
with existing Krylov subspace recycling methods to further accelerate convergence. The proposed ap-
proach can be considered an adaptive POD-Krylov reduced-order modeling technique, as it computes
approximations to the structural state and sensitivities that are contained in the sum of POD and Krylov
subspaces. The reduced-order model (ROM) can be used within an optimization framework to gener-
ate significant cost savings, as it aims to satisfy the “optimal surrogate” problem stated in Eq.(1). That
is, the tolerance satisfied by the approximation can be made more rigorous as the optimum is approached.

4. Structural optimization
Structural optimization problems can be mathematically formulated as

minimize
µ∈D

J (u(µ),µ)

subject to ci(u(µ),µ) = 0, 1 ≤ i ≤ nec
dj (u(µ),µ) ≥ 0, 1 ≤ j ≤ nic.

(3)

Here, D ⊂ Rnµ is the parameter domain, µ =
(
µ1, . . . , µnµ

)
∈ D are the parameters, J : RN × D → R

is the objective function, and ci : RN ×D → R and dj : RN ×D → R represent equality and inequality
constraints, respectively. The dependence of u : D → RN on µ is provided by the state equations

K(µ)u(µ) = f(µ), (4)

which in this work constitute the finite element discretization of the structural configuration. Hence,
K : D → RN × RN is the SPD stiffness matrix, f : D → RN is the force vector, and the state vari-
ables u represent the static displacement of the structure. When a sequential quadratic programming

2



(SQP) algorithm is employed to solve Eqs.(3), this is considered a reduced space Sequential Quadratic
Programming (rSQP) formulation [20]. We assume N to be large.
In order to compute to total derivatives dJ

dµ , {dcidµ }
nec
i=1, and {d(dj)

dµ }
nic
j=1 required by the SQP algorithm,

we must solve Eq.(4) and execute a sensitivity analysis (SA). The direct method for sensitivity analysis
requires solving the direct sensitivity equations

K(µ)
du

dµi
(µ) =

∂f

∂µi

∣∣∣∣
µ

− ∂K

∂µi

∣∣∣∣
µ

u(µ), 1 ≤ i ≤ nµ. (5)

The adjoint method for SA involves solving the adjoint sensitivity equations

K(µ)ψi(µ) =
∂γi
∂u

∣∣∣∣T
µ

, 1 ≤ i ≤ 1 + nec + nic. (6)

Here, ψi : D → RN are adjoint solutions and γ = {J, c1, . . . , cnec , d1, . . . , dnic}. Either choice results in
solving nRHS systems of equations with an invariant matrix at each SQP iteration

K(µ)ui(µ) = fi(µ), 1 ≤ i ≤ nRHS, (7)

where nRHS = 1+nµ for direct SA and nRHS = 2+nec+nic for adjoint SA. An augmented CG algorithm
for systems with an invariant matrix can be used to solve Eqs.(7).

5. Augmented conjugate gradient background
This section provides a brief overview of augmented CG. Assume we are interested in solving K(µ̄)u(µ̄) =
f(µ̄), where µ̄ represents the “target” configuration. Augmented CG algorithms [9] employ a previously-
computed basis Y =

[
y1, . . . , yny

]
with Y ≡ span{Y } to accelerate convergence of solving this system

when K(µ̄) is SPD. This is done by computing a sequence of approximations ũk that satisfy

ũk = arg min
ũ∈Y+Kk

‖u(µ̄)− ũ‖K(µ̄), (8)

where Kk is the Krylov subspace of dimension k and ‖x‖K ≡
√
xTKx is the energy norm defined from

(x, y)K ≡ xTKy.
It can be shown [21] that any ũ satisfying ũ = arg min

ũ∈A
‖u− ũ‖K for a subspace A ⊂ RN can be expressed

as the result of a projection process
ũ = PKAu, (9)

where PKA is the K-orthogonal projector onto A. That is,

PKAu ∈ A,
((
I − PKA

)
u, v
)
K

= 0 ∀v ∈ A. (10)

Furthermore, ũ can be computed from a Galerkin projection of Ku = f onto A = span{A} as

ATKAû = AT f, ũ = Aû. (11)

Since ũk = PKY+Kku and we have no direct control of the Krylov subspace Kk, we should choose Y such

that ‖u(µ̄)− ũ0‖K(µ̄) = ‖(I − P
K(µ̄)
Y )u(µ̄)‖K(µ̄) is approximately minimized. Fortunately, POD enables

this. In the following, we denote this quantity

eKY (u) ≡ ‖
(
I − PKY

)
u‖K . (12)

6. Proper orthogonal decomposition and optimal subspaces
Here, we present a methodology for choosing snapshots and weights to compute a POD basis that is

aligned with an augmented CG algorithm. We also outline salient properties of the POD basis.

6.1. POD snapshot weighting and optimality
POD computes a basis that optimally represents a given set of snapshots in a certain sense. The snapshots
typically correspond to state vector realizations of the system at various times, frequencies, or configura-
tions. Since we intend to use the POD subspace as Y in an augmented CG algorithm, the optimality of
the POD subspace should be linked with minimizing eK(µ̄)

Y (u (µ̄)).

3



Of course, the optimal subspace in this setting is Y = span{u(µ̄)}, as this results in e
K(µ̄)
Y (u (µ̄)) = 0.

However, u(µ̄) is not available, so this approach is not possible.
Instead, assume we have a collection of “snapshots” {wi}nwi=1 ∈

(
RN
)nw that provides information con-

cerning the behavior of u(µ) in the parameter space D. Using these snapshots, we can (crudely) estimate
u(µ̄) as uest (µ̄) ≈ u (µ̄) with uest (µ̄) ∈ span{wi}nwi=1, for example, via a response surface. Since this
estimated solution is our best guess for the exact solution, we could simply use Y = span{uest(µ̄)}.
However, it is unlikely that the one-dimensional subspace will significantly improve convergence. Thus,
we seek a subspace that is of higher dimension (so we are less restrictive on the subspace containing ũ0)
and is still related to the minimization of eK(µ̄)

Y (u (µ̄)).
Since uest (µ̄) ∈ span{wi}nwi=1, we can express the estimated solution as

uest (µ̄) =
nw∑
i=1

γiwi, (13)

where γi ∈ R, 1 ≤ i ≤ nw are snapshot weights. We can now write

e
K(µ̄)
A (uest (µ̄)) =

∥∥∥(I − P
K(µ̄)
A

) nw∑
i=1

γiwi

∥∥∥
K(µ̄)

(14)

≤ n1/2
w

√√√√ nw∑
i=1

∥∥∥(I − P
K(µ̄)
A

)
γiwi)

∥∥∥2

K(µ̄)
, (15)

where the triangle inequality and the norm equivalence relation ‖x‖1 ≤ n1/2‖x‖2 have been used, and
A ⊂ RN is a subspace.
POD can be used to compute the subspace A that minimizes the quantity in Eq.(15), which represents
an upper bound for eK(µ̄)

A (uest (µ̄)). Namely, the POD subspace of dimension nφ, 1 ≤ nφ ≤ nw using
weighted snapshots γiwi, 1 ≤ i ≤ nw and computed with the K(µ̄)-inner product is
P (nφ, [γ1w1, . . . , γnwwnw ] ,K (µ̄)), which we define as

P(nφ, [x1, . . . , xnw ] ,K) ≡ arg min
A∈G(nφ,N)

√√√√ nw∑
i=1

‖
(
I − PKA

)
xi‖2K , (16)

where G(α,N) is the set of α-dimensional linear subspaces of RN (the Grassman manifold [1]).
Fortunately, we can easily compute a basis Φ (nφ,WΓ,K(µ̄)) for the POD subspace P(nφ,WΓ,K(µ̄)) us-
ing the symmetric eigenvalue decomposition. Namely, we use the matrix Y = WΓ = [w1γ1, . . . , wnwγnw ]
in Algorithm 1, where we have defined W ≡ [w1, . . . , wnw ] and Γ ≡ diag (γi).

Algorithm 1 Computation of Φ (nφ, Y,K) given snapshots Y ∈ RN×nw and K SPD

1: K̂ ← Y TKY
2: Solve symmetric eigenvalue problem K̂ = ΨΛΨT

3: Choose size of truncated basis nφ ∈ {1, 2, . . . , nw}.

4: Φ(nφ, Y,K) = Y

[
1√
λ1
ψ1, . . . ,

1√
λnφ

ψnφ

]
, where Ψ = [ψ1, . . . , ψnw ] and Λ ≡ diag(λi).

We can use the eigenvalues Λ computed in Step 2 of the algorithm to compute the upper bound Eq.(15)
minimized by the POD subspace:

n1/2
w

√√√√ nw∑
i=1

∥∥∥(I − P
K(µ̄)
P(nφ,WΓ,K(µ̄))

)
γiwi

∥∥∥2

K(µ̄)
= n1/2

w

√√√√ nw∑
k=nφ+1

λk. (17)

This error is often considered to be the snapshot “energy” omitted by the POD basis. Often, we set
nφ = nE (Λ, υ) in Step 3 of Algorithm 1 so the relative energy retained by the POD basis is greater than

4



some threshold υ ∈ [0, 1], where we have defined

nE (Λ, υ) ≡ min
n∈V(Λ,υ)

n,

V (Λ, υ) ≡ {n ∈ {1, 2, . . . , nw} |
n∑
i=1

λi/

nw∑
i=1

λi ≥ υ2}.
(18)

6.2. POD properties
We now highlight several important properties of the POD basis. In the following, Φ ≡ [φ1, . . . , φnw ] ≡
Φ(nw,WΓ,K(µ̄)) for notational simplicity.
Property 1: The POD vectors φi, 1 ≤ i ≤ nw are orthonormal in the K(µ̄)-inner product

(φi, φj)K(µ̄) = δij , 1 ≤ i ≤ nw, 1 ≤ j ≤ nw, (19)

Proof : ΦTK(µ̄)Φ = Λ−1/2ΨTWTK(µ̄)WΨΛ−1/2. Since WTK(µ̄)W = K̂ = ΨΛΨT , this becomes
ΦTK(µ̄)Φ = Λ−1/2ΨTΨΛΨTΨΛ−1/2. However, since K̂ = K̂T , its eigenvectors are orthonormal, so we
have ΨTΨ = I. This gives ΦTK(µ̄)Φ = Λ−1/2ΛΛ−1/2 = I. �
Property 2: The POD vectors φi, 1 ≤ i ≤ nw are optimally ordered in the following sense:

span{φi, 1 ≤ i ≤ nφ} = P(nφ,WΓ,K(µ̄)). (20)

The optimal subspace of any dimension nφ ≤ nw in terms of minimizing the right-hand side of Eq.(15),
which is an upper bound for eK(µ̄)

A (uest (µ̄)), is the space spanned by the first nφ POD vectors. �
Property 2 shows that by employing the weighting scheme in Eq.(13) and the K(µ̄)-inner product to com-
pute the basis, the optimality of the POD subspace is aligned with its role in an augmented CG algorithm.

7. Adaptive POD-Krylov reduced-order model
We now present an adaptive POD-Krylov model reduction method. We employ a novel POD-augmented
CG algorithm that exploits Properties 1 and 2 to efficiently compute the approximation.
We present the three stages of the algorithm in sections 7.1–7.3, where the approximate solution to a
single equation K(µ̄)u(µ̄) = f(µ̄) is considered. We assume that we have previously computed a POD
basis Φ(nw,WΓ,K(µ∗)) and corresponding eigenvalues Λ, where µ∗ is near µ̄ in the parameter space.∗

Section 7.4 considers the application of the algorithm to solving multiple systems of equations with an
invariant matrix such as those arising from executing a sensitivity analysis for structural optimization.
Section 7.5 outlines the implementation of this ROM within an optimization framework.
In the following, we denote the POD basis and subspace by Φ(nφ) ≡ Φ(nφ,WΓ,K(µ∗)) and P(nφ) ≡
P(nφ,WΓ,K(µ∗)), respectively for notational simplicity.

7.1. Stage 1: Direct solution of reduced equations
The goal of the first stage is to “kick-start” the algorithm by computing a fairly accurate solution at a
very low cost. Recall from Property 2 that the POD vectors are optimally ordered. We therefore expect
ũ1 = P

K(µ̄)
P(n1)u(µ̄) with n1 small (e.g. n1 = nE(Λ, 0.9)) to be accurate and inexpensive to compute.

Since ũ1 = P
K(µ̄)
P(n1)u(µ̄) satisfies

Φ(n1)TK(µ̄)Φ(n1)û = Φ(n1)T f(µ̄), (21)
ũ1 = Φ(n1)û, (22)

Stage 1 consists of solving the reduced equations Eqs.(21)–(22) by a direct method. To do this, we employ
X1 = Φ(n1), X0 = ∅, and R0 = ∅ in Algorithm 2.

7.2. Stage 2: Augmented conjugate gradient with reduced equations
In the second stage, we compute the approximate solution over the POD subspace P(n2) with n2 > n1.
The corresponding reduced equations are

Φ(n2)TK(µ̄)Φ(n2)û = Φ(n2)T f(µ̄), (23)
ũ2 = Φ(n2)û. (24)

∗K(µ∗) is used to compute the POD basis instead of K(µ̄) for efficiency reasons (see 3–4 of Section 7.5).

5



If n2 is large (e.g. n2 = nE(Λ, 0.999)), it is expensive to compute the reduced matrix Φ(n2)TK(µ̄)Φ(n2),
as it requires n2 matrix-vector products and (n2

2 + n)/2 dot products. Since N is large, operations that
scale with N (especially matrix-vector products) should be avoided.
To decrease the number of these operations, we employ an augmented CG algorithm to solve Eqs.(23)–
(24), since it requires only a single matrix-vector product at each iteration. However, the algorithm must
converge in only a few iterations to achieve cost savings. This is typically accomplished by employing a
preconditioner. In this case, however, computing a preconditioner is impractical, as it requires forming
the reduced matrix Φ(n2)TK(µ̄)Φ(n2), which is exactly what we seek to avoid.
Recall from Property 1 that Φ(n2)TK(µ∗)Φ(n2) = I. If µ∗ is close to the target configuration µ̄ in the
parameter space, we expect the matrices K(µ∗) and K(µ̄) to have a similar eigenstructure, so

Φ(n2)TK(µ̄)Φ(n2) ≈ I. (25)

This implies that Eq.(23) is well-conditioned, so a preconditioner is unnecessary and CG will converge
quickly. This should lead to significant cost savings over using a direct method to solve Eqs.(23)–(24).†

Stage 2 consists of executing Algorithm 3 with quantities computed in Stage 1 as inputs: ũ1, X1, V1, R1,
and X2 = [φn1+1, . . . , φn2 ].
Remark : Algorithm 3 orthogonalizes the search direction against all previous ones, so it is actually a
full orthogonalization method [21]. This is necessary to ensure K(µ̄)-conjugacy of the search directions. �

7.3. Stage 3: Augmented preconditioned conjugate gradient with full equations
Stage 3 refines the approximation using an augmented PCG algorithm on the full equations K(µ̄)u(µ̄) =
f(µ̄) (e.g. [16], Algorithm 3.6) with Y = P(n1) + span{P2}. Here P2 =

[
p(1), . . . , p(K2)

]
are the search

directions generated in Stage 2. The algorithm should iterate until the approximation ũ3 satisfies a
prescribed tolerance ε, with ε ≡ ‖f(µ̄) −K(µ̄)ũ3)‖/‖f(µ̄)‖. By searching in the Krylov subspace until
convergence, this stage enables the approximation to satisfy any accuracy requirement.

7.4. Treatment of systems with multiple right-hand sides
We can extend this framework to solve multiple systems with an invariant matrix as in Eqs.(7). In struc-
tural optimization, each solution ui(µ), 1 ≤ i ≤ nRHS has a unique interpretation (i.e. state, sensitivity,
or adjoint solution). We thus compute a separate POD basis Φ(nw,WΓi,K(µ∗)) with eigenvalues Λi for

each of the nRHS systems. We choose weights Γi = diag(γij) to satisfy ui(µ∗) ≈ ui,est(µ∗) =
nw∑
j=1

γijwj .

Given this set of nRHS POD bases, we can approximately solve Eqs.(7) using Algorithm 4. This is an
augmented CG algorithm where Y is the sum of the current POD subspace and the space spanned by all
previous search directions. We denote Φi(nw) ≡ Φ (nw,WΓi,K (µ∗)) for simplicity.

Algorithm 2 Stage 1
1: Given X1, X0, R0

2: V1 = K(µ̄)X1, K̂ = XT
1 V1

3: R1 =
[
R0 XT

0 V1

0 K̂

]
4: Use pivoted Cholesky ([22], p. 149) to make R1 upper triangular.

Pivot (and remove if rank deficiency is detected) columns of X1 and V1 accordingly.
5: X1 ← [X0, X1], V1 ← [V0, V1]
6: Solve RT1 R1û = XT

1 f(µ̄), ũ1 = X1û
7: return ũ1, X1, V1, R1

7.5. Integration with optimization algorithms
To implement the adaptive ROM within an optimization setting, we propose using a standard rSQP
algorithm, where Eq.(4) and Eq.(5) or Eq.(6) are approximately solved using Algorithm 4. The tolerance
ε in Stage 3 should decrease as the optimum is approached according to Eq.(1).
As the optimization algorithm progresses, snapshots are gradually accumulated. This results in four
natural phases (and algorithmic variations) of the framework that depend on the current optimization

†We note that a similar idea was explored in [14], where the K(µ∗)-conjugacy of a set of search directions was exploited.

6



Algorithm 3 Stage 2
1: Given ũ1, X1, V1, R1, X2

2: ũ(0) = ũ1, r̂(0)
1 = 0, r̂(0)

2 = XT
2

(
f(µ̄)−K(µ̄)ũ(1)

)
, k = 0

3: while ‖r̂(k)
2 ‖/‖r̂

(0)
2 ‖ < δ do

4: k ← k + 1
5: p̂

(k)
2 = r̂

(k−1)
2

6: Orthogonalize against X1 by solving RT1 R1p̂
(k−1)
1 = − (V1)T

(
X2p̂

(k−1)
2

)
7: p̂(k) =

[
p̂

(k)T
1 , p̂

(k)T
2

]T
8: for j = 1, . . . , k do
9: p̂(k) = p̂(k) − p̂(j)

(
σ(j)z(j)T p̂

(k)
2

)
10: end for
11: p(k) = [X1, X2] p̂(k), v(k) = K(µ̄)p(k)

12: σ(k) = 1/
(
p(k)T v(k)

)
, z(k) = XT

2 v
(k), α(k) = σ(k)

(
r̂(k−1)T p̂(k)

)
13: ũ(k) = ũ(k−1) + α(k)p(k), r̂(k)

2 = r̂
(k−1)
2 − α(k)z(k)

14: end while
15: return K2 = k, ũ2 = ũ(K2), P2 =

[
p(1), . . . , p(K2)

]
, V2 =

[
v(1), . . . , v(K2)

]
, Σ2 = diag(σ(k))

Algorithm 4 Solving systems with multiple right-hand sides
1: Given Φi (nw, ) and Λi, i = 1, . . . , nRHS

2: X0 = ∅, R0 = ∅
3: for i = 1, . . . , nRHS do
4: f(µ̄) = fi(µ̄)
5: P2 = ∅, V2 = ∅, P3 = ∅, V3 = ∅
6: Compute n1 = nE(Λi, 0.9), n2 = nE(Λi, 0.999)
7: X1 = Φi (n1), X2 = [φi,n1+1, . . . , φi,n2 ]
8: Stage 1: execute Algorithm 2
9: Stage 2: execute Algorithm 3

10: Stage 3: execute an augmented PCG algorithm with Y = span{[X1, P2]}. P3 are the search
directions generated during this stage, with V3 = K(µ̄)P3 and Σ3 = diag(1/(pT3,iK(µ̄)p3,i)).

11: X0 ← [X1, P2, P3], V0 ← [V1, V2, V3], R0 ← diag(R1,Σ
−1/2
2 ,Σ−1/2

3 )
12: end for

iteration nit. nit,POD indicates the maximum number of optimization iterations before the snapshots
should be truncated using POD.

1. 1 ≤ nit < nit,POD. POD bases are not required since the number of snapshots is small. Use X1 = W
in line 7 of Algorithm 4 for i = 1.

2. nit = nit,POD. Same as above, but compute POD bases at the end. Reduced matrices K̂ for
Algorithm 1 have been already computed in Stage 1, so this is inexpensive.

3. nit = nit,POD + 1. Employ the POD bases computed at the previous iteration as presented.

4. nit,POD + 1 < nit < 2nit,POD. Augment the POD bases with recently captured snapshots W . Set
X1 = [W,Φ1(n1)] in line 2 of Algorithm 4 for i = 1. When nit = 2nit,POD, return to Step 2.

Since additional (linearly independent) snapshots are generated at each optimization iteration, we expect
the approximation provided by the POD basis to continually improve. This should lead to cheaper eval-
uation of the adaptive ROM as the optimization algorithm progresses.

8. Numerical experiments
Here, we apply the adaptive POD-Krylov ROM to the analysis of a parameterized stiffened wing panel
from the V-22 tiltrotor aircraft [23]. We use a finite element model of the panel consisting of 9,486 nodes
and 18,272 triangular shell elements with 6 degrees of freedom per node, giving N = 56, 916 total degrees
of freedom. The panel is clamped at one end, and a uniform shortening of 0.225 inches is applied to the

7



other end. We parameterize the model with nµ = 13 design variables: 8 material properties and 5 shape
parameters as shown in Figure 1. Table 1 lists the parameters and their bounds. Here, Ei are moduli of

h3

h2h1

L

Θ

Figure 1: Shape parameters

i 1 2 3 4 5 6 7 8 9 10 11 12 13
Definition h1 h2 h3 L tan Θ E1 E2 E3 E4 t1 t2 t3 t4
µi,lb 25 25 0.5 96 0 5.6 5.6 5.6 5.6 0.05 0.15 0.15 0.10
µi,ub 45 45 10.5 56 0.4 15.6 15.6 15.6 15.6 0.15 0.35 0.35 0.40

Table 1: Design parameters µi and bounds. Distances given in inches, moduli of elasticity given in MSI.

elasticity and ti are skin thicknesses. The material property subscripts in Table 1 indicate regions of the
panel: region 1 is the basic skin, region 2 is the padded skin, region 3 is the skin around the access hole,
and region 4 consists of the vertical stiffeners and attachment struts (see [23] for details). Note that h1

and h2 define the lengths of each side separately, allowing the panel to take on a wedged shape.
To benchmark the proposed method, we compare its performance with that of a variant of the augmented
PCG algorithm proposed in [7] for systems with an invariant matrix. The variant considered here differs
in the preconditioner (see below) and in the fact that it is a global rather than domain-decomposed
approach. The test problem consists of computing approximate solutions to the state and direct sensitivity
equations Eqs.(4)–(5). For the adaptive ROM, we first collect a set of snapshots corresponding to state
vectors u(µ) and sensitivities du

dµi
|µ, 1 ≤ i ≤ nµ for nref = 10 randomly-chosen reference configurations

Dr = {µ1, . . . ,µnref} ⊂ D. This results in nw = 140 snapshots. Then, at two randomly-chosen target
configurations µ̄1 and µ̄2, both the adaptive ROM and augmented PCG algorithm are used to solve the
equations to a tolerance ε = 10−2.
For the adaptive ROM, a unique POD basis is computed for each right-hand side Φ(nw,WΓi,K(µ∗)),
i = 1, . . . , nµ+1, where µ∗ ∈ Dr. The weights Γi are chosen to estimate the ithsolution at the appropriate
target µ̄ according to Eq.(13). We use a Compact POD basis of order 1 [24] to approximately solve Eq.(4).
Thus, Γ1 corresponds to Taylor series and configuration radius weights. When solving the ith of Eqs.(5),
we use only snapshots corresponding to du

dµi
|µ, µ ∈ Dr to build the POD basis. The weight given to the

snapshot du
dµi
|µk corresponds to a Gaussian radial basis function

γRBF(µ̄,µk) ≡ exp
(
−δ(µ̄,µk)2

)
, δ(µ̄,µk) ≡

√√√√ nµ∑
j=1

(
µ̄j − µkj

µj,ub − µj,lb

)2

. (26)

This allows snapshots computed near the target to be better represented by the POD basis.
An incomplete Cholesky preconditioner with a drop tolerance of 2.5×10−5 is used for all PCG iterations.

Table 2 contains the results, where δmin(µ̄,Dr) ≡ min
µ∈Dr

δ(µ̄,µ) and δ̄(µ̄,Dr) ≡ 1
nref

nref∑
k=1

δ(µ̄,µk) indicate

the proximity of the target configuration to the reference configurations. Figure 2 shows the convergence
when solving the first system Eq.(4) to a tolerance ε = 10−2 with both methods.
The results indicate that the adaptive ROM computes approximate solutions at a significantly lower
cost than the considered augmented PCG. Moreover, this is accomplished by exploiting data computed
from only ten reference configurations in a 14-dimensional parameter space. Additionally, these reference
configurations are not close to the new configurations, as indicated by the proximity metrics. When
only the state equations are solved (nRHS = 1), the relative cost of the proposed method is as low as
13.7% compared to PCG. When a direct sensitivity analysis is executed (nRHS = 14), the cost of the new
method as measured in flops is less than 60% that of the augmented PCG method. As shown in Figure

8



2, Stages 1 and 2 are effective at quickly reducing the error, while Stage 3 is required to decrease the
error to the specified tolerance ε = 10−2.

Target configuration µ̄ δmin(µ̄,Dr) δ̄(µ̄,Dr) δ(µ̄,µ∗)
Relative cost for Relative cost for

nRHS = 1 nRHS = 14
flops mat-vec flops mat-vec

µ̄1 1.09 1.42 1.66 0.429 0.514 0.561 0.750
µ̄2 1.19 1.46 1.19 0.137 0.217 0.584 0.752

Table 2: Results. δmin, δ̄, and δ are proximity metrics. Relative cost is the relative number of flops or
matrix-vector products required by the adaptive ROM compared with standard PCG.

5 10 15 20 25 30 35
10

!2

10
!1

10
0

Iterations

R
e
la

ti
v
e
 R

e
s
id

u
a
l

 

 

PCG
Adaptive ROM

20 40 60 80 100 120
10

!2

10
!1

10
0

Iterations

R
e
la

ti
v
e
 R

e
s
id

u
a
l

 

 

PCG
Adaptive ROM

Figure 2: Convergence of the relative residual for the first RHS at µ̄1 and µ̄2, respectively. • end Stage 2

9. Conclusions and future work
We have introduced an adaptive POD-Krylov reduced-order model for efficiently computing approximate
solutions at any prescribed accuracy. We presented a novel POD-augmented conjugate gradient algorithm
to compute the approximate solution. This algorithm exploits a POD basis constructed using a snapshot
weighting scheme and inner-product that align the optimality of the POD with its role in an augmented
CG algorithm and result in well-conditioned reduced equations. The proposed reduced-order model can
be integrated with a structural optimization algorithm as an “optimal surrogate,” since its accuracy
can be increased as the optimum is approached. Numerical results indicate that the proposed method
generates accurate solutions at a much lower cost than typical augmented PCG algorithms.
Future work includes implementing the reduced-order model within an optimization algorithm, com-
bining the method with other Krylov subspace recycling techniques (e.g. deflation), and extending the
methodology to non-SPD systems (e.g. by a POD-augmented CGNE/GMRES algorithm).

10. Acknowledgments
The authors thank Kurt Maute for providing SDESIGN to define shape parameters. Kevin Carlberg
acknowledges the consultation of Julien Cortial and David Amsallem, as well as the financial support of
the Department of Defense NDSEG fellowship and the NSF Graduate Research Fellowship.

11. References

[1] D. Amsallem and C. Farhat, An Interpolation Method for Adapting Reduced-Order Models and
Application to Aeroelasticity, AIAA Journal, 46 (7), 1803–1813.

[2] G. Weickum, M. Eldred and K. Maute, Multi-point Extended Reduced Order Modeling For Design
Optimization and Uncertainty Analysis, AIAA Paper 2006-2145, 47th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Newport, RI, May 1–4, 2006.

[3] D. Amsallem, J. Cortial, K. Carlberg and C. Farhat, An on-line method for interpolating linear
reduced-order structural dynamics models, International Journal for Numerical Methods in Engi-
neering, 2009, submitted.

9



[4] N. Queipo, R. Haftka, W. Skyy, T. Goel, R. Vaidyanathan and P.K. Tucker, Surrogate-based analysis
and optimization, Progress in Aerospace Sciences, 41 (1), 1–28, 2005.

[5] D. O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra and its
Applications, 29, 1980, 293–322.

[6] Y. Saad, On the Lanczos method for solving symmetric linear systems with several right-hand sides,
Mathematics of Computation, 651–662, 1987.

[7] C. Farhat, L. Crivelli and F.X. Roux, Extending substructure based iterative solvers to multiple load
and repeated analyses, Computer Methods in Applied Mechanics and Engineering, 117, 195–209,
1994.

[8] J. Erhel and and F. Guyomarc’h, An augmented conjugate gradient method for solving consecutive
symmetric positive definite linear systems, SIAM Journal on Matrix Analysis and Applications, 21
(4), 1279–1299, 2000.

[9] Y. Saad, Analysis of augmented Krylov subspace methods, SIAM Journal on Matrix Analysis and
Applications, 18 (2), 435–449, 1997.

[10] C. Rey, Developpement d’algorithmes paralleles de resolution en calcul non-lineaire de structures
heterogenes: application au cas d’une butee acier-elastomere, Ph.D. thesis, Laboratoire de Modeli-
sation et Mecanique des Structures, University of Paris VI, December 1994.

[11] F.X. Roux, Parallel implementation of a domain decomposition method for non-linear elasticity,
Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and En-
gineering, D. Keyes, Y. Saad and D.G. Truhlar (Eds.), SIAM, 161–175, 1995.

[12] C. Farhat, Optimizing Substructuring Methods for Repeated Right Hand Sides, Scalable Parallel
Coarse Solvers, and Global/Local Analysis, Domain-Based Parallelism and Problem Decomposition
Methods in Computational Science and Engineering, D. Keyes, Y. Saad and D.G. Truhlar (Eds.),
SIAM, 161–175, 1995.

[13] C. Farhat, K. Pierson and M. Lesoinne, The Second Generation of FETI Methods and their Applica-
tion to the Parallel Solution of Large-Scale Linear and Geometrically Nonlinear Structural Analysis
Problems, Computer Methods in Applied Mechanics and Engineering, 184, 333–374, 2000.

[14] F. Risler and C. Rey, Iterative accelerating algorithms with Krylov subspaces for the solution to
large-scale nonlinear problems, Numerical Algorithms, 23 (1), 1–30, 2000.

[15] A. Chapman and Y. Saad, Deflated and augmented Krylov subspace techniques, Numerical Linear
Algebra with Applications, 4 (1), 43–66, 1997.

[16] Y. Saad, M. Yeung, J. Erhel and F. Guyomarc’h, A deflated version of the conjugate gradient
algorithm, SIAM Journal on Scientific Computing, 21 (5), 1909–1926, 2000.

[17] C. Rey and F. Risler, A Rayleigh–Ritz preconditioner for the iterative solution to large scale non-
linear problems, Numerical Algorithms, 17 (3), 279–311, 1998.

[18] M.L. Parks, E. De Sturler, G. Mackey, D.D. Johnson and S. Maiti, Recycling Krylov subspaces for
sequences of linear systems, SIAM Journal on Scientific Computing, 28 (5), 1651–1674, 2007.

[19] E. De Sturler, Truncation strategies for optimal Krylov subspace methods, SIAM Journal on Nu-
merical Analysis, 36 (3), 864–889, 1999.

[20] L.T. Biegler, O. Ghattas, M. Heinkenschloss and B. van Bloemen Waanders, Large-Scale PDE-
Constrained Optimization: An Introduction, Large-Scale PDE-Constrained Optimization, L.T.
Biegler, O. Ghattas, M. Heinkenschloss and B. van Bloemen Waanders (Eds.), 3–13, 2003.

[21] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia, 2003.

[22] G. Golub and C. Van Loan, Matrix Computations, 3rd Ed., Johns Hopkins University Press, Balti-
more, 1996.

10



[23] D. Davis, T. Krishnamurthy, W. Stroud and S. McCleary, An accurate nonlinear finite element
analysis and test correlation of a stiffened composite wing panel, American Helicopter Society
National Technical Specialists’ Meeting on Rotorcraft Structures, Williamsburg, Virginia, October
29–31, 1991.

[24] K. Carlberg and C. Farhat, A Compact Proper Orthogonal Decomposition Basis for Optimization-
Oriented Reduced-Order Models, AIAA Paper 2008-5964, 12th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Victoria, Canada, September 10–12, 2008.

11


