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PDE-Constrained optimization

This lecture considers (time-independent) PDE-constrained
optimization

minimize
u∈Rm,s∈Rp

f (u, s)

subject to ci (u, s) = 0, i = 1, . . . , ne

dj(u, s) ≥ 0, j = 1, . . . , ni

R(u, s) = 0

Time-independent PDE discretization leads to parameterized
nonlinear systems of equations: R(u, s) = 0

Variables split: x =
[
uT , sT

]T
State variables: u ∈ Rm (e.g. DOF in finite element model)

Design variables: s ∈ Rp (e.g. wing thickness)
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Applications with PDE constraints

Design optimization

Model predictive control Figure from R. Findeisen and F. Allgower, “An Introduction to

Nonlinear Model Predictive Control,” 21st Benelux Meeting on Systems and Control, 2002.

differ, there is no guarantee that the closed-loop system will be stable. It is indeed easy to construct examples for

which the closed-loop becomes unstable if a (small) finite horizon is chosen. Hence, when using finite horizons in

standard NMPC, the stage cost cannot be chosen simply based on the desired physical objectives.

The overall basic structure of a NMPC control loop is depicted in Figure 3. As can be seen, it is necessary to estimate
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Figure 3: Basic NMPC control loop.

the system states from the output measurements.

Summarizing the basic NMPC scheme works as follows:

1. obtain measurements/estimates of the states of the system

2. compute an optimal input signal by minimizing a given cost function over a certain prediction horizon in the

future using a model of the system

3. implement the first part of the optimal input signal until new measurements/estimates of the state are avail-

able

4. continue with 1.

From the remarks given so far and from the basic NMPC setup, one can extract the following key characteristics of

NMPC:

NMPC allows the use of a nonlinear model for prediction.

NMPC allows the explicit consideration of state and input constraints.

In NMPC a specified performance criteria is minimized on-line.

In NMPC the predicted behavior is in general different from the closed loop behavior.

The on-line solution of an open-loop optimal control problem is necessary for the application of NMPC.

To perform the prediction the system states must be measured or estimated.

In the remaining sections various aspects of NMPC regarding these properties will be discussed. The next section

focuses on system theoretical aspects of NMPC. Especially the questions on closed-loop stability, robustness and the

output feedback problem are considered.

2 System Theoretical Aspects of NMPC

In this section different system theoretical aspects of NMPC are considered. Besides the question of nominal stability

of the closed-loop, which can be considered as somehow mature today, remarks on robust NMPC strategies as well as

the output-feedback problem are given.

5

Structural damage detection
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Applications with PDE constraints
Topology optimization (figure from K. Maute, E. Ramm, “Adaptive topology

optimization,” Structural and Multidisc. Optimization, Vol. 15, No. 2, pp. 81–91, 1998)
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layout with smooth boundaries is generated. 

7.6 Beam-like structure 

Up to now ATO seems "only" to provide the possibility to 

generate structures with smooth boundaries and to decrease 

the numerical effort. However, the following example shows 

that ATO is able to include additionally the interaction be- 

tween optimum topology and the corresponding shape of a 

structure and vice versa. In an extended but still conven- 

tional version of topology optimization (e.g. Olhoff et al. 

1991; ttinton and Sienz 1994), first the optimum material 

distribution in a design space for a certain design problem 

is found. This result is transferred interactively into a basic 

design for a following shape optimization step. The opti- 

mum shape is determined by traditional boundary variation 

techniques. Consequently, once the conceptual design is de- 

termined, variation of topology is no longer possible in the 

final shape optimization step, even if a modified shape neces- 

sitates a change of topology to obtain the optimum structural 

layout. As the following example shows, this shortcoming can 

be overcome using ATO. 

b: Design model 
a: 30 
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Optimized analysis models 

c: Cycle : 1 d: Cycle : 2 

e :Cyc le :3  f :Cyc le :4  

g: Cycle : 5 h: Final layout 

Fig. 16. Topology optimization of a beam-like structure 

A rectangular wall structure, which is identical to the 

design space, is fixed on the lower left corner and vertically 

supported on the lower right corner, as shown in Fig. 16a. 

The structure is loaded by a vertical load in the centre of 

the lower edge. The objective of the optimization problem 

is to find the structural layout of maximum stiffness. The 

available mass is restricted to 40 percent of the maximum 

possible mass in the design space. Due to symmetry of the 

Table 4. Punched plate: iteration data 

Cycle 1 2 3 4 F L  

Number of elements 133 288 220 257 

Number of iterations 13 17 13 17 - 

Isoline: P/Po 0.1 0.2 0.3 0.4 0.5 

Approx. error eapp % 100 100 100 75 50 

Smoothing factor Smat 3 2 1 0 0 

problem, only one half must be analysed and optimized. At 

the beginning of the optimization process the design space 

consists of equally distributed material using the orthotropic 

approach discussed before (# = 2.0): The design model of 

the design space is discretized by 2 x 900 square patches (Fig. 

16b). The linear finite element analysis is carried out by 2 x 

2 reduced integrated, eight-node, isoparametric plane stress 

elements. The material distribution problem is solved by 

the optimality criteria method used in the examples before. 

The optimized material distribution of each cycle is shown in 

Figs. 16e-g. The iteration data are listed in Table 5, where 

the number of finite elements of one half of the structure 

is denoted by nele, the values of the objective with respect 

to the initial design at the end of each optimization step by 

Zopt, the required accuracy by acc and the needed number of 

iterations by niter. 

Table 5. Beam-like structure: iteration data 

Cycle 1 2 3 4 5 

nel e 100 202 291 402 365 

niter 24 17 12 10 29 

Zopt % 12.0 10.4 9.9 10.2 9.6 

acc 10 -3  10 -3  10 - 4  10 - 4  10 -5  

Based on a first indistinct result of cycle 1, the analysis 

model is adapted to the optimized material distribution. In 

the following optimization cycles the contours of the structure 

become increasingly clear. Until cycle 4 the topology of the 

structure does not change and only the shape of external 

and internal boundaries is determined in detail. However, 

since topology and shape depend on each other, the topology 

of the structure changes in cycle 5, improving the objective 

of the design problem. This would not be possible if the 

conventional procedure were used. In contrast, using ATO 

a variation of topology and shape can be carried out during 

the entire optimization process. 

7.7 Slab structure 

In a last example, it is shown that ATO can not only be ap- 

plied to plane stress problems, but also to slab structures 

in its present stage of development. For a square design 

space clamped on two opposite edges and loaded in its centre, 

the structure of minimum weight must be found (Fig. 17a). 

The maximum displacement of the loaded node is restricted. 

Since only the displacement of the loaded node is constrained, 

i.e. the minimum stiffness of the structure is given, this design 

problem corresponds to a maximum stiffness problem where 

the mass for the structure is restricted. Due to symmetry 

of the problem, only one quarter of the design space must 

be analysed and optimized. The linear finite element anal- 

ysis is carried out by 2 x 2 reduced integrated, eight-node, 

isoparametric plate elements. 

Aerodynamic shape optimization (figure from A. Jameson, “Aerodynamics,”

Encyclopedia of Computational Mechanics, Vol. 3, pp. 325–406)

Aerodynamics 391

7.8.1 Redesign of the Boeing 747 wing

Here the optimization of the wing of the Boeing 747-
200 is presented to illustrate the kind of benefits that can
be obtained. In these calculations, the flow was modeled
by the RANS equations. A Baldwin–Lomax turbulence
model was considered sufficient, since the optimization is
for the cruise condition with attached flow. The calcula-
tions were performed to minimize the drag coefficient at
a fixed lift coefficient, subject to the additional constraints
that the span loading should not be altered and the thick-
ness should not be reduced. It might be possible to reduce
the induced drag by modifying the span loading to an
elliptic distribution, but this would increase the root bend-
ing moment, and consequently require an increase in the
skin thickness and structure weight. A reduction in wing
thickness would not only reduce the fuel volume, but it
would also require an increase in skin thickness to sup-
port the bending moment. Thus these constraints assure that
there will be no penalty in either structure weight or fuel
volume.

Figure 42 displays the result of an optimization at a Mach
number of 0.86, which is roughly the maximum cruising
Mach number attainable by the existing design before the

onset of significant drag rise. The lift coefficient of 0.42
is the contribution of the exposed wing. Allowing for the
fuselage to total lift coefficient is about 0.47. It can be
seen that the redesigned wing is essentially shock free, and
the drag coefficient is reduced from 0.01269 (127 counts)
to 0.01136 (114 counts). The total drag coefficient of the
aircraft at this lift coefficient is around 270 counts, so
this would represent a drag reduction of the order of 5
percent.

Figure 43 displays the result of an optimization at Mach
0.90. In this case the shock waves are not eliminated, but
their strength is significantly weakened, while the drag
coefficient is reduced from 0.01819 (182 counts) to 0.01293
(129 counts). Thus the redesigned wing has essentially the
same drag at Mach 0.9 as the original wing at Mach 0.86.
The Boeing 747 wing could apparently be modified to allow
such an increase in the cruising Mach number because it
has a higher sweepback than later designs, and a rather
thin wing section with a thickness to chord ratio of 8
percent. Figures 44a and 44b verify that the span loading
and thickness were not changed by the redesign, while
Figures 44c and 44d indicate the required section changes
at 42 and 69.

Symbol Source
SYN107 Design 50
SYN107 Design 0

Alpha
1.766
1.536

CD
0.01293
0.01819

Comparison of chordwise pressure distributions
B747 wing-body

Ren = 100.00, Mach = 0.900, CL = 0.421
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Figure 43. Redesigned Boeing 747 wing at Mach 0.90, Cp distributions.

Kevin Carlberg Lecture 4: PDE-Constrained Optimization



Outline and terminologies
Applications

Implementation strategy
Other research issues
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Implementation strategy

There are two main implementation strategies:

1 Nested Analysis and Design (NAND): state variables are
eliminated from the optimization problem by enforcing PDE
constraints to first order at each optimization iteration

Black-box: PDE solver takes in inputs and returns outputs
Gradient-based: PDE solver takes in inputs and returns
outputs and output gradients

2 Simultaneous Analysis and Design (SAND): PDE constraints
are treated the same as any other constraint

In order of increasing intrusiveness (and increasing efficiency):
Black-box → Gradient-based NAND → SAND
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Black-box NAND

Optimizer
PDE solver

s

R(u(s), s) = 0

dj(u(s), s)

ci(u(s), s)
f(u(s), s)

minimize
s∈Rp

f(u(s), s)

subject to ci(u(s), s) = 0,

dj(u(s), s) ≥ 0

, Non-invasive: can use “out-of-the-box” PDE solver and
optimizer

/ Since the PDE solver only returns function values, gradients
are not available

The optimizer must be:
a derivative-free optimization algorithm, or
a gradient-based algorithm with finite differences
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Gradient-based NAND

Optimizer PDE solver
s

R(u(s), s) = 0

dj(u(s), s)

ci(u(s), s)
f(u(s), s)minimize

s∈Rp
f(u(s), s)

subject to ci(u(s), s) = 0,

dj(u(s), s) ≥ 0

∇f(u(s), s)
∇ci(u(s), s)

∇dj(u(s), s)

sensitivity analysis
+

, Can use “out-of-the-box” gradient-based optimizer

/ Somewhat invasive: must implement sensitivity analysis in
PDE solver

There are two ways to execute sensitivity analysis
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Sensitivity analysis for gradient-based NAND

Let gk(u(s), s), k = 1, . . . , ni + ne + 1 be the optimization
functions

gk = ck for k = 1, . . . , ne

gk = dk−ne for k = ne + 1, . . . ne + ni

gne+ni +1 = f

We can differentiate gk(u(s), s) with respect to the i th design
variable si , via the chain rule

dgk

dsi
=
∂gk

∂si
+
∂gk

∂u

du

ds
(1)
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Furthermore, we would like to enforce first-order consistency
of the PDE: R(u(s + δs), s + δs) = 0 (note R(u(s), s) = 0)

R(u(s + δs), s + δs) ≈ R(u(s), s) +

p∑
i=1

∂R

∂u

du

dsi
δsi +

p∑
i=1

∂R

∂si
δsi

p∑
i=1

(
∂R

∂u

du

dsi
+
∂R

∂si

)
δsi = 0

du

dsi
= −∂R

∂u

−1∂R

∂si
(2)

Jacobian: ∂R
∂u

Substituting (2) into (1), we obtain

dg

dsi
=
∂g

∂si
− ∂g

∂u

∂R

∂u

−1∂R

∂si
(3)
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Two methods for solving (3)

Direct sensitivity analysis

1 Solve du
dsi

= ∂R
∂u

−1 ∂R
∂si

for i = 1, . . . , p

2 Cheaply compute dgk

dsi
= ∂g

∂si
− ∂g

∂u
du
dsi

, for k = 1, . . . , ne + ni + 1

Adjoint sensitivity analysis

1 Solve ψk = ∂R
∂u

−T ∂g
∂si

for k = 1, . . . , ne + ni + 1

2 Cheaply compute dgk

dsi
= ∂g

∂si
− ψT

k
∂R
∂si

for i = 1, . . . , p

In each case, the linear system solves (step 1) are more
expensive than computing the products (step 2)

→ p < ne + ni + 1 (a few variables): direct is cheaper

→ p > ne + ni + 1 (many variables): adjoint is cheaper
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SAND

Optimizer

PDE solver
+

minimize
u∈Rm,s∈Rp

f(u, s)

subject to ci(u, s) = 0,

dj(u, s) ≥ 0,

R(u, s) = 0

The optimizer has access to the complete discretized model

/ Invasive: cannot use “out-of-the-box” optimizer or PDE solver

, High efficiency: simultaneously solve the PDE and
optimization problem
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Other research issues for PDE-constrained optimization

Cost reduction: expensive to repeatedly solve the PDE for
NAND

“Physics-based” globalizations: PDE solver doesn’t always
converge quickly in all parts of the variable space

Jacobians ∂R
∂u : PDE solvers use inexact Jacobians, but the

optimizer needs an exact one

Time-dependent PDE optimization: a huge number of state
variables (one set for each time step) → SAND methods
become infeasible
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