
Energy Based Performance Tuning for Large Scale High Performance Computing
Systems

James H. Laros III #1, Kevin T. Pedretti #, Suzanne M. Kelly #, Wei Shu &, Courtenay T. Vaughan #

Sandia National Laboratories
1 jhlaros@sandia.gov

& University of New Mexico

Keywords: High Performance Computing (HPC), Power,
Energy Efficiency, Frequency Scaling

Abstract
Recognition of the importance of power in the field of High
Performance Computing, whether it be as an obstacle, ex-
pense or design consideration, has never been greater and
more pervasive. In response to this challenge, we exploit the
unique power measurement capabilities of the Cray XT archi-
tecture to gain an understanding of the power requirements of
important DOE/NNSA production scientific computing ap-
plications executing at large scale (thousands of nodes). The
effect of both CPU frequency and network bandwidth scal-
ing on power usage is characterized in a series of empirical
experiments and demonstrates energy savings opportunities
of up to 39% with little to no impact on run-time perfor-
mance. Our results provide strong evidence that next gen-
eration large-scale platforms should not only approach CPU
frequency scaling differently, but could also benefit from the
ability to tune other platform components, such as the net-
work, to achieve energy efficient performance.1

1. INTRODUCTION
Power has increasingly been identified as the tall pole in

the path to Exascale. Ubiquitous in the top three consider-
ations of virtually every report on next generation or Exas-
cale platforms, power has been recognized across the board
by government agencies and commercial enterprises alike as
possibly the greatest challenge in fielding future HPC plat-
forms. Existing hardware has been successfully leveraged by
present day operating systems to conserve energy whenever
possible but these approaches have proven ineffective and
even detrimental at large scale. While hardware must pro-
vide part of the solution, how these solutions are leveraged on
large scale platforms requires a new and flexible approach. It
is particularly important that any approach taken has a system
and node-level, view of these issues.

In response to this challenge we apply a, thus far, unique
ability to measure current draw and voltage, in situ, to an-

1Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

alyze the trade-offs between performance and energy effi-
ciency of production scientific applications run at large scale
(thousands of nodes) while manipulating CPU frequency
and network bandwidth. Previous work has been limited to
small scale experiments and has predominately used synthetic
benchmarks.

Our experiments were conducted on two Cray XT class
platforms; Red Storm located at Sandia National Laborato-
ries and Jaguar hosted by Oak Ridge National Laboratory.
The results of our experiments clearly indicate that oppor-
tunities exist to save energy by tuning platform components
while maintaining application performance. Our goal is to re-
duce energy consumption of scientific applications run at very
large scale while minimizing the impact on run-time perfor-
mance (wall-clock execution time).

Evaluating acceptable trade-offs between energy efficiency
and run-time performance is, of course, somewhat subjective.
Our work indicates that the parameters of these trade-offs are
application dependent. With annual power costs on track to
meet or exceed acquisition costs of next generation large scale
platforms, our traditional prioritization of performance above
all will be forced to change. It is likely that more emphasis
will be placed on energy efficiency metrics like FLOPS/Watt
or Energy Delay Product (EDP). Regardless, performance re-
mains a critical parameter of our evaluation.

The main contributions of this work are:

• We demonstrate the ability to perform fine-grained,
node-level power monitoring at large scale on Cray XT
compute nodes and scalably aggregate the results for
analysis.
• We present, to the best of our knowledge, the first in situ

empirical experiments showing the energy saving po-
tential for important Department of Energy (DOE) pro-
duction applications running at large scale (thousands of
nodes) on a leadership class architecture.
• We examine the energy savings potential for both CPU

frequency scaling and network bandwidth scaling. Prior
studies have only examined CPU frequency scaling at
small scale. Our results indicate that each of the applica-
tions studied has a sweet spot based on its computation
and communication requirements.
• We show that a positive trade-off exists between en-

ergy efficiency and performance for many applications,
which provides motivation for future exascale platforms
to include the ability to tune the power-profile of indi-
vidual components (e.g., CPU, network, memory) under
software control.

The remainder of this paper is organized as follows: Sec-
tion 2. provides an overview of the power measurement ap-
proach used in our experiments. This includes an overview of
the Cray XT test systems and their unique power measure-
ment and component tuning capabilities. Our CPU frequency
and network bandwidth scaling techniques are then described
in Sections 3. and 4., respectively. A brief overview of our
application test suite is given in Section 5., followed in Sec-
tion 6. with results and observations from running the suite
using various CPU (Experiment #1) and network configura-
tions (Experiment #2). Related work is summarized in Sec-
tion 7. Finally, overall conclusions and future work are dis-
cussed in Section 8.

2. POWER MEASUREMENT APPROACH
A detailed description of our power measurement approach

was previously given in Laros et al.[1]. This section provides
a brief summary and additional comments specific to the data
collection and analysis framework used in this study.

Figure 1. Cray XT Power Collection Infrastructure

Figure 1 illustrates the Reliability Availability and Ser-
viceability (RAS) infrastructure of the Cray XT architecture
leveraged for all of the power collection in these experiments.
The lines connecting all components in the figure are part of
an out-of-band RAS network hierarchy. The blue boxes indi-
cate nodes; there are four nodes per board. The orange boxes
represent the voltage regulator modules (VRM). In addition
to providing power to each node, the VRMs provide the cur-
rent and voltage readings when queried by the on board em-
bedded controller (the L0, depicted in green). The L0 on each
board collects the current and voltage readings and passes the
information to the cabinet level embedded processor (the L1,
depicted in red). Four nodes and an L0 make up a board, eight

boards combine to form a cage and three cages comprise a
cabinet. This represents the power collection hierarchy for
a single Cray XT cabinet. We employ many cabinets when
collecting data for these experiments. Ultimately, the data is
consolidated at the system management workstation (SMW),
the top-level node in the RAS hierarchy.

In all of the following experiments, current and voltage
measurements are collected, simultaneously, from 15 cabi-
nets (1440 nodes), more specifically each node’s VRM, at a
frequency of one sample per second over the duration of the
entire test period to avoid start up and tear down overhead
of the collection process. Since we used a range of applica-
tions executed at a range of scales, we targeted cabinets in a
distributed manner throughout the platform to achieve consis-
tent collection coverage for the applications tested. For exam-
ple, one of the test applications run on 4096 nodes intersected
with 960 of the collection nodes (23% coverage). Similarly, a
separate application run on 1536 nodes intersected with 480
of the collection nodes (31% coverage). The number of nodes
sampled was not limited by the scalability of the collection
mechanism but by the available test time on these large scale
platforms. At the scales tested we have seen no indication of
scalability issues with the collection mechanism.

Our post processing begins with ensuring all data sam-
ples used are from nodes involved in the application run. We
then synchronize the data samples with the application execu-
tion start and finish timestamps. For each application execu-
tion the data is processed and statistically analyzed. For each
experiment we calculate the standard deviation, median and
mean but rely on the coefficient of variation (CV) to ensure
the measurements are dependable since the CV is expressed
as a percentage, independent of magnitude. For the purposes
of this analysis we focus on the differences between complete
data samples or deltas. We have found in this and previous
experiments that the deltas provide a reliable foundation for
comparison.

2.1. Test Platforms
All experiments were conducted on either Red Storm2 or

Jaguar3. Both are variants of the Cray XT architecture. To
our knowledge, this is the only platform that exposes the abil-
ity to measure current draw, in situ, as described in [1]. The
Cray XT architecture contains commodity AMD processors
that allow for CPU frequency scaling. These features were
leveraged using specific operating systems modifications to
the Catamount light-weight kernel[2]. This architecture also
affords the ability to tune performance parameters of other
components such as network injection rate and network band-
width.

2Red Storm was the first instance of the Cray XT architecture line, and
was jointly developed by Cray Inc. and Sandia National Laboratories.

3Jaguar is located at Oak Ridge Leadership Computing Facility (OLCF).

Red Storm is currently a heterogeneous architecture con-
taining both dual and quad-core processors. There are 3,360
AMD 64 bit 2.4 GHz dual-core processors (nodes) with
4GB of DDR2 memory on Red Storm. The dual-core nodes
were used for the network bandwidth experiments. Addition-
ally, there are 6,240 AMD 2.2 GHz quad-core processors
(nodes) with 8GB of DDR2 memory. Jaguar, is a homoge-
neous architecture comprised entirely of quad-core proces-
sors. There are 7,832 2.1GHz quad-core AMD Opteron pro-
cessors (nodes) with 8GB of DDR2 memory. The CPU fre-
quency scaling studies were conducted on the quad-core pro-
cessors of both Red Storm and Jaguar. Nodes on both Red
Storm and Jaguar are connected via a Seastar 2.1 network in-
terface controller/router (Seastar NIC). The network topology
of Red Storm is a modified mesh (mesh in X and Y direc-
tions, torus in the Z direction). Jaguar’s network topology is a
3D torus. For the purposes of these experiments the network
topology differences are not significant. Some applications
used in both experiments are export controlled and could not
be run on Jaguar. We maximized the used of each platform
accordingly.

3. CPU FREQUENCY SCALING
Typical approaches to CPU frequency scaling employed by

operating systems, such as Linux, while efficient for single
server or laptop implementations, have proven to be detri-
mental when used at scale causing the equivalent of operating
system jitter[3]. For this reason, it is common practice at most
sites that deploy medium to large scale clusters to disable fre-
quency scaling. It is clear to us that techniques designed for
laptop energy efficiency (solely a node-level approach) are
not directly applicable to large scale HPC platforms. We take
a more deterministic, full system, approach ensuring all cores
participating in an application are executing at the target fre-
quency in lock step.

3.1. Operating System Modifications
To accomplish our goals, we made a small number of tar-

geted modifications to Catamount. We first interrogate the
chip architecture capabilities to determine if advanced power
management (APM) is supported. Specifically, we are inter-
ested in whether hardware P-state and Dynamic Voltage con-
trol is available. Changing P-states requires writing to P-state
related Memory Status Registers (MSR). If APM is not sup-
ported, writing to P-state MSRs will cause the node to fail.
Even if APM is enabled, however, only a single P-state is re-
quired to be defined. In addition, even if multiple P-states (up
to 5) are defined, they may have identical definitions. This is
typically not the case but enforces the importance of closely
interrogating specific hardware capabilities. From this point
forward we assume APM is supported and multiple P-states

are defined, at least two of which define different operating
frequencies.

Currently, our method of frequency scaling is limited to
frequencies defined in the P-state table, although most proces-
sors support frequency stepping in 100MHz increments. The
impetus of changing P-state (changing P-state changes fre-
quency) is ultimately to lower the input voltage to the proces-
sor. Power is proportional to the frequency, capacitance and
voltage squared. Consequently, the largest impact on power
can be obtained by lowering input voltage. Both the proces-
sor and the infrastructure must support dynamic voltage tran-
sitions for us to take advantage of this potential power sav-
ings. On the platform used in our experiments, all cores are
required to be in the same or higher4 P-state before a lower
input voltage takes effect. Basically, if one core is operating
at a higher frequency (which requires a higher input voltage)
the input voltage to the processor remains at the voltage nec-
essary to support the highest active frequency.

At a very early stage in the boot process we collect the de-
fault and supported P-states of each core. This information
is stored and used by a trap function added to handle a vari-
ety of P-state related functionality. Since changing P-state is
a privileged operation (writing to MSRs) the ability to change
P-states was added in two parts; an operating system trap and
a user level library interface. The trap implements query func-
tionality to determine what P-states are available, what P-state
the core is presently in and of course the ability to transition
from the current P-state to an alternate supported P-state. The
trap also reports the final P-state achieved and in debug mode
the number of nanoseconds the P-state transition took. The
amount of time necessary to transition between P-states is not
important for the experiments covered in this paper since we
accomplish a single static change prior to application execu-
tion. Transition time (effectively overhead) becomes a criti-
cal consideration when more dynamic methods of CPU fre-
quency scaling are employed.

Table 1 lists the supported P-states, corresponding CPU
frequencies and input voltages of both Red Storm and Jaguar.
The default (baseline) P-states and frequencies differ between
Red Storm and Jaguar (P-state 0 at 2.2 GHz on Red Storm,
P-state 1 at 2.1 GHz on Jaguar). Testing was conducted using
P-states 0, 2, 3 and 4 on Red Storm, and P-states 1, 2, 3 and 4
on Jaguar. While input voltages were consistent on Red Storm
we observed two different input voltages for each P-state on
Jaguar. The input voltage reported in Table 1 is the voltage
observed for the majority of the nodes. This observation had
no affect on our analysis since we use voltage measurements
taken from each node individually for our analysis.

4Additional detailed information specific to the AMD architecture family
discussed here can be found in the AMD BIOS and Kernel Developers guide
(BKDG).

Table 1. Test Platform P-state Information
P-state CPU frequency Input Voltage

Red Storm Jaguar Red Storm Jaguar
0 2.2 GHz 2.1 GHz 1.200 V 1.200 V
1 2.0 GHz 2.1 GHz 1.200 V 1.200 V
2 1.7 GHz 1.7 GHz 1.150 V 1.150 V
3 1.4 GHz 1.4 GHz 1.075 V 1.075 V
4 1.1 GHz 1.1 GHz 1.050 V 1.050 V

3.2. Library Interface
Since changing P-states (changing current operating fre-

quency COF) is a privileged operation, the trap is accessed
through a variety of functions provided by a user level library.
While a single trap function implements all of the functional-
ity, for ease of use and clarity we have implemented a library
function interface to exploit each capability separately.

• cpu pstates(void) - Returns detailed processor P-state information
• cpu freq step(P-state) - Requests a P-state transition (up or down)
• cpu freq default(void) - Returns default processor P-state

In this experiment, we quantify the affects of static CPU
frequency modification. Prior to executing the test applica-
tion we first execute a control application. The control appli-
cation simply changes the CPU’s COF by changing the CPU’s
P-state to the desired level (cpu freq step(P-state)). The con-
trol application is launched on every core of each node that
will be used in the test application. Note, while convenient
for our testing, a separate control application would not be
required in a production environment. P-state changes are ac-
cessible from any portion of the software stack using this li-
brary interface. Following execution of the control applica-
tion we execute the HPC application under test on the same
nodes. The HPC application will run at a lower frequency
defined by the P-state selected by the control program. Dur-
ing the execution of the HPC application we collect data for
both current draw and voltage at one second intervals. Once
the HPC application is completed we return all nodes to the
default P-state or select a new P-state for a subsequent exper-
iment with cpu freq step(P-state).

The trap and library interface was designed to support both
static and dynamic frequency scaling. Initially, we anticipated
that it would be necessary to change frequency often during
application execution to achieve an acceptable trade-off be-
tween performance and energy. In testing our modifications,
we discovered what we have reported in this paper, that large
benefits exist for static frequency scaling. Static frequency
scaling has many benefits including simplicity and stability.

4. NETWORK BANDWIDTH SCALING
The goal of this experiment was to determine the affect on

run-time performance and energy of production scientific ap-
plications run at very large scale while tuning the network
bandwidth of an otherwise balanced platform[4]. To accom-
plish network bandwidth scaling we employed two differ-

ent tunable characteristics of the Cray XT architecture. First,
we tuned the Seastar NIC to reduce the interconnect band-
width in stages to 1/2 and 1/4th of full bandwidth. Next, we
used the ability to tune the node injection bandwidth, effec-
tively reducing the network bandwidth to 1/8th. This allowed
for the most complete stepwise reduction in overall network
bandwidth we were able to achieve using this architecture
(see Figure 2).

Modifying the network interconnect bandwidth on the
Cray XT requires a fairly simple change to the router config-
uration file consulted during the routing process of the boot
sequence. A full system reboot is required for every alter-
ation of the interconnect bandwidth. Typically, all four rails
of the Seastar are enabled. Alternatively, the number of en-
abled rails can be reduced by specifying a bitmask in the sys-
tem’s router configuration file (e.g., 1111 for four rails, 0011
for two rails). In our experiments, we configured the intercon-
nect bandwidth of the Seastar to effectively tune the network
bandwidth to full, 1/2 and 1/4th.

Since the interconnect bandwidth on the XT architecture
is far greater than the injection bandwidth of an individual
node, the interconnect bandwidth had to be reduced to 1/2
before it produced a measurable effect. Multiple nodes may
route through an individual Seastar depending on communi-
cation patterns and node placement relative to logical network
topology. For this reason, we limited our experiments to one
application executing at a time. This allowed for the nearest
estimation of the impact of network bandwidth tuning on an
individual application.

Tuning the node injection bandwidth, to further reduce the
network bandwidth, requires a small modification to the Cray
XT bootstrap source code. The portion of the code that re-
quired modification (coldstart) serves an equivalent purpose
to the BIOS on a personal computer or server. Early in the
power-on sequence, coldstart initializes the HyperTransport
link that connects each node to its dedicated SeaStar net-
work interface. The speed of this link is determined by its
operating frequency (S) and width in bits (B) as follows:
SMHz×2bits/clock/link×Bbits/link×1Byte/8bits=BW.

In normal operation, the injection bandwidth is determined
by the maximum negotiated rate between the node and the
Seastar. A reboot is required to configure the injection band-
width to the desired setting. Normally the links operate at S
= 800 MHz and utilize the full B = 16 bits of each link re-
sulting in an injection bandwidth of 3.2GB/sec. To achieve
1/8th injection bandwidth we configure each link to run at
S = 200 MHz with an B = 8 bit per link width reducing the
injection bandwidth of each node to 400MB/sec. We selected
this injection bandwidth rate since it further reduced the over-
all network bandwidth beyond what was possible by reducing
the interconnect bandwidth of the Seastar.

Figure 2 depicts the four network bandwidth rates as mea-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

BW Tuning
 Full
 Half
 Quarter
 Eighth

Figure 2. Pallas PingPong bandwidth for all levels of net-
work bandwidth tuning

sured by Pallas (IMB)[5] PingPong between two dual core
nodes, one core per node. The maximum bandwidth observed
at 1/2 using these benchmarks is not 1/2 of full network
bandwidth, due to interconnect bandwidth being greater than
injection bandwidth on our test platforms. Injection band-
width was not altered other than to achieve the 1/8th band-
width configuration. Below 1/2 bandwidth, the steps become
regular as seen in Figure 2. Using the configuration tech-
niques available this is the best approximation of a step-wise
reduction in network bandwidth that could be achieved on this
platform. Experiments were conducted in phases beginning
with a baseline full bandwidth run for each application fol-
lowed by subsequent executions at each reduced bandwidth.
For each phase power samples (current draw and voltage)
were collected as described in Section 2.

5. APPLICATIONS
The applications used in our experiments were selected

based on their importance to the three DOE National Nuclear
Security Administration (NNSA) nuclear weapons laborato-
ries (Sandia, Los Alamos and Lawrence Livermore). As part
of the procurement of Cielo, (DOE/NNSA’s most recent HPC
capability platform (2010)) each laboratory in the Tri-Lab
complex specified two production scientific computing appli-
cations that would be used in the acceptance phase of the pro-
curement of Cielo. These applications are herein referred to
as the 6X applications (due to the requirement they, on aver-
age, must perform six times faster on Cielo, not that there are
six applications). The 6X applications include; SAGE, CTH,
AMG2006, xNOBEL, UMT and Charon. In addition to the
6X applications we used LAMMPS, another production DOE
application and two synthetic benchmarks, HPL and Pallas.
The following are brief descriptions of the applications along
with citations for additional information.

SAGE[6] SAIC’s Adaptive Grid Eulerian hydro-code, is
a multidimensional, multi-material Eulerian hydrodynamics
code. CTH[7] is a multi-material, large deformation, strong

shock wave, solid mechanics code developed at Sandia Na-
tional Laboratories. AMG2006[8], developed at Lawrence
Livermore National Laboratory, is a parallel algebraic multi-
grid solver for linear systems arising from problems on un-
structured grids. xNOBEL[9], developed at Los Alamos Lab-
oratories, is a one, two, or three dimensional multi-material
Eulerian hydrodynamics code used for solving a variety of
high deformation flow of materials problems. UMT[10] is
a 3D, deterministic, multigroup, photon transport code for
unstructured meshes. Charon[11], developed at Sandia Na-
tional Laboratories, is a semiconductor device simulation
code. LAMMPS[12] is a classical molecular dynamics code,
and an acronym for Large scale Atomic/Molecular Massively
Parallel Simulator. High Performance Linpack (HPL)[13] is
the third benchmark in the Linpack Benchmark Report, used
as the benchmark for the bi-annual Top500 report.The HPL
benchmark is well understood and recognized as a compute
intensive application. Pallas[5], now called the Intel MPI
Benchmark (IMB), successor to Pallas GmbH, is a suite of
benchmarks designed to measure the performance of a wide
range of important MPI routines. Pallas is communication in-
tensive.

6. RESULTS
In this section, we will individually discuss the results of

both the CPU frequency scaling experiment and the network
bandwidth tuning experiment. Increases in run-time or energy
percentage in Tables 2 and 3 are indicated by positive num-
bers, negative values are indicated by parenthesized numbers
(all relative to the baseline values listed). In all cases, the
same set of nodes was used for each individual application
execution.

6.1. Experiment #1: CPU Frequency Scaling
Results

The frequency scaling experiments were conducted during
five dedicated systems times. Four were conducted on Jaguar
during eight to twelve hour sessions between March 2010
and December 2010. The final experiments were conducted
on Red Storm in March of 2011 during a three day dedi-
cated system time. Over this period we conducted a range
of experiments using real production scientific applications
and synthetic benchmarks listed and described in Section 5.
As can be seen in Table 2 we were able to test some applica-
tions in all available P-states. Others exhibited clear results in
early testing and did not warrant further experiments and in
some cases we were simply unable to obtain results at higher
P-states (lower frequencies) due to hardware issues.

Decreasing CPU frequency, in general, slows computa-
tion. If applications were solely gated by computation this
approach would be entirely detrimental. However, applica-
tions exhibit a range of characteristics. In this experiment,

Table 2. Experiment #1 CPU Frequency Scaling: Run-time and CPU Energy %Difference vs. Baseline
Baseline Frequency P-2 - 1.7 GHz %Diff P-3 - 1.4 GHz %Diff P-4 - 1.1 GHz %Diff

Nodes/Cores Run-time (s) Energy (J) Run-time Energy Run-time Energy Run-time Energy

HPL 6000/24000 1571 4.49×108 21.1 (26.4)
Pallas 1024/1024 6816 1.72×108 2.30 (43.6)

AMG2006 1536/6144 174 9.49×106 7.47 (32.0) 18.4 (57.1) 39.1 (78.0)
LAMMPS 4096/16384 172 2.79×107 16.3 (22.9) 36.0 (48.4) 69.8 (72.2)

SAGE 4096/16384 249 4.85×107 0.402 (39.5)
1024/4096 337 1.51×107 3.86 (38.9) 7.72 (49.9)

CTH 4096/16384 1753 3.60×108 14.4 (28.2) 29.0 (38.9)
xNOBEL 1536/6144 542 4.96×107 6.09 (35.5) 11.8 (50.3)

UMT 4096/16384 1831 3.48×108 18.0 (26.5)
Charon 1024/4096 879 4.47×107 19.1 (27.8)

we altered CPU frequency and measured the impact on CPU
energy and run-time (other platform parameters are left un-
changed). We begin our analysis with a discussion of the ex-
tremes represented by two synthetic benchmarks, HPL and
Pallas. Note, for all experiments we contrast both run-time
and CPU energy to the baseline runs conducted at P-states 0
or 1 (depending on the platform used) and report the contrast
as percent difference. For all runs we record the execution
time in seconds (s) and the energy used in Joules (J).

The CPU frequency experiments focus on the effect that
CPU frequency modifications had on CPU energy alone. CPU
energy is the single largest contributor to total node energy as
observed in [14]. On the test platforms, CPU energy ranges
from 44-57% of total node power. For this reason we feel
measuring CPU energy in isolation is important. Further, the
results of this experiment have the potential to be more widely
applicable. In a later section, total system is energy analyzed
which considers the contribution of additional node compo-
nents. Both approaches have utility and provide interesting
insights.

HPL is a compute intensive application chosen to demon-
strate a high impact resulting from CPU frequency reduction.
The HPL results were consistent with expectations. In Table 2
we see a change to P-state 2 causes a 21.1% increase in run-
time and a 26.4% decrease in energy used. This performance
impact would likely be unacceptable for a real application un-
less the priority was energy savings.

In contrast to HPL, Pallas (IMB) is a communication inten-
sive benchmark. Pallas was chosen to demonstrate an appli-
cation that should be less affected by reductions in CPU fre-
quency. Again, as expected, Pallas demonstrates only a 2.30%
increase in run-time and a 43.6% reduction in energy when
run in P-state 2. This would likely be a favorable trade-off.
Given the results from these synthetic benchmarks we expect
our real applications will fall somewhere between these ex-
tremes.

AMG2006 was executed at P-states 1-4 at a scale of 6K
cores. At P-state 2 an increase in run-time of 7.47% was ob-

served, accompanied by an energy savings of 32.0%. The
trade-off at P-state 3 is not as clearly positive. The run-time
impact increases more than the energy is reduced in P-states 3
and 4.

LAMMPS (tested at 16K cores) does not display a clear
win when run at lower frequencies. Results for P-state 2 show
a 16.3% increase in run-time and a 22.9% decrease in energy.
The results for P-states 3 and 4 demonstrate even larger run-
time impacts. Note, however, energy savings as a percentage
are larger than run-time impacts.

Figures 3a and 3b graphically depict four separate execu-
tions of AMG2006 and LAMMPS at P-states 1-4. The shaded
area under each curve represents the energy used over the du-
ration of the application. Figure 3a depicts the positive run-
time vs. energy trade-off for AMG2006 indicated in Table 2,
between P-states 1 and 2. In contrast, more dramatic increases
in run-time versus area under the curve can be seen in figure
3b for LAMMPS. These graphs (application signatures) are
very useful in identifying computationally intense phases of
applications.

Results for SAGE were obtained at two different scales
(4K and 16K cores). In both cases, a small increase in run-
time (0.402% at larger scale and 3.86% at smaller scale) is
observed accompanied by a very significant reduction in en-
ergy (39.5% at large scale and 38.9% at small scale). We were
able to obtain results for a 4k core run of SAGE at P-state 3.
The impact on run-time remains low while additional energy
savings were recorded.

CTH was executed at P-states 0, 2 and 3 at a scale of 16K
cores. Similar to LAMMPS, no clear win is observed when
the CPU frequency is lowered.

We obtained results for xNOBEL at 6K cores at P-states 0,
2 and 3. Our results indicate that xNOBEL, like AMG2006
and SAGE, are good candidates for CPU frequency reduction.

UMT and Charon behaved in a very similar manner. Since
UMT was run at a much larger scale than Charon (16K cores
vs. 4K cores) we feel the results obtained for UMT are more
meaningful and more accurately represent what we could ex-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

W
a

tt
s

(W
)

Time (MM:SS since start of sample)

PSTATE 1
PSTATE 2
PSTATE 3
PSTATE 4

(a) AMG

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30

W
a

tt
s

(W
)

Time (MM:SS since start of sample)

PSTATE 1
PSTATE 2
PSTATE 3
PSTATE 4

(b) LAMMPS
Figure 3. Application Energy Signatures of AMG2006 and
LAMMPS run at P-states 1-4

pect at large scale. Charon may act differently when run at
larger scale but these results indicate that both UMT and
Charon are sensitive to CPU frequency changes.

The CPU is only one component that affects application
performance. In the following section we will experiment
with tuning network bandwidth and observe the trade-offs be-
tween performance vs. total system energy.

6.2. Experiment #2: Network Bandwidth
Scaling Results

Total energy in Table 3 includes the measured energy from
the nodes CPU, a measured energy from the Seastar and an
estimated energy from the memory subsystem. Node CPU en-
ergy is calculated by totaling the energy used by all CPUs
measured for each experiment divided by the number of
nodes measured to produce the average energy used by each
node (Ecpu). Current draw of the Seastar, measured from the
VRM supporting the entire mezzanine (Figure 1), is constant
since the SerDes do not throttle up and down based on net-
work traffic or demand. There are four Seastars in a mezza-
nine, therefore, we multiply the current reading by the input
voltage and divide by four to produce the baseline Seastar en-

ergy value (Enetwork). For 1/2, 1/4th and 1/8th network band-
width calculations we assume a linear reduction in power. To
avoid other components having a disproportionate affect on
the total calculation, we use an estimated per node memory
energy value (20W) for each experiment (Ememory). The cal-
culation is as follows (where E = Energy): (Ecpu +Enetwork +
Ememory)×number of nodes = Total Energy.

In all calculations 25 W is used for the full network band-
width value, 12.5 W for 1/2, 6.25 W for 1/4th and 3.125 W
for 1/8th network bandwidth.

Addressing each application in table order (see Table 3) we
see SAGE displays similar characteristics for both input prob-
lems tested. Reducing the network bandwidth by 1/2 has lit-
tle affect on the run-time while a significant savings in energy
is experienced. The impact on run-time is larger when the
network bandwidth is reduced to 1/4th with little additional
energy savings. At 1/8th network bandwidth SAGE, for both
input problems, experiences significant impacts on run-time
accompanied by smaller energy savings. Based on this data,
reducing network bandwidth by 1/2 would be advantageous,
if we could reduce the corresponding energy consumption of
the network by half.

CTH was affected more by changes in the network band-
width than any other application we tested. Even at 1/2
bandwidth, CTH experiences a greater percent increase in
run-time (9.81%) than is saved by reducing network energy
(7.09% decrease). At 1/4th bandwidth, CTH experiences a
very large increase in run-time (30.2%) accompanied by an
actual increase in energy used of 1.04%. Clearly, reducing
network bandwidth further is highly detrimental to both run-
time and energy as can be seen from the 1/8th network band-
width results. Even at this moderately large scale CTH re-
quires a high performance network to execute efficiently.

AMG2006 and xNOBEL are insensitive to the network
bandwidth changes in terms of run-time, but demonstrate
large energy savings opportunities. Reductions down to 1/8th

network bandwidth cause virtually no impact in run-time for
both AMG2006 and xNOBEL while a 25.9% savings in en-
ergy can be achieved for both. We do note the savings in en-
ergy seems to be flattening by the time we reduce network
bandwidth to 1/8th.

UMT produced similar results to AMG2006 and xNOBEL
when the network bandwidth was reduced up to 1/4th, little to
no impact in run-time accompanied by a large energy savings.
At 1/8th network bandwidth we see different characteristics.
UMT experiences a much higher impact on run-time at 1/8th

network bandwidth (6.32%) than at 1/4th (1.07%) with virtu-
ally no additional energy savings (21.7% at 1/4th and 21.8%
at 1/8th). We seem to have found the limit of network band-
width tuning that should be applied to UMT at least at this
scale. We should note that UMT was run at a smaller scale
relative to the other applications. It is possible that at larger

Table 3. Experiment #2 Network Bandwidth: Run-time and Total Energy %Difference vs. Baseline
Baseline Bandwidth (BW) 1/2 BW %Diff 1/4th BW %Diff 1/8th BW %Diff

Nodes/Cores Run-time (s) Energy (J) Run-time Energy Run-time Energy Run-time Energy

SAGE prob1 2048/4096 337 5.79×107 (0.593) (15.3) 8.90 (15.5) 20.2 (11.4)
SAGE prob2 2048/4096 328 5.64×107 0.609 (14.3) 8.23 (15.8) 22.6 (9.63)

CTH 2048/4096 1519 2.58×108 9.81 (7.09) 30.2 1.04 40.4 3.50
AMG2006 2048/4096 859 1.45×107 (0.815) (15.8) (0.116) (22.7) 0.931 (25.9)
xNOBEL 1536/3072 533 7.01×107 (0.938) (15.4) (0.375) (22.2) (0.375) (25.9)

UMT 512/1024 838 3.57×107 0.357 (14.7) 1.07 (21.7) 6.32 (21.8)
Charon 1024/2048 1162 9.96×107 1.55 (13.7) 2.15 (20.8) 2.67 (24.5)

scale our results would differ.

Charon showed small, but increasing, impact on run-time
as we reduced network bandwidth. At this scale it is clear that
the network bandwidth could be reduced to 1/4th with an ac-
ceptable impact in run-time (increase of 2.15%) accompanied
by a very significant savings in energy (decrease of 20.8%).
Moving from 1/4th to 1/8th network bandwidth shows indi-
cations that the energy savings is flattening but results are not
conclusive. Experiments with Charon at larger scale are also
warranted.

Excluding CTH, virtually no impact to run-time would be
experienced by tuning the network bandwidth to 1/2 (for the
applications tested). The result would be significant energy
savings with little to no performance impact. In the case of
AMG2006, xNOBEL and UMT the network bandwidth could
be reduced to 1/4th full bandwidth with little run-time im-
pact, allowing for even larger energy savings. Our observa-
tions indicate that a tunable network would be beneficial but
they also indicate a high performance network is critical for
some applications. The ability to tune the network, similar to
how frequency is tunable on a CPU, would be an important
characteristic on next generation exascale platforms.

It should be stressed that our data is representative of a sin-
gle application running at a time. One of the reasons the inter-
connect bandwidth of the Seastar was designed to be greater
than the injection bandwidth of a single node is that the net-
work is a shared resource on the Cray XT architecure, shared
by all simultaneously running applications. Often many hops
are required for a messages to travel from source to desti-
nation, and poor node mappings result in individual network
links carrying messages for multiple applications. Having a
greater interconnect bandwidth is essential for handling this
increased load. Thus, the ability to tune network performance
could not be exploited without considering the possible im-
pact on other applications running on the platform, at least
for network topologies like meshes and 3D-toruses. Network
topologies with fewer hops on average (high radix networks)
could benefit more easily from a tunable network.

7. RELATED WORK
Power, as it relates to computers and computation, has been

researched from many perspectives. Possibly the largest body
of work has been done by Ge, Feng and Cameron et al. The
authors use a framework called PowerPack[14][15] to pro-
file and analyze power and run-time effects. Component level
measurements are taken on a single node and a technique
they call node remapping is used to emulate larger scale runs.
In [16], the authors expand their collection capability to 16
nodes. The NEMO power aware cluster is comprised of lap-
tops which allow the necessary measurements to be taken us-
ing ACPI. The authors provide a thorough evaluation of three
different scheduling strategies for Dynamic Voltage Scaling
(DVS). Work towards developing a fused metric for energy
efficiency is also presented in [16]. Energy Delay Product
(EDP), initially proposed by Horowitz [17] and extended to
more heavily weight delay by Brooks [18], the authors pro-
pose a more dynamic weighted factor method. Finally, in [19]
the authors continue their analysis of parallel processing inef-
ficiencies to achieve savings in power with little performance
impact. While our motivations and the importance we put
on high-frequency component level measurement is clearly
shared, our work is focused on production scientific applica-
tions executing at large scales. Extending the environment the
authors have leveraged is not practical at the node counts we
are interested in.

Other researchers have used various modeling and emula-
tion techniques based on node-level or small-scale measure-
ments. In [20], the authors evaluate methods of measuring
power using synthetic benchmarks with line meters for single
node tests to cabinet level collection on the Cray XT architec-
ture. They provide some modeling analysis and extrapolate to
full system scale using their coarse cabinet level collections.
Li et al. in [21] model hybrid MPI/OpenMP from a perfor-
mance and energy perspective examining both dynamic con-
currency throttling (DCT) and DVS. In [22] Li uses modeling
to investigate task aggregation to reduce energy consumption
by reducing the number of nodes. Li uses AMG along with
some NPB benchmarks, one of the few efforts that use a real
HPC applications for their analysis. The use of performance
counters to estimate power efficiency has been researched

from a micro [23][24] and macro [25] perspective.
Kodi et al. [26] discuss the ability to tune network band-

width using techniques similar to DVS (but for network com-
ponents) to dynamically reconfigure optical interconnects
with the goal of increasing energy efficiency. We found work
proposing DVS on network links as early as 2003 (see Shang
et al.[27]) but we are not aware of any HPC platform that
currently has this capability.

Probably the greatest difference, and contribution, of our
work is the sheer scale of our experiments involving a large
set of production HPC scientific applications. The scale of our
in-situ data measurement techniques is unequaled. Our work
is clearly focused on empirical analysis and removes the ex-
trapolation from small-scale to large-scale that other studies
have used. Our research involving tuning the network band-
width and evaluating the impact with these same metrics cur-
rently has little related research to compare.

8. CONCLUSIONS AND FUTURE WORK
Our initial approach to this topic assumed that a more dy-

namic approach to tuning CPU and other platform compo-
nents would be necessary to achieve a positive trade-off be-
tween performance and energy (which is why we designed
our interface as described in Section 3.1.). On the path to this
goal we found that static changes can produce significant en-
ergy savings without sacrificing performance. While we have
found this to be the case, we feel there is more work to be
accomplished and hopefully more efficiency to be found.

Static tuning has many advantages including stability. Dy-
namic tuning, at scale, has the potential to be a difficult issue
to manage. If not done properly, it could introduce reliability
issues. Dynamic frequency scaling, of any component, also
requires consideration of how long it takes to accomplish the
desired frequency changes. If transitions are too frequent the
resulting overhead could negate any potential gain. Regard-
less, this is an important area of investigation that we are cur-
rently pursuing.

Our current efforts are targeting applications that exhibit
clearly discernible compute and communication phases. For
example, AMG2006 in Figure 3a demonstrates a heavy com-
putation phase early in application execution. If the CPU fre-
quency was kept high during this phase and transitioned to
a lower frequency in the latter part of execution would an
even more favorable trade-off between run-time and energy
be observed? In both Figure 3a and 3b , there appears to be
regular spikes in computation. If the CPU frequency could be
altered to coincide with these phases could we achieve even
better results for AMG2006? Would the results for LAMMPS
be positive? We are working to answer these questions for a
wide range of applications.

An important component that we have not experimented
with is memory, due to our inability to measure this compo-

nent in isolation, at present. The performance of many scien-
tific applications is bounded by memory bandwidth. For this
reason it is important to measure energy use of this compo-
nent as part of an overall analysis.

Finally, we are investigating the requirements and imple-
mentation of a full-system holistic approach to this challenge.
There are many issues that must be addressed: hardware sen-
sors, scalable out of band collection and application program-
ming interfaces between operating system, collection mech-
anisms and the application itself, and others. A set of inter-
faces and well-defined interactions are required to complete
the feedback loop for advanced power management on fu-
ture platforms. Once created we anticipate that applications
could direct hardware, via the interfaces mentioned, when
more or less performance is required from specific compo-
nents to reach maximum efficiency.

ACKNOWLEDGMENTS
We would like to acknowledge the INCITE program for

granting us dedicated system time on Jaguar and Robert Bal-
lance and John Noe for securing multiple dedicated test times
on Red Storm for these experiments. Dedicated system time,
especially for intrusive experiments such as these, require
heroic support from the systems administration staff. We ac-
knowledge the wonderful support of Don Maxwell at Oak
Ridge and Dick Dimock, Barry Oliphant, Jason Repik and
Victor Kuhns at Sandia. Management support from James
Ang and Ron Brightwell has also been invaluable. This work
was largely funded by the Advanced Simulation and Comput-
ing (ASC) program of the NNSA.

REFERENCES
[1] J. H. Laros III, K. T. Pedretti, S. M. Kelly, J. P. Vandyke,

K. B. Ferreira, C. T. Vaughan, and M. Swan, “Topics on
measuring real power usage on high performance com-
puting platforms,” in IEEE Cluster 2009, International
Conference on Cluster Computing. Sandia National
Laboratories, September 2009.

[2] S. M. Kelly and R. B. Brightwell, “Software Architec-
ture of the Light Weight Kernel, Catamount,” in Cray
User Group. CUG, 2005.

[3] F. Petrini, D. Kerbyson, and S. Pakin, “The Case of the
Missing Supercomputer Performance: Achieving Op-
timal Performance on the 8,192 Processors of ASCI
Q,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage,
and Analysis (SC). ACM/IEEE, 2003.

[4] R. Brightwell, K. Predretti, K. Underwood, and T. Hud-
son, “SeaStar Interconnect: Balanced Bandwidth for
Scalable Performance,” IEEE Micro, vol. 26, no. 3, pp.
41–57, 2006.

[5] “PALLAS,” Intel. [Online]. Available:
http://www.intel.com/cd/software/products/asmo-na/
eng/cluster/mpi/219848.htm

[6] R. Weaver and M. Gittings, “ Massively Parallel Simu-
lations with DOEś ASCI Supercomputers: An Overview
of the Los Alamos Crestone Project ,” in Adaptive Mesh
Refinement - Theory and Applications. Springer Berlin
Heidelberg, 2005.

[7] E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V.
Farnsworth, G. I. Kerley, J. M. Mcglaun, S. V. Petney,
S. A. Silling, P. A. Taylor, and L. Yarrington, “CTH: A
Software Family for Multi-Dimensional Shock Physics
Analysis,” in Proceedings of the International Sympo-
sium on Shock Waves. NTIS, 1993.

[8] R. D. Falgout, P. S. Vassilevski, Panayot, and S. Vas-
silevski, “On Generalizing the AMG Framework,” in
Society for Industrial and Applied Mathmatics: Journal
on Numererical Analysis. SIAM, 2003.

[9] M. Gittings, R. Weaver, M. Clover, T. Betlach,
N. Byrne, R. Coker, E. Dendy, R. Hueckstaedt, K. New,
W. R. Oakes, D. Ranta, and R. Stefan, “The RAGE
Radiation-Hydrodynamic Code,” Journal of Computa-
tional Science & Discovery, vol. 1, no. 1, p. 015005,
2008.

[10] “UMT2K,” Lawrence Livermore Na-
tional Laboratory. [Online]. Available:
https://asc.llnl.gov/computing\ resources/purple/
arch-ive/benchmarks/umt/umt1.2.readme.html

[11] P. T. Lin, J. N. Shadid, M. Sala, R. S. Tuminaro, G. L.
Hennigan, and R. J. Hoekstra, “Performance of a par-
allel algebraic multilevel preconditioner for stabilized
finite element semiconductor device modeling,” Jour-
nal of Computational Physics, vol. 228, pp. 6250–6267,
2009.

[12] S. Plimpton, “Fast Parallel Algorithms for Short-
Range Molecular Dynamics,” Journal of Computational
Physics, vol. 117, pp. 1–19, 1995.

[13] J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart,
“High Performance Linpack HPL,” in Technical Report
CS-89-85. University of Tennessee, 1989.

[14] X. Feng, R. Ge, and K. W. Cameron, “Power and Energy
Profiling on Scientific Applications on Distributed Sys-
tems,” in Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS). IEEE,
2005.

[15] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and
K. Cameron, “PowerPack: Energy Profiling and Anal-
ysis of High-Performance Systems and Applications,”
Transactions on Parallel and Distributed Systems,
vol. 21, no. 5, pp. 658–671, 2010.

[16] R. Ge, X. Feng, and K. W. Cameron, “Performance-
Constrained Distributed DVS Scheduling for Scientific
Applications on Power-aware Clusters,” in Proceedings
of the International Conference on High Performance
Computing, Networking, Storage, and Analysis (SC).
ACM/IEEE, 2005.

[17] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-
Power Digital Design,” in Proceedings of the Sympo-
sium on Low Power Electronics. IEEE, 1994.

[18] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva,
A. Buyuktosunoglu, J. Wellman, V. Zyuban, M. Gupta,

and P. Cook, “Power-aware microarchitecture: design
and modeling challenges for next-generation micropro-
cessors,” Micro, IEEE, vol. 20, no. 6, pp. 26–44, 2000.

[19] R. Ge, X. Feng, and K. Cameron, “Improvement of
Power-Performance Efficiency for High-End Comput-
ing,” in Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS). IEEE,
2005.

[20] S. Kamil, J. Shalf, and E. Strohmaier, “Power Efficiency
in High Performance Computing,” in Proceedings of the
International Parallel and Distributed Processing Sym-
posium (IPDPS). IEEE, 2008.

[21] D. Li, B. de Supinski, M. Schulz, K. Cameron, and
D. Nikolopoulos, “Hybrid MPI/OpenMP Power-Aware
Computing,” in Proceedings of the International Par-
allel and Distributed Processing Symposium (IPDPS).
IEEE, 2010.

[22] D. Li, D. Nikolopoulos, K. Cameron, B. de Supinski,
and M. Schulz, “Power-Aware MPI Task Aggregation
Prediction for High-End Computing Systems,” in Pro-
ceedings of the International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2010.

[23] F. Bellosa, “The Benefits of Event-Driven Energy Ac-
counting in Power-Sensitive Systems.” in SIGOPS, Eu-
ropean Workshop. ACM, 2000.

[24] W. L. Bircher, M. Valluri, J. Law, and L. John, “Runtime
Identification of Microprocessor Energy Saving Oppor-
tunities.” in Proceedings of the International Sympo-
sium on Low Power Electronics and Design, (ISLPED).
ACM, 2005.

[25] W. L. Bircher and L. K. John, “Complete System Power
Estimation: A Trickle-Down Approach Based on Per-
formance Events,” in Proceedings of the International
Symposium on Performance Analysis of Systems & Soft-
ware, (ISPASS). IEEE, 2007.

[26] A. Kodi and A. Louri, “Performance Adaptive Power-
Aware Reconfigurable Optical Interconnects for High-
Performance Computing (HPC) Systems,” in Proceed-
ings of the International Conference on High Perfor-
mance Computing, Networking, Storage, and Analysis
(SC). ACM/IEEE, 2007.

[27] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic Voltage
Scaling with Links for Power Optimization of Intercon-
nection Networks,” in Proceedings of the International
Symposium on High-Performance Computer Architec-
ture, (HPCA). IEEE, 2003.

