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Abstract—The challenge of balancing between power and
performance is now well established. While research in this
area is well underway, the ability to measure power and
energy in situ has remained an obstacle. This problem is
magnified in the field of High Performance Computing (HPC).
To meet this challenge, a device called PowerInsight has been
designed to accomplish component level power and energy
instrumentation of commodity hardware. PowerInsight was
designed by Penguin Computing, in close cooperation with
Sandia National Laboratories, to further power and energy
research in HPC and other areas. This paper documents the
design and development of PowerInsight, hardware and soft-
ware. Validation of the functionality of PowerInsight was done
during design and development as well as experimentally after
integrating the first PowerInsight devices into a commodity
cluster. This paper only begins to show the wide range of impact
this level of power and energy instrumentation can have on a
range of architectural and application research and analysis
topics. 1
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I. INTRODUCTION AND RELATED WORK

Previous work at Government Laboratories and Universi-
ties motivated and inspired this effort. Our own research[1],
[2], [3] exposed the potential of component level power
measurement in regards to in situ, large-scale application
analysis and generating application profiles to evaluate the
effect on application energy efficiency when tuning archi-
tectural parameters. While valuable, current and voltage
measurements were limited to the CPU and network device
and only the CPU data could be used for comparison of dy-
namic energy use. In addition, while the repeatability of the
measurements was trustworthy, the accuracy and frequency
of samples did not allow certain types of experimentation
to be conducted reliably. Finally, the hardware used for our
initial experiments was proprietary2, limiting research to a
specific architecture. An architecture independent solution
with the following features was required:

• Component level measurement ability
• Discrete current and voltage samples
• High frequency samples per component

1Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000. Document SAND2013-3622C

2Research conducted at Sandia National Laboratories for the cited papers
was accomplished on the Cray XT architecture

• Out-of-band collection of measurement data
• In-band capability - in parallel with out-of-band
• Ability to instrument at large scale
• Commercially available
• Other management capabilities
In [4], [5] and [6], component measurement capabilities

were made possible through a framework called PowerPack.
The authors used this framework to analyze power, energy
and performance characteristics of applications on commod-
ity hardware. Component level measurements were taken on
one node and a technique called node-remapping was used
to emulate larger scale runs.

In [7] the authors expanded this capability using laptops
and ACPI to gather measurements. While limited in scala-
bility, measurement frequency, and out-of-band capabilities
this work illustrates the great potential of component level
measurement.

Possibly the closest related work is found in [8] (Pow-
erMon). Similarities include, instrumenting inline between
power supply and motherboard, the ability to integrate into
commodity nodes and high frequency samples. However,
PowerMon requires in-band monitoring. While in-band mon-
itoring is one of our requirements, an out-of-band monitoring
capability is higher priority for our needs. In addition, this
and other efforts use sense resistors. The loss across the
resistor can be managed but a more passive approach is
desired. Temperature buildup can also be an issue, especially
when instrumenting higher powered components. PowerMon
is limited to a 10A circuit, which limits its use on some
modern architectures.

No solution was found that would meet our list of
requirements. As a result, Sandia National Laboratories
(Sandia) partnered with Penguin Computing to design Pow-
erInsight. The Hardware (Section II) and Software (Section
III) specifics which have enabled high frequency out-of-
band (and in-band) component level current and voltage
measurements will be outlined in this paper. Probably most
important, Section IV explains the steps taken to date to
validate PowerInsight during development and experimen-
tally after integration. Conclusions and Future work will be
presented in Section V.

II. HARDWARE

PowerInsight was designed to instrument commodity
hardware. Version one of PowerInsight was installed at



Sandia to instrument a 104 node commodity cluster to enable
power and energy research. Each node has a single AMD
Fusion A10-5800K processor which contains four Piledriver
3.8Ghz x86 cores and 384 800MHz Radeon accelerator
cores. High speed network connectivity is provided using
Qlogic Quad Data Rate Infiniband3. There are two manage-
ment Ethernet networks, one for general cluster management
such as booting, monitoring and control, and one connecting
all PowerInsight devices to the top-level node (see Figure 1).
There is one PowerInsight device integrated into each node
of the cluster. The entire PowerInsight device fits nicely in a
3.5 inch disk bay in the front of each node. The PowerInsight
devices operate in a disk-less mode. The top-level node is
used for cluster management (Linux kernel, nfs-root, etc.)
as well as a data aggregator for out-of-band data collection
from the PowerInsight devices. The PowerInsight hardware
is composed of three major components described in the
following sections.

Figure 1. PowerInsight Network Connectivity

A. BeagleBone

The BeagleBone[9] (Figure 2) was selected as the core for
PowerInsight. It is small in size but exceeds all connectivity
and capability requirements. The processor on the Beagle-
Bone is an ARM R©CortexTMA8 with 256 MB of DDR2
Memory. The ARM processor supports hardware floating
point, so there is no performance penalty incurred for scaling
raw values. Connectivity to the BeagleBone is possible
via the onboard 10/100 Ethernet and the USB device. A
JTAG interface, and a large number of I/O pins are exposed
through the expansion headers. The expansion headers (or
cape connectors) are two 46 pin connectors on each side of
the BeagleBone (top and bottom in Figure 2).

An embedded controller chip with similar I/O capabilities
was considered prior to selecting the BeagleBone, but the
advantages of a full Linux OS and functional network
stack proved to be invaluable during development and use.
Overall, the small size and ease of connectivity and integra-
tion provided by the expansion headers (SPI links, UARTs,
analog inputs, GPIO) made the BeagleBone an excellent fit

3Intel True Scale Quad Data Rate Infiniband

Figure 2. BeagleBone - Size Compared to a U.S. Penny

for the project. Note, some kernel work was required to
expose all the available SPI links and chip selects to support
the four Analog to Digital Converters (ADCs - one on the
BeagleBone and three on the custom cape).

B. Custom Power Cape - Carrier Board

The PowerInsight cape (Figure 3), or carrier board, pro-
vides three of the ADCs, the voltage reference and the
connectors for the sensor modules in the harnesses. The
carrier board provides connections for 15 sensor modules
(four pin connectors with white guides depicted in Figure
3 labeled J1-J15). Each connection provides power to the
attached sensor module and routes the voltage and current
signals to the associated channel on an ADC. The first eight
voltage signals are connected to an ADC on the carrier
board with a high-precision 4.096V reference voltage. The
last seven connections are routed to the ADC built into
the BeagleBone. These ADC inputs have a max voltage
of 1.8V - a pull-down resistor is used to bring the sensed
voltage in range. All the current signals are connected to
ADC sensors with Vcc as the reference voltage. The ADC
chips are Microchip MCP3008[10] and provide a 10-bit
result. PowerInsight is powered by standby power through
connector J16. This allows PowerInsight to remain active as
long as the node is plugged in even if the node is powered
down.

Figure 3. PowerInsight Cape - Carrier Board



C. Harnesses - Sensor Modules

The Harnesses (two examples pictured in Figure 4),
which contain the sensor modules, are integrated into in-
line between the power supply and the standard motherboard
connectors (depicted in Figure 5).

Figure 4. PowerInsight Harness - Sensor Modules

The sensor module is a small PCB with an Allegro
Microsystems ACS713[11] Hall effect current sensor and
voltage divider. A Hall effect sensor was selected for its low
impact to the power rail being measured. The ACS713 can
be inserted in-line on up to a 30A circuit without significant
power loss or voltage drop. The ACS713 can also be placed
on the high-side of the voltage rail regardless of the voltage
due to the inherent magnetic isolation of the sensor. The
magnetic isolation also allows use on negative voltage rails.

Figure 5. PowerInsight Harness/Sensor Module Integration
into Motherboard

The output of the sensor is proportional to the measured
current plus an offset. Both the slope and the offset are
proportional to the supplied Vcc power pin. By using the
Vcc as the reference for the analog inputs, the digital result
automatically takes this scaling into account.

The carrier board uses two different voltage converters.
One device uses a precision 4.096V reference and one, built
into the BeagleBone module, uses a 1.8V reference from
the BeagleBone power supply chip. The different reference
voltages are accounted for in the design of the sensor module

Figure 6. Voltage Divider Design and Resistor Selection

and carrier board (Figure 6). The resistors are selected so
that the typical rail voltage is divided to a Vth of 3.0V
for measurement by the 4.096V referenced converter. This
provides a margin for voltage variations and maximizes
the number of significant bits in the digital result. Resistor
values are chosen such that the Rth equivalent resistance is
10kΩ. A single loading resistor, (Rload on the carrier board)
is used on the inputs to the 1.8V referenced converter to
further divide the sensor voltage by a 2:1 ratio resulting in
a target voltage of 1.5V. In this way, any sensor board can
be plugged into any channel and the sensing voltages will
be in range for the voltage converter used on that channel.

D. Additional Capabilities

The PowerInsight device was designed with additional
connectivity to maximize potential uses of the device now
and in the future. The USB port from the BeagleBone is con-
nected to the Motherboard and allows console connectivity
from the node to the BeagleBone. This interface has proven
to be useful during development for troubleshooting the
Linux boot process for example. Ethernet over USB is also
supported and provides a network link between the node and
the BeagleBone. We are currently exploring using the USB
interface from the node operating system to directly (in-line)
obtain measurement information from PowerInsight.

The carrier board provides a connector and transceivers
for an RS-232 serial port to the motherboard (black ten pin
connector box depicted in Figure 3). Full modem control
signals are connected to GPIO pins in addition to transmit
and receive data signals. This enables console access to
the Motherboard from PowerInsight and a simple signaling
mechanism. This feature could be used to provide terminal
server capability or other remote serial access capabilities.

There are LED’s and connectors on the carrier to provide
signaling, feedback and control. Chassis connectors enable
remote power on/off and reset capabilities. This enables
PowerInsight remote device control of the node rather than
the limited power on/off/cycle typically provided by smart
Power Distribution Units.



In combination, these capabilities allow PowerInsight to
provide much of the functionality of a dedicated system
management controller to extend system capabilities beyond
what is typically found on commodity clusters.

III. SOFTWARE

A. Node Level Data Collection

During initial design and testing, a simple but functional
utility was developed to demonstrate how to collect readings
from the ADC hardware and scale them to report values in
milliamps (mA), millivolts (mV) and milliwatts (mW). The
utility, getRawPower, interfaces with the Linux kernel SPI
drivers via a user space ioctl() interface. First, the SPI device
is opened and initialized by setting bits per word and max
clock settings. Raw data is collected by issuing an SPI call
to trigger a transfer. Each raw data sample from the ADC
consists of a start byte, a channel select byte and a dummy
byte. The ADC performs a conversion as the bits are clocked
(in/out). The ioctl() call returns the three bytes clocked in
during the transfer and the ten bit reading is extracted from
the second and third bytes. The BeagleBone ADC driver
provides results through a set of files created in sysfs. Each
time a read call is made, a new reading is returned as decimal
ASCII text.

Scaling is performed on the raw values to produce current
(in mA), voltage (in mV) and power (in mW). The mapping
of channels to the voltage rail being measured is currently
hard coded. We plan to implement a configuration file to
control mapping of channels to voltage rails which will allow
the scaling equations to be “tweaked” based on calibration
factors.

Currently, getRawPower accepts a list of arguments on
the command line specifying which channels (ports) to
read. A value for each channel requested is produced,
allowing values from one or a list of channels to be returned
with a single call. We have also modified getRawPower to
continuously return values, as fast as possible, at greater
than 1KHz (from user space). This sampling rate is limited
by user-space overhead. The sensors should be capable of
four times this sample rate from kernel space, likely limited
by the SPI bus. The output, raw and scaled values, is in
formatted text. This output is later processed by a range
of post processing scripts developed along with the system
level data collection software.

B. System Level Data Collection

Since all nodes in the cluster are instrumented with
PowerInsight, a centralized data collection mechanism was
implemented to aggregate the potentially large amount of
data produced. Figure 1 depicts the simple logical network
hierarchy representing connectivity of each PowerInsight
device (integrated into each node of the cluster) with the
top-level node. A number of daemon processes, scaled au-
tomatically, on the top-level node act as proxies for receipt of

power data from individual agents running on each PowerIn-
sight device. Agents can be individually configured through
peer-to-peer communication from any node with network
connectivity by using a control program. Sample rate and
sensor port state (collecting or not) are two of the configura-
tion parameters currently exposed. The peer-to-peer commu-
nication runs over TCP/IP, which is sufficiently scalable for
the numbers of clients currently configured. In our current
implementation, each agent periodically (depending on its
last instructed sample rate) calls getRawPower to extract
sensor port values. These values are communicated to the
proxy daemons running on the top-level node. Note, proxy
daemons can be run on any node with network connectivity
to the PowerInsight devices.

The proxy daemon aggregates all data originating from
the agents and outputs a formatted flat file. This flat file is
used as input for all post-processing analysis. Fine grained
information down to the individual sample is retained. All
data includes a timestamp (microsecond precision). It is
important that time is synchronized among the PowerInsight
devices and the cluster nodes so data can be correlated with
job start and completion times.

A post-processing analysis suite is used to partition the
formatted flat file data based on PowerInsight device (which
corresponds to an individual compute node) and sensor port
into individual files for further visualization and data mining.
Plots of the partitioned files are automatically generated for
fast visual analysis. Statistical analysis is also performed on
the data.

IV. POWERINSIGHT VALIDATION

The design and subsequent implementation of PowerIn-
sight has been validated both during initial development
and after integration into the cluster at Sandia National
Laboratories.

A. Design Validation

Initial validation of the PowerInsight carriers was done
using precision voltmeters and ammeters to validate the
measurements made by PowerInsight. A set of power re-
sistors were used to provide a static load on each rail
for measurement. Demonstrated load current measurement
accuracy for the entire system averages 1.8%. The Hall effect
sensor is responsible for 1.5% of the error. Demonstrated
rail voltage measurement accuracy averages within 0.3%.
Future refinements in the conversion algorithm may reduce
the error further. The measured error was consistent with
the data-sheet[10]. The ADCs on the carrier board were
tested, using a potentiometer to produce a stable voltage
signal, and proved extremely stable, +/-1 count change over
time in the digital result. The ADC on the BeagleBone
module has proven less accurate with significant noise in
the digital result. Note, the BeagleBone ADC is not used
in our current implementation but might be applied in later



designs if appropriate. A full load test was performed at 15
Amps to confirm that there is no significant power or voltage
drop across the current sensor. The sensor board handled the
load for several hours with no significant heat buildup.

Currently, scaling equations based on the data-sheet values
and precision resistor values are being used. Future work
will characterize a large sample of parts to confirm the dis-
tribution of key sensor parameters. Additionally, the software
will be enhanced to allow calibration values to be modified
to trim each sense and channel.

B. Experimental Validation

In addition to the validation processes conducted during
the design and prototype phases of developing PowerInsight,
experiments were conducted after installation to validate
the devices were installed and working properly and to
gain confidence in the data reported. The first experiment
compared the results from an identical run on 89 nodes of
the cluster (the nodes not included were being used for other
experiments). Single node High Performance Linpack (HPL)
was run on all cores of all nodes (single execution per node)
using identical input parameters. Note, in each case, HPL
was run only on the general purpose (x86) cores of the AMD
processor. Data was collected during this experiment for all
nodes at a one sample per second rate. The raw data was
then processed and the average power (energy divided by
time) over the duration of the run was used to determine
if individual PowerInsight devices were reporting similar
values. Figure 7 plots the average power in watts for each
node used in the experiment.
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Figure 7. Average Power Per Node

As can be seen in Figure 7, the average power of each
individual node during the HPL run was very consistent,
varying by only 2.45%4. Individual processors of the same
type while expected to draw similar amounts of power
for a fixed workload, do vary on a per processor basis
due to manufacturing processes and individual processor

4calculated coefficient of variation

temperature. The AMD A10-5800K processor is nominally
a 100W CPU. A measured average power between 70W and
80W is as expected[12].

Possibly more important for experimentation is the re-
peatability of results on the same node. If the measurements
produced are repeatable they can be used for delta compar-
isons. To determine if the PowerInsight devices produced
repeatable results, HPL was again run on 90 nodes 10
executions per node. As in the first experiment, single node
HPL runs were used to ensure the same work was done on
each node and all four of the general purpose cores were
used. All data of HPL runs that passed residual (897 of 900
executions) was used including runs that would typically be
considered outliers. The raw data was processed to produce
energy values for each of the ten runs on every node. The
CV was then calculated, per node, and plotted (Figure 8
bottom). Runtime for each execution per node was also
captured and the CV was calculated and plotted (Figure 8
middle). Note, the energy and run-time variation is very low
for the majority of the nodes. Nodes that have a larger energy
variation map directly to larger variations in run-time. In
fact, examining the raw data in detail reveals that this is
typically caused by one or two runs per node on the outliers
that have a very different, usually longer, run-time than the
norm. As would be expected, the energy value varies as the
run-time varies. If the energy is normalized to the run-time
(divide the energy value by the run-time for each execution)
and the CV is calculated the variation becomes very small
from execution to execution on a per node basis (Figure
8 top). The CV on 84 out of 90 nodes is under 1%. The
greatest normalized value, including outliers, was 2.28%. If
anomalous executions are excluded variation from run to run
is consistently far less than 1%.
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The results of this experiment validated that the Pow-
erInsight device produced repeatable measurements over
many runs on the same node. Conducting experiments where
differences between baseline power or energy measurements



and measurements taken after varying the parameter under
investigation can be expected to produce reliable results.

V. CONCLUSIONS AND FUTURE WORK

The primary goal of this paper was to describe a new
commodity power and energy measurement device, Pow-
erInsight. Figure 9 shows an Application Profile5 obtained
using PowerInsight. This Application Profile shows one
of the Mantevo[13], [14] proxy applications developed at
Sandia, MiniFE, executing first on only the x86 cores of
the AMD Fusion processor followed by the same problem
executing only on the accelerator cores of the processor.
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Figure 9. MiniFE - Executed on CPU only followed by GPU only

The lower graph shows the processor profile while the
upper graph shows the memory profile. It is this fine
grained measurement ability that will allow us to analyze our
applications in detail with the goal of understanding where
energy is used and how to optimize our applications for both
performance and energy. Future work will include analyzing
a wide range of component energy use now enabled by
PowerInsight. We have recently added the capability of in-
strumenting accelerators, examples include PCI devices like
Nvidia and ATI GP-GPUs and Intel Phi. Simply inserting a
harness inline with the power pig-tail to these devices won’t
tell the complete story. A PCI riser device (see Figure 4) was
designed to measure the substantial power supplied by the
PCI bus for these types of devices. As we have described,
while the primary purpose of developing PowerInsight was
to measure power and energy at the component level, from
the beginning it was designed for expanded capabilities. We
expect PowerInsight will enable a wide range of research
that was not previously possible.

ACKNOWLEDGMENTS

The authors would like to recognize the significant contri-
butions of Paul West in developing the getRawPower utility

5a term we used in [1] to describe the power and energy fingerprint of
an application

during the initial design and validation process. We would
also like to recognize members of the Advanced Architecture
Test Bed project at Sandia including James Ang, Sue Kelly,
Simon Hammond, Bob Ballance, James Brandt, Ann Gen-
tile, Victor Kuhns, Jason Repik, and Charlene Arias, for their
contributions to the project. This work was funded by the
Advanced Simulation and Computing (ASC) program of the
National Nuclear Security Administration (NNSA).

REFERENCES

[1] J. H. Laros III, K. T. Pedretti, S. M. Kelly, J. P. Vandyke, K. B.
Ferreira, C. T. Vaughan, and M. Swan, “Topics on measuring
real power usage on high performance computing platforms,”
in IEEE Cluster 2009, International Conference on Cluster
Computing. Sandia National Laboratories, September 2009.

[2] J. H. Laros III, K. T. Pedretti, S. M. Kelly, W. Shu, and C. T.
Vaughan, “Energy based performance tuning for large scale
high performance computing systems,” in HPCS 2012, 20th
High Performance Computing Symposium. Sandia National
Laboratories, March 2012.

[3] J. H. Laros III, K. T. Pedretti, S. M. Kelly, W. Shu, K. Ferreira,
J. Van Dyke, and C. T. Vaughan, Energy-Efficient High Per-
formance Computing - Measurement and Tuning. Springer,
ISBN 978-1-4471-4492-2, 2012.

[4] X. Feng, R. Ge, and K. W. Cameron, “Power and Energy
Profiling on Scientific Applications on Distributed Systems,”
in Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2005.

[5] K. Cameron, R. Ge, and X. Feng, “High-performance, power-
aware distributed computing for scientific applications,” Com-
puter, vol. 38, no. 11, pp. 40 – 47, nov. 2005.

[6] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and
K. Cameron, “PowerPack: Energy Profiling and Analysis of
High-Performance Systems and Applications,” Transactions
on Parallel and Distributed Systems, vol. 21, no. 5, pp. 658–
671, 2010.

[7] R. Ge, X. Feng, and K. W. Cameron, “Performance-
Constrained Distributed DVS Scheduling for Scientific Ap-
plications on Power-aware Clusters,” in Proceedings of the
International Conference on High Performance Computing,
Networking, Storage, and Analysis (SC). ACM/IEEE, 2005.

[8] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, “Pow-
ermon: Fine-grained and integrated power monitoring for
commodity computer systems,” in IEEE SoutheastCon 2010
(SoutheastCon), Proceedings of the. IEEE, 2010.

[9] BeagleBone. BeagleBone.org. [Online]. Available: http:
//beagleboard.org/bone

[10] MCP3008. Microchip.com. [Online]. Avail-
able: http://www.microchip.com/wwwproducts/Devices.aspx?
dDocName=en010530

[11] ACS713. Allegromicro.com. [Online]. Available:
http://www.allegromicro.com/Products/Current-Sensor-ICs/
Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/
ACS713.aspx

[12] AMD, “ACP The Truth About Power Consumption
Starts Here,” Applied Micro Devices, Tech. Rep.
43761C, 2009. [Online]. Available: http://www.amd.com/
us/Documents/43761C ACP WP EE.pdf

[13] Mantevo. Sandia National Laboratories. [Online]. Available:
http://www.mantevo.org/

[14] M. A. Heroux, D. D. Doerfler, P. S. Crozier, J. M. Willen-
bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich, Tech. Rep.


