
1 INTRODUCTION  

Conventional Probabilistic Risk Assessment (PRA) 
methods model deterministic relations between basic 
events that combine to form a risk scenario. This is 
accomplished by using Boolean logic methods, such 
as Fault Trees (FTs) and Event Trees (ETs) or Event 
Sequence Diagrams (ESDs). However since with 
human and organizational failures are among the 
most important roots of many accidents and inci-
dents, there is an increased interest in expanding 
causal models to incorporate non-deterministic 
causal links encountered in human reliability and 
organizational theory. Bayesian Belief Networks 
(BBNs) have the capability to model these soft rela-
tionships. 

This paper describes a new risk methodology 
known as Hybrid Causal Logic (HCL) that combines 
the Boolean logic-based PRA methods (ESDs, FTs) 
with BBNs. The methodology is implemented in a 
software package called the Integrated Risk Infor-
mation System (IRIS). The HCL computational en-
gine of IRIS can also be used as a standalone con-
sole application. The functionality of this 
computational engine can be accessed by other ap-
plications through an API. IRIS was designed for the 
United States Federal Aviation Administration.  Ad-
ditional information on IRIS can be found in the ref-
erences (Groth, Zhu & Mosleh 2008; Zhu et al 2008; 
Groth 2007). 

 

In this modeling framework risk scenarios are 
modeled in the top layer using Event Sequence Dia-
grams. In the second layer, Fault Trees are used to 
model the factors contributing to the properties and 
behaviors of the physical system (hardware, soft-
ware, and environmental factors). Bayesian Belief 
Networks comprise the third layer to extend the 
causal chain of events to potential human, organiza-
tional, and socio-technical roots.   

This approach can be used as the foundation for 
addressing many of the issues that are commonly 
encountered in risk and safety analysis and hazard 
identification. As a causal model, the methodology 
provides a vehicle for identification and analysis of 
cause-effect relationships across many different 
modeling domains, including human, software, 
hardware, and environment.   

The IRIS framework can be used to identify all 
risk scenarios and contributing events and calculate 
associated probabilities; to identify the risk value of 
specific changes and the risk importance of certain 
elements; and to monitor system risk indicators by 
considering the frequency of observation and the 
risk significance over a period of time. Highlighting, 
trace, and drill down functions are provided to facili-
tate hazard identification and navigation through the 
models. 

All of the features in IRIS can be implemented 
with respect to one risk scenario or multiple scena-
rios, e.g., all of the scenarios leading to a particular 
category or type of end state. IRIS can be used to 
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build a single one-layer model, or a network of mul-
ti-layer models. 

IRIS was developed as part of an international re-
search effort sponsored by the FAA System Ap-
proach for Safety Oversight (SASO) office. Other 
parts of this research created ESDs, FTs, and BBNs 
by teams of aviation experts from the United States 
and Europe. IRIS integrates the different models into 
a standard framework and the HCL algorithm com-
bines quantitative information from the models to 
calculate total risk. 

The Dutch National Aerospace Laboratory (NLR) 
used the NLR air safety database and aviation ex-
perts to created a hierarchical set of 31 generic ESDs 
representing the possible accident scenarios from ta-
keoff to landing (Roelen et al. 2002) 

Another layer of the aviation safety model was 
created by Hi-Tec Systems. Hi-Tec created a com-
prehensive model for the quality of air carrier main-
tenance (Eghbali 2006) and the flight operations 
(Mandelapu 2006). NLR has also created FTs for 
specific accident scenarios (Roelen & Wever 2004a, 
b). 

The NLR and Hi-Tec models were built and ana-
lyzed in IRIS. One set of models pertains to the use 
of the incorrect runway during takeoff. These mod-
els became especially pertinent after the August 
2006 fatal Comair Flight 5191 crash in Lexington, 
Kentucky. The pilot of flight 5191 taxied onto the 
wrong runway during an early morning takeoff due 
to a combination of human and airport factors. The 
incorrect runway was shorter than the minimum dis-
tance required for the aircraft to takeoff. The aircraft 
was less than 300ft from the end of the runway be-
fore pilots realized the error and attempted to takeoff 
at below-optimal speed. The attempted takeoff re-
sulted in a runway overrun and the death of 49 of the 
50 people onboard.  

The NTSB (2007) cited human actions by crew 
and air traffic control (ATC) contributing to the ac-
cident. The crew violated cockpit policy by engag-
ing in non-pertinent conversation during taxiing and 
by completing an abbreviated taxi briefing. Signs 
indicating the runway number and cockpit displays 
indicating the direction of takeoff were not men-
tioned by either pilot during the takeoff. During ta-
keoff the flight crew noted that there were no lights 
on the runway as expected, but did not double check 
their position as the copilot had observed numerous 
lights out on the correct runway the previous day.  
Pre-flight paperwork also indicated that the center-
line lights on the proper runway were out. The flight 
crew did not use the available cues to reconsider ta-
keoff.   

At the time of the accident only one of two re-
quired air traffic controllers were on duty. Accord-
ing to post-accident statements, the controller on du-
ty at the time of the accident was also responsible 
for monitoring radar and was not aware that the air-

craft had stopped short of the desired runway before 
he issued takeoff clearance. After issuing takeoff 
clearance the controller turned around to perform 
administrative tasks during take-off and was not en-
gaged in monitoring the progress of the flight. Fati-
gue likely contributed to the performance of the con-
troller as he had only slept for 2 hours in the 24 
hours before the accident. 

Impaired decision making and inappropriate task 
prioritization by both crew members and ATC were 
major contributing factors to this accident. The re-
ducing lighting on both the correct and incorrect 
runways at the airport contributed to the decision er-
rors made by crew and fatigue and workload contri-
buted to decision errors made by ATC. The details 
from the flight 5191 and the group of models for use 
of the incorrect runway during takeoff will be used 
throughout this paper to show how the HCL metho-
dology can be applied to a real example.  

2 OVERVIEW OF HCL METHODOLOGY 

2.1 Overview of the HCL modeling layers 

The hybrid causal logic methodology extends 
conventional deterministic risk analysis techniques 
to include “soft” factors including the organizational 
and regulatory environment of the physical system. 
The HCL methodology employs a model-based ap-
proach to system analysis; this approach can be used 
as the foundation for addressing many of the issues 
that are commonly encountered in system safety as-
sessment, hazard identification analysis, and risk 
analysis. The integrated framework is presented in 
Figure 1. 

ESDs form the top layer of the three layer model, 
FTs form the second layer, and BBNs form the bot-
tom layer. An ESD is used to model temporal se-
quences of events. ESDs are similar to event trees 
and flowcharts; an ESD models the possible paths to 

Figure 1:  Illustration of a three-layered IRIS model 
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outcomes, each of which could result from the same 
initiating event. ESDs contain decision nodes where 
the paths diverge based on the state of a system ele-
ment. As part of the hybrid causal analysis, the 
ESDs define the context or base scenarios for the 
hazards, sources of risk, and safety issues.   

The ESD shown in Figure  models the probability 
of an aircraft taking off safely, stopping on the run-
way, or overrunning the runway. As can be seen in 
the model, the crew must reject the takeoff and the 
speed of the aircraft must be lower than the critical 
speed beyond which the aircraft cannot stop before 
the end of the runway. By the time the Flight 5191 
crew realized the mistake, the plane was above criti-
cal speed and the runway overrun was inevitable. 

The initiating event of the ESD, ATC event, is di-
rectly linked to the top gate of the FT in Figure 3.  
This FT provides three reasons an aircraft could be 
placed in this situation: loss of separation with traf-
fic, takeoff from incorrect runway, or a bird strike.  
 FTs uses logical relationships (AND, OR, NOT, 
etc.) to model the physical behaviors of the system. 
In an HCL model, the top event of a FT can be con-

nected to any event in the ESD. This essentially de-
composes the ESD event into a set of physical ele-
ments affecting the state of the event, with the node 
in the ESD taking its probability value from the FT. 

BBNs have been added as the third layer of the 
model. A BBN is a directed acyclic graph, i.e. it 
cannot contain feedback loops. Directed arcs form 
paths of influence between variables (nodes). The 
addition of BBNs to the traditional PRA modeling 
techniques extends conventional risk analysis by 
capturing the diversity and complexity of hazards in 
modern systems. BBNs can be used to model non-
deterministic casual factors such as human, envi-
ronmental and organizational factors.    

BBNs offer the capability to deal with sequential 
dependency and uncertain knowledge. BBNs can be 
connected to events in ESDs and FTs. The connec-
tions between the BBNs and logic models are 
formed by binary variables in the BBN; the proba-
bility of the linked BBN node is then assigned to the 
ESD or FT event. 

The wrong runway event in the center of the FT 
is the root cause of the accident. Factors that contri-

Figure 2:  Case study top layer -- ESD for an aircraft using the wrong runway (Roelen et al. 2002). 

Figure 5:  Case study middle layer -- FT for air traffic 

control events (Roelen and Wever 2004a) 

Figure 4: Partial NLR model for takeoff from wrong run-

way. The flight plan node is fed by Figure 5, and the crew 

decision/action error is fed by additional human factors. 



bute to this root cause are modeled in the BBNs in 
Figure  and Figure . Figure  is part of the wrong 
runway BBN developed by NLR (Roelen and Wever 
2007); the wrong runway FT event is linked to the 
output node of this BBN. The flight plan node in 
Figure  feeds into the wrong runway node in Figure . 
Figure  is fed by the Hi-Tec air carrier maintenance 
model (Eghbali 2006; not pictured) with the end 
node of the maintenance model feeding information 
into the fleet availability node at the top of the flight 
operations model.    

Since many of the casual factors in BBNs may 
have widespread influence, BBN nodes may impact 
multiple events within ESDs and FTs. The details of 
the HCL quantification procedure can be found in 
the references (Groen & Mosleh 2008, Wang 2007). 

2.2 Overview of HCL algorithm quantitative 
capabilities 

An ESD event can be quantified directly by input-
ting a probability value for the event, or indirectly 
by linking it to a FT or a node in a BBN.  Linked 
ESD events take on the probability value of the FT 
or node attached to it. This allows the analyst to set a 
variable probability for ESD events based on contri-
buting factors from lower layers of the model.  

Likewise, FT basic events can be quantified directly 
or linked to any node in the BBN.   

BBN nodes are quantified in conditional proba-
bility tables. The size of the conditional probability 
table for each node depends on the number of parent 
nodes leading into it. The conditional probability ta-
ble requires the analyst to provide a probability val-
ue for each state of the child node based on every 
possible combination of the states of parent nodes.  
The default number of states for a BBN node is 2, 
although additional states can be added as long as 
the probability of all states sums to 1.  Assuming the 
child and its n parent nodes all have 2 states, this re-
quires 2

n
 probability values. 

In order to quantify the hybrid model it is neces-
sary to convert the three types of diagrams into a set 
of models that can communicate mathematically.  
This is accomplished by converting the ESDs and 
FTs into Reduced Ordered Binary Decision Dia-
grams (BDDs). The set of reduced ordered BDDs 
for a model are all unique and the order of variables 
along each path from root node to end node is iden-
tical. Details on the algorithms used to convert ESDs 
and FTs into BDDs have been described extensively 
(Bryant 1992, Brace et al. 1990, Rauzy 1993, Andrews 
& Dunnett 2000, Groen et al. 2005). 

Figure 5: Case study bottom layer -- BBN of flight operations (Mandelapu 2006) 



BBNs are not converted into BDDs; instead, a 
hybrid BDD/BBN is created. In this hybrid struc-
ture, the probability of one or more of the BDD va-
riables is provided by a linked node in the BBN.  
Additional details about the BDD/BBN link can be 
found in Groen & Mosleh (2008). 

3 HCL-BASED RISK MANAGEMENT METRICS  

In addition to providing probability values for each 
ESD scenario, each FT and each BBN node, the 
HCL methodology provides functions for tracking 
risks over time and for determining the elements that 
contribute most to scenario risk. HCL also provides 
the minimal cut-sets for each ESD scenario, allow-
ing the user to rank the risk scenarios quantitatively. 
Specific functions are described in more detail be-
low. For additional technical details see (Mosleh et 
al. 2007). 
 Figure 7 displays scenario results for the wrong 
runway scenario. It is clear that the most probable 
outcome of using the wrong runway is a continued 
takeoff with no consequences. The bottom half of 
the figure displays the cut-sets only for the scenarios 
that end with a runway overrun. As can be seen in 
the figure, the most likely series of event reading to 
an overrun is the combination of using the incorrect 
runway, attempting a rejected takeoff, and having 
speed in excess of the critical stopping speed (V1). 
This is the pattern displayed by flight 5191. 

3.1 Importance Measures 

Importance measures are used to identify the most 
significant contributors to a risk scenario. They pro-
vide a quantitative way to identify the most impor-
tant system hazards and to understand which model 
elements most affect system risk. Importance meas-

ures can be used to calculate the amount of addition-
al safety resulting from a system modification, 
which allows analysts to examine the benefits of dif-
ferent modifications before implementation. Ana-
lysts can also use importance measures to identify 
the elements that most contribute to a risk scenario 
and then target system changes to maximize the 
safety impact. 

There are numerous ways to calculate importance 
measures for Boolean models. However, due to the 
dependencies in HCL models introduced by inclu-
sion of BBNs, the methods cannot be applied in their 
original form. Four conventional importance meas-
ures have been modified and implemented in HCL: 
Risk Achievement Work (RAW), Risk Reduction 
Worth (RRW), Birnbaum, and Vesely-Fussel (VF).    

The standard Vesely-Fussel importance measure 
(Eq. 1) calculates the probability that event e has oc-
curred given that ESD end state S has occurred 
(Fussel 1975). 

For hybrid models, event e is a given state of a 
model element, e.g. a FT event is failed or a BBN node 
is “degraded” instead of “fully functional” or “failed.”  
By addressing a particular state, it is possible to ex-
tend importance measures to all layers of the hybrid 
model. 

Importance measures must be calculated with re-
spect to an ESD end state. To ensure independence 
in ESDs with multiple paths, it is necessary to treat 
the end state S as the sum of the Si mutually exclu-
sive paths leading to it. The importance measure can 
then be calculated by using Equation 2. 

  
 
(2) 
 

Figure 6: Probability values and cut sets for the base wrong runway scenario. 
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For a set of scenarios belonging to two or more 
ESDs the probability can be calculated as a function 
of the results from each ESD or by use of the mean 
upper bound approximation.  Additional details on 
HCL importance measure calculations can be found 
in Zhu (2008). 

Figure 7 provides importance measure results for 
the runway overrun model. The importance meas-
ures in the figure are arranged by the Vesely-Fussel 
importance measure. The items in the components 
column are FT events and some selected BBN 
nodes. The BBN nodes selected reflect the factors 
that contributed to the runway overrun of Flight 
5191. From the figure it is obvious that take-off from 
incorrect runway is the most important contributing 
factor to the runway overrun end state. 

3.2 Risk indicators 

Risk indicators are used to identify potential system 
risks by considering both the risk significance and 
the frequency of the event. They are also used to 
monitor system risks and to track changes in risk 
over time. Risk significance is calculated with re-
spect to selected ESD scenarios or end states.  It can 
be calculated for any BBN node, FT gate or event, 
or ESD pivotal event.  

The risk indicator is calculated by Equation 3, 
where R is the total risk, φ is the frequency of the 
event.   

 
φ⋅= )|Pr( fSR               (3) 

 
Pr(S|f) is the risk weight of a BBN node or FT event 
or gate (f) and S is the selected ESD end state or 
group of end states. If S consists of an end state cat-
egory or multiple end states in the same ESD Equa-
tion 3 is modified using the same logic explained for 
modifying Equation 1. For multiple end states in dif-
ferent ESDs the risk indicator value can be calcu-
lated using the upper bound approximation. The 
procedure for performing precursor analysis and ha-

zard ranking follows directly from the risk indicator 
procedure.  

Figure 8 displays individual risk indicators and to-
tal risk for several BBN nodes from the example 
model. Frequency values are to be provided by the 
analyst. In the example case, the frequency values 
were selected to show how IRIS could be used to 
monitor the risks before the accident; these are not 
values from data. The top graph in Figure 8 shows 
the changing risk values for each of the three se-
lected indicators. The bottom graph shows the ag-
gregated risk value over time. Based on the risk val-
ues obtained from the models and the hypothetical 
frequency data, it becomes apparent that the risk as-
sociated with airport adequacy increased sharply be-
tween May and July. The hypothetical risks asso-
ciated with the adequacy of the airport could have 
been identified in July and steps could have been 
taken to reduce these risks before serious conse-
quences occurred.  

Figure 7:  Importance measure results for the runway overrun model.  

Figure 8:  Sample risk indicators implemented in IRIS 



3.3 Risk impact 

Analysts can use IRIS to visualize the change in sys-
tem risk based on observed or postulated conditions.  
This can be achieved by using the set evidence func-
tion to make assumptions about the state of one or 
more BBN nodes.  Once assumptions are made the 
model is updated to reflect the new information, 
providing new probability values for all nodes sub-
sequently affected by the changes. 

When the BBN is linked to an ESD or FT, the 
new ESD and FT models will also display new 
probability values. The set evidence function allows 
users to see the impact of soft factors on risk scena-
rios. The result is a more tangible link between the 
actions of humans/organizations and specific system 
outcomes.   

Setting evidence will provide users with a better 
understanding of how low-level problems propagate 
through the system and combine to form risk scena-
rios. Figure 9 displays updated scenario results for 
the flight 5191 overrun. In this scenario, evidence 
was set for three nodes in the BBN (Fig.Figure ). 
Human actions was set to the state unsafe because of 
errors made by the flight 5191 flight crew. Airport 
adequacy was set to the state inadequate because of 

the lack of proper lighting on both runways. The ta-
keoff plan was deemed substandard. 

By comparing the results of the base case, Figure 
6, to the case updated with scenario evidence, Figure 
9, it is possible to quantify the change in risk ac-
company certain behaviors. The updated probability 
of a runway overrun based on human actions, airport 
conditions, and the takeoff plan is an order of mag-
nitude greater than the probability of the base scena-
rio. Again, the series of events leading to the flight 
5191 crash is the most probable sequence leading to 
an overrun in the model. 

It is evident from Figure 10 that the three BBN 
nodes strongly impact the probability of taking off 
from the incorrect runway. This probability increas-
es by almost a factor of 2 when the model is updated 
with the scenario evidence. 

4 CONCLUSION 

This paper provides an overview of the hybrid caus-
al logic (HCL) methodology for Probabilistic Risk 
Assessment and the IRIS software package devel-
oped to use the HCL methodology for comprehen-
sive risk analyses of complex systems. The HCL 
methodology and the associated computational en-

Figure 9: Updated scenario results for the runway overrun with information about flight 5191 specified. 

Figure 10:  Fault tree results showing the probability of taking off from the wrong runway for the base case (top) and the case 

reflecting flight 5191 factors (bottom). 



gine were designed to be portable and thus there is 
no specific HCL GUI. The computational engine can 
read models from files and can be accessed through 
use of an API. 

The three- layer The flexible nature of the HCL 
framework allows a wide range of GUIs to be de-
veloped for many industries. The IRIS package is 
designed to be used by PRA experts and systems 
analysts. Additional GUIs can be added to allow us-
ers outside of the PRA community to use IRIS with-
out in depth knowledge of the modeling concepts 
and all of the analysis tool. 

Two FAA specific GUIs were designed with two 
different target users in mind.  Target users provided 
information about what information they needed 
from IRIS and how they would like to see it pre-
sented. The GUIs were linked to specific IRIS anal-
ysis tools, but enabled the results to be presented in 
a more qualitative (e.g. high/medium/low) way. 

The GUIs were designed to allow target users to 
operate the software immediately. Users are also 
able to view underlying models and see full quan-
titative results if desired. 
 HCL framework was applied to the flight 5191 
runway overrun event from 2006, and the event was 
analyzed based on information obtained about the 
conditions contributing to the accident.   

The three layer HCL framework allows different 
modeling techniques to be used for different aspects 
of a system. The hybrid framework goes beyond 
typical PRA methods to permit the inclusion of soft 
causal factors introduced by human and organiza-
tional aspects of a system. The hybrid models and 
IRIS software package provide a framework for un-
ifying multiple aspects of complex socio-
technological systems to perform system safety 
analysis, hazard analysis and risk analysis. 

The methodology can be used to identify the most 
important system elements that contribute to specific 
outcomes and provides decision makers with a quan-
titative basis for allocating resources and making 
changes to any part of a system.  
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