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Key Points: 20	
  

 21	
  

1. The feasibility of applying a Bayesian calibration technique to estimate CLM parameters 22	
  

is assessed; 23	
  

 24	
  

2. CLM-simulated LH fluxes using the calibrated parameters are generally improved; 25	
  

 26	
  

3. The parameter values are likely transferable within the plant functional type.  27	
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Abstract 28	
  

The Community Land Model (CLM) has been widely used in climate and Earth system 29	
  

modeling. Accurate estimation of model parameters is needed for reliable model simulations and 30	
  

predictions under current and future conditions, respectively. In our previous work, a subset of 31	
  

hydrological parameters has been identified to have significant impact on surface energy fluxes 32	
  

at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate 33	
  

that the parameters could potentially be estimated from surface flux observations at the towers. 34	
  

To date, such estimates do not exist. 35	
  

In this paper, we assess the feasibility of applying a Bayesian model calibration technique to 36	
  

estimate CLM parameters at selected flux tower sites under various site conditions. The 37	
  

parameters are estimated as a joint probability density function (PDF) that provides estimates of 38	
  

uncertainty of the parameters being inverted, conditional on climatologically-average latent heat 39	
  

fluxes derived from observations.  We find that the simulated mean latent heat fluxes from CLM 40	
  

using the calibrated parameters are generally improved at all sites when compared to those 41	
  

obtained with CLM simulations using default parameter sets. Further, our calibration method 42	
  

also results in credibility bounds around the simulated mean fluxes which bracket the measured 43	
  

data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-44	
  

specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of 45	
  

relationships between the posterior PDFs and site conditions suggests that the parameter values 46	
  

are likely correlated with the plant functional type, which needs to be confirmed in future studies 47	
  

by extending the approach to more sites. 48	
  

Keywords: Community Land Model; MCMC-Bayesian; Surrogate; Flux tower 49	
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1. Introduction 50	
  

Land surface models (LSMs) are a critical component in Earth system models. Among essential 51	
  

LSM outputs are the heat fluxes, which drive important physical processes such as boundary 52	
  

layer processes, cloud formation, and precipitation (e.g., Qian et al., 2013). The inputs of an 53	
  

LSM include meteorological conditions/forcing, boundary conditions, and parameters introduced 54	
  

in various modules. These inputs, however, are all subject to certain levels of uncertainty, which 55	
  

are associated with data, model structure, and lack of knowledge about the model parameters.  56	
  

Tremendous efforts have been made to evaluate and/or compare performances of various 57	
  

LSMs [Bastidas et al., 2006; Henderson-Sellers et al., 1995]. However, many LSM parameters 58	
  

are uncertain, and the default assignment of parameter values  may be inappropriate (e.g., 59	
  

[Bastidas et al., 2006; Hou et al., 2012; Huang et al., 2013; Rosero et al., 2010]). Without 60	
  

calibration, better conceptual models do not warrant better match between model simulations and 61	
  

observations for variables of interest. Recently, as LSMs have become increasingly complex, 62	
  

their dimensionality (in terms of the parameter space) has increased dramatically and inverse 63	
  

problems that seek to estimate parameters have become very ill-posed. Therefore, dimensionality 64	
  

reduction is a pre-requisite for parameter estimation. In order to quantify the uncertainty in the 65	
  

model predictions, it is reasonable to adopt stochastic inversion (e.g., Bayesian) approaches 66	
  

rather than deterministic (e.g., least-square fitting). However, depending on the nonlinearity, 67	
  

non-uniqueness, and complexity of the inverse problem, these stochastic approaches could 68	
  

involve a large number of model simulations that are potentially computationally impractical.  69	
  

Parametric dimensionality can be reduced via sensitivity analysis methods (Morris One at a 70	
  

Time, variance-based decomposition using Sobol’ indices, etc.) using ensembles of simulations 71	
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[Bastidas et al., 2006; Demaria et al., 2007; Gan et al., 2015; Gulden et al., 2008; Henderson-72	
  

Sellers et al., 1995; Hou et al., 2012; Huang et al., 2013; Liang and Guo, 2003; Rosero et al., 73	
  

2010].	
  Williams et al. [2009]	
  discussed how the FLUXNET database can be used to improve 74	
  

forecasts of global biogeochemical and climate models. Some sensitivity studies were performed 75	
  

at the flux tower sites [Alton et al., 2006; Baldocchi and Wilson, 2001; White et al., 2000; Zobitz 76	
  

et al., 2006], focusing on evaluating net primary production controls, biophysical parameters 77	
  

governing light propagation, canopy photosynthesis, and carbon cycling. In the past few years, a 78	
  

number of studies have documented the sensitivity of surface fluxes to model parameters in the 79	
  

Community Land Model (CLM). Göhler et al. [2013] analyzed the sensitivity of latent heat 80	
  

(LH), sensible heat (SH) and photosynthesis of the Community Land Model CLM version 3.5 to 81	
  

its parameters. They found that photosynthesis is very sensitive to parameters associated with 82	
  

plant functional types, whereas LH is sensitive to soil water parameters.	
    Bonan et al. [2011] 83	
  

investigated sensitivity of LH to photosynthetic parameters in CLM version 4.0 (CLM4) and 84	
  

suggested that model structural errors in the model could be compensated by parameter 85	
  

adjustment.  Hou et al. [2012] performed sensitivity analyses at representative flux tower sites on 86	
  

outputs of heat fluxes from CLM4 driven by satellite phenology and showed that they are most 87	
  

sensitive to a subset of hydrological parameters. This raised the possibility that the parameters 88	
  

could be estimated from measurements of heat fluxes, to improve the predictive skill of CLM. 89	
  

The results also show that only a selected set of parameters, and not all hydrological parameters, 90	
  

could be correctly estimated from the fluxes. More recently, Huang et al. [2013]; Ren et al. 91	
  

[2015] extended the sensitivity analysis framework in Hou et al. [2012] to 431 relatively pristine 92	
  

watersheds over the contiguous United States within minimal human perturbations. They 93	
  

confirmed the findings in Hou et al. [2012] that surface energy fluxes (i.e., latent and sensible 94	
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heat) and surface and subsurface runoff in CLM4 are highly sensitive to subsets of hydrological 95	
  

parameters depending on their hydrologic attributes, therefore the parameter values and/or 96	
  

inversion procedure is potentially transferrable among watersheds in similar hydrologic regimes. 97	
  

Computational demand, though, still remains a great challenge, even when parameter 98	
  

dimensionality is reduced. In order to address this problem, surrogate models can be used as 99	
  

alternatives to the numerical simulators. Ensemble simulations, which are required to develop 100	
  

surrogate models, can be performed efficiently in a task-parallel manner on supercomputing 101	
  

facilities. Depending on the complexity/nonlinearity of the link between unknown input 102	
  

parameters and model outputs, the applicability (accuracy and consistency) of the developed 103	
  

surrogates need to be evaluated before they can be used in sensitivity analysis or calibration.  104	
  

We define model calibration as the process of inferring uncertain/unknown model inputs 105	
  

(model parameters) from experimental or field observations. It is traditionally posed as a model-106	
  

fitting problem, and the variables being calibrated (“calibration parameters”) are optimized to 107	
  

reproduce the observational data. Due to limitations of the observations and/or shortcomings of 108	
  

the model itself, it may be possible to infer the calibration parameters only with a large degree of 109	
  

uncertainty. In such a case, model outputs cannot be considered robust or predictive unless the 110	
  

uncertainties in the inputs are estimated and incorporated into model predictions. Inference of 111	
  

model parameters/inputs, along with their uncertainties, can be performed by posing a statistical 112	
  

or Bayesian inverse problem [Kaipio and Somersalo, 2006]. When solved using a Markov chain 113	
  

Monte Carlo (MCMC) method [Gilks et al., 1996], Bayesian inverse problem yield the 114	
  

calibration parameters in the form of a joint probability density function (PDF). The PDF 115	
  

succinctly captures the uncertainty in the estimates. MCMC methods construct the PDF in the 116	
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form of samples, each of which requires the forward model (e.g., CLM) to be run at least once. If 117	
  

the model is computationally expensive, e.g., if it is a high fidelity model (HFM), it has to be 118	
  

replaced by a fast-running proxy called a surrogate so that the inverse problem may be solved. 119	
  

In this study, we define a surrogate model as a response surface model i.e., a statistical 120	
  

“curve-fit” that relates the HFM model output of interest to the model inputs/parameters being 121	
  

varied. Surrogates are constructed by fitting a functional form to a training data corpus created 122	
  

by sampling the HFM model input/parameter space and obtaining the HFM’s response at those 123	
  

input combinations. The approximation inherent in surrogate models implies that the predictive 124	
  

skill of the parameters estimated using them has to be checked with the original HFM. 125	
  

Surrogates have long been used in engineering and in the geosciences, for example in water 126	
  

resources research. Viana et al. [2014], Forrester and Keane [2009] and Razavi et al. [2012] are 127	
  

three recent review articles that describe those applications. The earliest surrogates were 128	
  

polynomials or approximate neural networks fitted to data. Later, multivariate adaptive 129	
  

regression splines [Friedman, 1991], Gaussian process (or kriging) and kernel methods such as 130	
  

radial basis functions (RBF) [Regis and Shoemaker, 2007] were used to represent the HFM’s 131	
  

response surface. Some methods, such as Gaussian process models, can also provide an estimate 132	
  

of the error in the surrogate model’s prediction. Of the latter, there has been a move towards 133	
  

mixtures of surrogates [Goel et al., 2007]. Various types of “multifidelity surrogates”, 134	
  

constructed from a training set of HFM and low fidelity model (LFM) runs, have also been 135	
  

investigated [Eldred and Dunlavy, 2006; Pau et al., 2014; Viana et al., 2014]. HFM responses 136	
  

display extreme nonlinearity when the model inputs are non-physical or infeasible.  137	
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Fitting surrogates in such cases is difficult and it may be worthwhile to excise the infeasible 138	
  

(or “nonsense”) regions of the parameter space  [Giunta et al., 1995]. Thereafter, care has to be 139	
  

taken to ensure that the surrogate is never evaluated in the “nonsense” region, e.g., by using a 140	
  

classifier. Such classifier-response surface composites have been used in the surrogate modeling 141	
  

of CLM 4.0 [Sargsyan et al., 2014]. Another approach is to limit the surrogate to a “trust-142	
  

region”, a small region in which local perturbations to the parameters are still valid [Alexandrov 143	
  

et al., 1998].   A variation of this is an Adaptive Response Surface Method, where portions of the 144	
  

input space that correspond to large objective function values are discarded at each iteration, 145	
  

gradually reducing the input space to the neighborhood of the global optimum [Wang et al., 146	
  

2001].  147	
  

Probabilistic methods, based on Monte Carlo simulations, have been used to calibrate LSMs. 148	
  

Lo et al. [2010] used Monte Carlo techniques to estimate hydrological parameters of Community 149	
  

Land Model (CLM) 3.0, while Prihodko et al. [2008] calibrated Simple Biosphere Model version 150	
  

2.5. Sun et al. [2013] performed a MCMC calibration of 10 parameters in CLM version 4.0 151	
  

without using surrogates. Järvinen et al. [2010]; Solonen et al. [2012] used multi-chain MCMC 152	
  

methods to address the formidable computational cost of calibrating the parameters of a climate 153	
  

model, while Zeng et al. [2013] used the same approach to calibrate the parameters of a crop 154	
  

module in CLM version 3.5. Bilionis et al. [2015] used a sequential Monte Carlo method to 155	
  

calibrate 10 parameters of the Crop module in CLM4.5. Tian and Xie [2008] used an unscented 156	
  

Kalman filter to calibrate CLM 2.0.  157	
  

The use of surrogates in the calibration of climate models or LSMs is less common. In 158	
  

Müller et al. [2015], the authors used an RBF to create a surrogate of the data – model mismatch 159	
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(not the HFM output) and estimated 11 parameters of the CLM4.5’s methane module using a 160	
  

global optimization method called DYnamic COordinate search using Response Surface models 161	
  

(DYCORS) [Regis and Shoemaker, 2007]. Sargsyan et al. [2014] attempted to construct 162	
  

surrogates for five variables of interests from CLM4 with prognostic carbon and nitrogen 163	
  

modules turned on (i.e., CLM4-CN) using Bayesian compressive sensing (BCS) in combination 164	
  

with polynomial chaos expansions (PCEs). They found that the input-output relationship in 165	
  

CLM4-CN could be composed of qualitatively different regimes (i.e., live or dead vegetation 166	
  

regimes associated with different regions in the parameter space), so that clustering- and 167	
  

classification-based piecewise PCE construction is needed. In Ray et al. [2015], the authors used 168	
  

polynomial and universal kriging surrogates to calibrate three hydrological parameters of CLM 169	
  

4.0 using measurements of latent heat fluxes. Two competing models were used for the model – 170	
  

data mismatch to estimate a composite of measurement error and (a crude estimate of) the 171	
  

structural error of CLM. In Gong et al. [2015], the authors used adaptive surrogate-based 172	
  

optimization to perform parameter estimation of the Common Land Model using six observables 173	
  

jointly; 12 independent parameters were (deterministically) calibrated. 174	
  

In this study we combine the advances in surrogate modeling described above with a 175	
  

Bayesian model calibration framework as presented in Ray et al. [2015] to perform calibration of 176	
  

CLM 4.0 at 12 selected flux tower sites using latent heat (LH) flux measurements. In Section 2, 177	
  

we formulate the parameter estimation problem and describe the (Bayesian) parameter 178	
  

estimation method. In Section 3, we estimate the joint PDFs of three hydrological parameters, 179	
  

tabulate their modes and their credibility intervals for all the sites and correlate them with the site 180	
  

characteristics. In Section 4, we discuss our results and draw our conclusions. 181	
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2. Methodology and site information 182	
  

2.1 Review of the previous study  183	
  

Hou et al. [2012] applied an uncertainty quantification (UQ) framework to analyze the sensitivity 184	
  

of simulated surface fluxes to selected hydrologic parameters in the CLM 4.0 (henceforth 185	
  

CLM4) driven by Satellite Phenology (SP). We note that by choosing the SP mode, the 186	
  

biogeochemical modules of CLM4 are not activated so that the model is used as a standard land 187	
  

surface model focusing on water and energy budget simulations.	
  The sensitivity analysis was 188	
  

conducted at thirteen flux towers that span a wide range of climate and site conditions. In this 189	
  

study, 12 of the sites studied in Hou et al. [2012] will be the subject of model calibration (see 190	
  

Table 1).  The US-NRl site is not included in this study because Hou et al. [2012] showed that 191	
  

the heat fluxes at the site are insensitive to the selected hydrological parameters.  192	
  

Simulations corresponding to sampled parameter sets were used to generate response curves and 193	
  

surfaces and statistical tests were used to rank the significance of the parameters for output 194	
  

responses including latent heat (LH) and sensible heat (SH) fluxes. Overall, CLM4-simulated LH 195	
  

and SH show the largest sensitivity to subsurface runoff generation parameters. However, study 196	
  

sites with deep root vegetation are also affected by surface runoff parameters, while sites with 197	
  

shallow root zones are sensitive to the vadose zone soil water parameters. Generally, sites with 198	
  

finer soil texture and shallower rooting systems tend to have larger sensitivity of outputs to the 199	
  

parameters. Their study suggests the necessity and possibility of parameter inversion/calibration 200	
  

using available measurements of latent/sensible heat fluxes. In this study, we attempt to invert 201	
  

the sensitive parameters identified in Hou et al. [2012], by applying and refining the surrogate-202	
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based inversion approach developed in Ray et al. [2015]. In sections 2.2 to 2.4, we will describe 203	
  

our inversion approach, including the choice of priors and the method of building the surrogates. 204	
  

2.2 Posing the parameter estimation problem 205	
  

CLM4 contains a large number of parameterizations of biogeophysical and biogeochemical 206	
  

processes [Lawrence et al., 2011]. It is used to simulate global scale water, energy, carbon 207	
  

dynamics as the land component in the Community Earth System Model (CESM). By default, 208	
  

parameters are set at values that reproduce benchmark datasets globally [Y Q Luo et al., 2012]. 209	
  

When CLM4 is used to simulate processes at a site, it is used in its “single point” mode and its 210	
  

parameters have to be recalibrated to represent the site being modeled. The data used for 211	
  

calibration is often limited, spanning a few years. Further, due to model approximations, CLM4 212	
  

cannot reproduce observations perfectly, even if the “optimal” parameters were known; this 213	
  

shortcoming is called the structural error. Consequently, CLM4 parameters can be estimated only 214	
  

with a large degree of uncertainty. Quantification of parametric uncertainty becomes an integral 215	
  

part of the calibration and hence Bayesian calibration, using MCMC to estimate the PDF of the 216	
  

parameters, becomes necessary for robust model predictions. 217	
  

Let Y(obs) be measurements of the latent heat flux (LH) over a duration T,  i.e., it is a time-218	
  

series. Let M(p;	
  x) be CLM4 predictions due to a parameter setting p, and with external forcing 219	
  

e.g. meteorology x. We impose the relation	
  220	
  

Y(!"#) = M 𝐩; 𝐱 +   𝝐, 𝝐  ~  𝑵 𝟎, 𝚪 ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
   	
   	
   (Eq.	
  1)	
  221	
  

where N(0, Γ) denotes a zero-mean multivariate normal distribution with covariance Γ . Neither 222	
  

the form nor the distribution of Γ  is known.  Thus, the error model is a choice and can 223	
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significantly affect calibration results. The likelihood of observing a particular parameter 224	
  

combination p is given by	
  225	
  

Λ(Y(!"#)|𝐩, 𝚪)   ∝ !
! !/! exp   −    Y !"# −M p

!
  Γ!! Y !"# −M p ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (Eq.	
  2)	
  	
  	
  	
  226	
  

where we have omitted x for brevity. Then by Bayes theorem, the posterior distribution 227	
  

(calibrated joint PDF) is given by	
  228	
  

P p,  𝚪   Y(!"#))   ∝   Λ Y !"# p,  𝚪)  𝜋!"#$" p 	
  	
  	
   	
   	
   	
   	
   	
   	
   (Eq.	
  3)	
  229	
  

where πprior(p) is our prior belief regarding the distribution of p. The posterior distribution is 230	
  

arbitrary and is realized by a set of samples p(s), s = 1…Nmcmc drawn from it by an MCMC 231	
  

sampler. As described in Ray et al. [2015], O(104) – O(105) samples are required to reach a 232	
  

stationary joint PDF and given the spin-up requirement and computational cost of CLM4, 233	
  

surrogates are required to perform the calibration.  234	
  

The periods with available data for each site are listed in Table 1, during which the 235	
  

meteorological forcing and fluxes (e.g., LH) are measured at hourly or half-hourly time step. In 236	
  

this study, we keep inputs and simulations procedure to be identical to that in Hou et al. [2012]. 237	
  

That is, for each site, meteorological forcing, site information such as soil texture, vegetation 238	
  

cover, and satellite-derived phenology, as well as observational data sets (e.g., LH), are provided 239	
  

by the North American Carbon Program (NACP) site synthesis team [Schwalm et al., 2010]. 240	
  

Meteorological forcing to drive CLM4, including air temperature, specific humidity, wind speed, 241	
  

precipitation, surface pressure, surface incident short-wave radiation and surface incident long-242	
  

wave radiation were gap-filled by the NACP team using the same protocol. Ancillary data and 243	
  

information describing tower location, soil and vegetation characteristics are also provided and 244	
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used to parameterize CLM4. Leaf area indices from MODIS (MODerate-resolution Imaging 245	
  

Spectroradiometer) are retrieved from nine pixels surrounding the tower footprint and provided 246	
  

by the NACP team as the satellite phenology to drive the CLM4SP simulation. Measured fluxes 247	
  

of latent and sensible heat at the native time resolution of the observations (30- or 60-minute) are 248	
  

provided and aggregated to monthly time step for calibration in this study. The data were gap-249	
  

filled following a standard protocol as well. Measurements were obtained using the eddy-250	
  

covariance (EC) method as part of the Ameriflux network. It has been widely recognized that 251	
  

surface energy fluxes based on EC method are subject to energy closure problems [Wilson et al., 252	
  

2002] but unfortunately measurement uncertainty bounds are not reported at part of the NACP 253	
  

site synthesis dataset and therefore are not addressed in this study. Rather, we treat the fluxes 254	
  

provided as the “truth” in this study. We note that addressing the energy closure problem or 255	
  

reporting errors from EC systems for modelers is out of the scope of the study but should be 256	
  

addressed as a community effort as part of the FLUXNET network. Interested readers are 257	
  

referred to Schwalm et al. [2010] on the NACP site synthsis dataset and the references listed in 258	
  

Table 1 for detailed descriptions on the sites.  259	
  

CLM4 was spun up by cycling the provided forcing for at least five times until all state variables 260	
  

reached equilibrium. For the purpose of capturing first-order dynamics in the climate system, we 261	
  

focus on evaluating CLM4’s ability to simulate seasonal variability by deriving time series of 262	
  

latent heat flux at monthly time steps from the raw datasets, consistent with our previous studies 263	
  

[Hou et al., 2012; Ray et al., 2015]. As shown in Ray et al. [2015], climatologically averaging 264	
  

smoothens CLM4 predictions and allows the surrogate to be fitted with an acceptable degree of 265	
  

accuracy. A surrogate model is created for each of the 12 months. Parameter estimates obtained 266	
  

in a test case where surrogates could be created without climatological averaging were not 267	
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substantially affected when re-estimated with climatological averaging. However, the limited 268	
  

nature of the climatologically-averaged time-series does not allow the use of complex models for 269	
  

Γ . Consequently, we model it as a constant diagonal matrix i.e., Γ  = σ2I, where I is the identity 270	
  

matrix. This is a very limiting assumption; when data and surrogate models allow, we can use 271	
  

more sophisticated representations for Γ as discussed in Ray et al. [2015]. Eq. 3 simplifies to 272	
  

P(p,𝜎!  |  Y !"# )   ∝
1
𝜎!

exp   −   
Y !"# −M(!) p

!

!

2𝜎!
     𝜋!"#$" p ,	
   (Eq.	
  4)	
  

where M = 12 is the months of climatologically averaged data that we use in the calibration, || . ||2 273	
  

is the l2 norm and M(s)(p)	
  is a composite of the monthly surrogates of CLM4. That is, M (s)(p) is 274	
  

a 12-component vector, with 12 surrogates constructed separately for each month’s 275	
  

climatological average over the four years.  The use of a surrogate is a necessity since each 276	
  

CLM4 invocation takes ~30 minutes on a CPU. The prior on σ2 is an inverse Gamma, which, 277	
  

being a conjugate prior, allows us to sample σ2 with a Gibbs sampler. We use the MCMC 278	
  

implementation in the R package FME to sample (p, σ2) from the posterior density distribution. 279	
  

FME implements the Delayed Rejection Adaptive Metropolis (DRAM, [Haario et al., 2006]) 280	
  

MCMC sampler. The convergence of the Markov chain of samples is tested using the Raftery-281	
  

Lewis method [Raftery and Lewis, 1995], as implemented in the R package mcgibbsit 282	
  

[mcgibbsit]. 283	
  

2.3 Designing an informative prior 284	
  

The vector p = {p1, p2, p3} resides in a cuboidal (p1, p2, p3) space (henceforth P). The 285	
  

hydrological parameters that constitute the first two elements of p, for each site, are Fdrai and 286	
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ln(Qdm). The third parameter is the Clapp-Hornberger parameter B [Clapp and Hornberger, 287	
  

1978] for US-ARM and US-Wlr, and specific yield Sy for the other study sites. Prior 288	
  

distributions for each of these parameters are discussed in Hou et al. [2012]. They are 289	
  

independent and usually (but not always) uniform distributions. However p sampled randomly 290	
  

from P is not necessarily physically realistic, which causes complex (and non-physical) 291	
  

behaviors of LH predictions and makes surrogate modeling difficult. Further, the LH predictions 292	
  

generated bear little resemblance to Y(obs) and the root-mean-square-error 293	
  

2
)RMSE( Y(p)Yp (obs) −=   	
  is large. We would like to avoid sampling non-physical parts of the 294	
  

parameter space with the MCMC method.  Therefore, we re-define the hypercube encompassing 295	
  

all parameter values to a more informative prior.  We outline our approach in the following 296	
  

paragraphs.  297	
  

As described in Giunta et al. [1995] and mentioned in Section 1, one may excise the 298	
  

inappropriate portions of P to obtain R, which contains physically realistic parameters. We do 299	
  

so in this study. We draw N (=282) samples from P using a space-filling, quasi Monte Carlo 300	
  

method and use them to generate an ensemble of LH predictions. The reason we use 282 samples 301	
  

is described in Section. 2.4 on surrogate models. RMSE(p) are calculated for each realization 302	
  

and we specify a threshold RMSE quartile QRMSE to identify p whose predictions are close to 303	
  

observations at a given site. The selected samples of p discretely define R. We define an 304	
  

improper, informative prior πprior(p) with support R  such that the prior density is one  inside R 305	
  

and zero outside. We construct our surrogates using only parameter combinations p that reside 306	
  

inside R. Note that the use of a user-defined QRMSE makes πprior(p) somewhat subjective and we 307	
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will investigate its effect below. Usually setting QRMSE = 0.7 has allowed us remove the non-308	
  

physical part of P and to construct accurate surrogates. Note that CLM4 surrogates that are valid 309	
  

only in a portion of P has been documented in earlier studies as well [Sargsyan et al., 2014]. 310	
  

In order to use πprior(p) within MCMC, we require a precise definition of R so that we may 311	
  

unambiguously decide whether an arbitrary p resides within R. The separation of the training set 312	
  

of runs into valid (i.e., p   ∈ R) and invalid (i.e., .,	
  p   ∈ R*,R∗   ∈ P\R)) ones is used to train a 313	
  

classifier (similar to the approach in Sargsyan et al. [2014]). The problem is posed as follows: 314	
  

We define a function ζ(p)	
  315	
  

𝜁 𝑝 =   
+1, p ∈ R
-­‐	
  1, p ∈ R*	
  

where the level set ζ(p) = 0 defines 𝜕R, the boundary of R. All that remains is to approximate 316	
  

the function ζ(p) using the training set defined over P. 317	
  

The problem of approximation ζ(p) can be cast as a classification problem – we seek the 318	
  

separatrix 𝜕R that separates R from 𝑅∗. Once established, it can decide whether an arbitrary p 319	
  

lies within R. The training set of 282 runs provides us with realizations of the binary function 320	
  

ζ(p) which we use to construct a binary classifier using Support Vector Machines (SVM). The 321	
  

points in the training data are first distributed into two opposing classes based on the binary 322	
  

values of ζ(p). The SVM identifies an optimal separating hyperplane i.e. 𝜕R, in the three-323	
  

dimensional p space. 𝜕R  Details of the theory of SVMs can be found in Hastie et al. [2009]. 324	
  

In this work we use the SVM implementation in the R package e1071[Meyer et al., 2014].   325	
  

The training data were randomly split into a Learning Set (LS) consisting of 85% of the points 326	
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and a Testing Set (TS) with the remainder. The SVM was trained on the LS, with a five-fold 327	
  

cross-validation to find optimize the hyperparameters of the SVM classifier. The resulting SVM 328	
  

was tested on the TS and a misclassification rate is computed. In order to check the sensitivity of 329	
  

the SVM on the LS, the whole process was repeated 50 times with different LS/TS pairs. The 330	
  

average misclassification rate (over the 50 rounds of testing) was reported to be between 6% and 331	
  

9%, depending upon the site. This is similar to the 15% misclassification rate achieved for the 332	
  

classifier associated with a CLM4 surrogate in Sargsyan et al. [2014].  At the end of the SVM 333	
  

training process, we have a classifier that can be used to determine if a point in the 3-D original 334	
  

hypercube is located in the informative prior.  If so, this point is used in the MCMC process. 335	
  

2.4. Checking the effect of R   336	
  

The procedure in section 2.3 aims to choose a subset R of the parameter space P, based on a 337	
  

quantile QRMSE of the difference between observations and existing training data, i.e., RMSE p =338	
  

   Y(!"#) − 𝐘(p) !.  R is chosen as a way of excluding the non-physical part of P. Choosing 339	
  

QRMSE is somewhat subjective.  The limited amount of training data points can influence the 340	
  

RMSE values and the resulting quantiles.  Ideally, we would like R to include the “true” optimal 341	
  

parameters popt that lead to the minimal value of RMSE.  That is, if we use an optimization 342	
  

method to find the optimal parameters popt, these are the parameters which will lead to a minimal 343	
  

RMSE value of the latent heat predictions.  If R is too restrictive, it may exclude popt altogether 344	
  

or lead to a case where there are not enough parameter samples to result in a good surrogate fit. 345	
  

On the other hand, if QRMSE is too large, it may include regions with complex non-physical 346	
  

CLM4 responses, rendering our quadratic surrogates inaccurate. Thus a balance needs to be 347	
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achieved. As an example, for the site US-IB1, we used QRMSE = 0.7; the training data points in 348	
  

the space spanned by (Fdrai, ln(Qdm), Sy) that lie in R are shown in Figure 1. Here we examine the 349	
  

reason why QRMSE was set at that particular value. 350	
  

A simple way of determining the suitability of R is to set QRMSE to a range of values and 351	
  

compute popt for each. If all QRMSE lead to the same value of popt, then none of the QRMSE values 352	
  

are very restrictive. If the smallest QRMSE leads to a popt that is different from the others, then it is 353	
  

too restrictive. We perform four analyses for QRMSE = 0.65, 0.7, 0.75 and 0.85. R computed 354	
  

using a smaller QRMSE is a subset of an R corresponding to a larger QRMSE. P is defined by the 355	
  

following bounds: 0.1   ≤ 𝐹!"#$ ≤ 5, ln 10!! ≤ ln 𝑄!" ≤ ln 10!! , 0.09 ≤ 𝑆! ≤ 0.27, obtained 356	
  

from Hou et al. [2012]. At each site, we take N = 282 samples in P, fit a classifier and quadratic 357	
  

surrogates, using the approach described in Sections 2.2 and 2.3. LH  is modeled as a function of 358	
  

Fdrai, ln(Qdm) and Sy, for US-IB1.  Note that we model LH and not the ln(LH) as in Ray et al. 359	
  

[2015] to give more weights to goodness of fit in summer months when LH is high. For QRMSE = 360	
  

0.65, surrogates for all months have errors less than 10%. For QRMSE = 0.7, the surrogates for 361	
  

July and August have errors between 10% and 15%, whereas for QRMSE = 0.75, surrogates for 362	
  

three months have errors between 10% and 20%. For QRMSE = 0.85, all surrogates have errors 363	
  

above 10%. Thus as QRMSE increases and R encompasses an increasing fraction of P, the 364	
  

estimates of popt become less trustworthy (as the surrogates become increasingly poor 365	
  

approximations of CLM4). Note that adding a kriging component to the surrogate i.e. 𝑦!(p;   Θ!) 366	
  

in Eq. 5 was not helpful. 367	
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To find popt within each region R defined by the different QRMSE thresholds, we used a 368	
  

genetic algorithm (GA), as implemented in the R package GA [Scrucca, 2013]. GA algorithms 369	
  

are described in Yu and Gen [2010]. The algorithm is started with an ensemble of 200 members 370	
  

and run for 200 iterations. Surrogate models were used in this calibration. 371	
  

 2.5 Surrogate models 372	
  

As described in Section 1, there are many ways of constructing surrogates and we will use a 373	
  

mixture of polynomial and kriging surrogates in this work. As described in Ray et al. [2015], we 374	
  

set 375	
  

  𝑦!(p) =   𝑦! p;   𝚯𝟏 +   𝑦! p;   𝚯𝟐 +   𝛿,        (Eq.5)	
  	
  376	
  
	
  377	
  

where yc is the CLM4 prediction of LH (unless specified otherwise), y1 is the prediction due to a 378	
  

polynomial surrogate, y2 is the prediction due to a kriging surrogate which captures prediction 379	
  

error of y1	
   and δ is a residual. Θ1 and	
  Θ2	
   are surrogate model parameters such as polynomial 380	
  

coefficients and variogram parameters. The procedure for deciding N and estimating y1(p, Θ1) 381	
  

and y2(p; Θ2) are described in Ray et al. [2015] and a summary is provided here. The structure of 382	
  

the model, i.e., the form of y1(p, Θ1) and y2(p; Θ2), are learnt from a training dataset of N CLM4 383	
  

runs using samples of p drawn from P. The polynomial surrogate is constructed first and error in 384	
  

the fit is computed as  385	
  

𝐸 =   
𝑦 p ! − 𝑦 p !

𝑦 p ! !
,	
  

where the norm is taken over a uniformly distributed set of samples of p in the parameter space 386	
  

(i.e., R introduced in section 2.3). The kriging surrogate is constructed only if E > 10%. The 387	
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construction of 𝑦! p;   𝚯𝟏   starts with a multivariate (i.e., three variables) fifth-order polynomial, 388	
  

which is simplified using Bayesian compressive sensing and Akaike Information Criterion, as 389	
  

described in Ray et al. [2015], in which for the two cases shown, this polynomial is simplified to 390	
  

a quadratic form. In one case, the kriging surrogate 	
  𝑦! p;   𝚯𝟐  is also required. The procedure for 391	
  

choosing the set of samples to construct the training set for the surrogate models, the metrics for 392	
  

assessing the accuracy of the surrogate, the steps taken to ensure that the surrogates do not 393	
  

overfit the training CLM4 data are all described in Ray et al. [2015]. The size N of the training 394	
  

data is decided iteratively. We attempted to construct surrogates based on N = 128 CLM4 runs 395	
  

but failed to achieve the requisite predictive accuracy (relative error less than 15%) from the 396	
  

surrogate models. Consequently we doubled the sampling density to obtain 256 samples of p, 397	
  

and added the corners (8 samples of p), face-centers (6 samples) and edge-centers (12 samples) 398	
  

of P, for a total of 282 samples. This dataset allowed us to obtain acceptable surrogate models. 399	
  

The amount of computation performed for calculating the optimal surrogate for each month at 400	
  

each site was extensive:  for each order of polynomial considered (one through five), we 401	
  

constructed 200 training sets and performed 200-rounds of repeated random subsampling 402	
  

validation (a type of cross-validation) to assess the goodness-of-fit and the information criterion 403	
  

for selection of the optimal model.  This amount of cross-validation and model selection to 404	
  

obtain robust, accurate surrogates is not typically done in most studies.  405	
  

  406	
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3. Results  407	
  

3.1. Determining the feasible parameter space 408	
  

 Results from the GA calibration, described in section 2.4, are summarized in Table 2. They 409	
  

are plotted as vertical lines in Figure 2, along with the PDFs of Fdrai, ln(Qdm) and Sy developed 410	
  

with the same values of QRMSE. In Table 2, the estimates of ln(Qdm) and Sy, are independent of 411	
  

the various values of QRMSE. However, for QRMSE = 0.65 the estimate of Fdrai lies at the upper 412	
  

limit of the prior, whereas the other values of QRMSE provide more realistic values of Fdrai. 413	
  

Similar behavior can be observed in Figure 2 – the values of popt are close to the MAP values of 414	
  

the parameters for all values of QRMSE, except QRMSE = 0.65. This is because as we reduce QRMSE, 415	
  

we retain a smaller portion of the original training set to construct the SVM classifier. This leads 416	
  

to classifiers of low accuracy which can remove promising parts of the parameter space  and 417	
  

which can lead to wrong results. Consequently, we reject QRMSE = 0.65 as being too restrictive, 418	
  

and select QRMSE = 0.7 as a compromise between a large coverage of P and an acceptable 419	
  

surrogate accuracy. However, the true evaluation of a calibration is its ability to improve LH 420	
  

predictions when compared to that based on the default values of {Fdrai, ln(Qdm), Sy}, which is 421	
  

conducted for each site, as will be discussed in section 3.3. 422	
  

3.2 Surrogate validation  423	
  

The process of isolating R and developing surrogate models is an iterative one, as it involves 424	
  

finding a good QRMSE and surrogate models of acceptable accuracy. A large QRMSE is first 425	
  

chosen, and we fit surrogate models (one for each month) by partitioning our training data into 426	
  

learning and testing sets (as described in Section 2.4). Surrogate models are expected to pass a 427	
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validation test with two criteria: (1) both the training errors and testing errors should be 428	
  

comparable in magnitude and (2) they should be below 15%. Testing-set errors being larger than 429	
  

learning-set errors indicates overfitting. Figure 3 shows examples of validation checks at US-IB1 430	
  

and US-IB2 sites. We see that learning and testing errors are similar for all months and for both 431	
  

sites. Further, they do not breach 15%. The surrogate models are mostly quadratic polynomials, 432	
  

but the model simplification step (using Akaike Information Criterion) sometimes removes a few 433	
  

second-order terms too. Identical tests are performed to validate surrogate models for all other 434	
  

sites, but their corresponding plots are omitted for brevity.  435	
  

3.3. Bayesian inversion with surrogate models 436	
  

The surrogate models, once constructed for all sites, are used to solve Eq. 4 using DRAM. The 437	
  

SVM-based classifier described in Sectioin2.3, using the QRMSE described in Sec. 3.1, is used to 438	
  

restrict the calibration to the region R in the parameter space. Model calibrations are performed 439	
  

for each flux tower site separately, to identify whether soil properties and plant functional types 440	
  

(PFT) affect the estimated parameters.  Each calibration results in O(104) samples of {Fdrai, 441	
  

ln(Qdm), Sy} collected by DRAM. As mentioned in Section 2.2, the convergence of the MCMC 442	
  

chain is checked using the Raftery-Lewis procedure, with the median of the distribution checked 443	
  

with an error bound of 0.025. The median is the most stringent test of convergence for this 444	
  

procedure as discussed in Cowles and Carlin [1996]. Each DRAM run is repeated thrice, starting 445	
  

from an over-dispersed set of points. The samples are used to develop pair-wise correlation plots 446	
  

as well as PDFs for each of the parameters, obtained by marginalizing over all other parameters.  447	
  

An estimate of σ, the model-data mismatch is also obtained. Figure 4 shows pairwise plots as 448	
  

well as marginalized PDFs for the parameters Fdrai, ln(Qdm), and Sy, for US-IB2. The pairwise 449	
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plots show strong positive relationship between the posterior ln(Qdm) and Sy, and slightly 450	
  

positive relationship between the posterior ln(Qdm) and Fdrai. The marginalized PDFs are 451	
  

constructed using kernel density estimation applied to the DRAM samples. Marginalized PDFs 452	
  

for Fdrai, ln(Qdm), Sy, and σ for the remaining sites are provided in the supporting information 453	
  

(SI). As can be seen from the figures, parametric uncertainty has been reduced in two ways: (1) 454	
  

the marginal PDFs (particularly that for Sy) are narrower than the prior bounds defining P, and 455	
  

(2) the correlation structure between various parameters (e.g., positive correlation between 456	
  

ln(Qdm) and Sy) are exposed. Calibration indicates that the true value of Sy is close to 0.225, but 457	
  

there is some probability that Sy might actually deviate from the value. The mode in the posterior 458	
  

PDF of ln(Qdm) (also called the MAP or maximum a posteriori value of ln(Qdm)) is not obvious, 459	
  

but reduction in its uncertainty stems from the discovery of its positive correlation with Sy. 460	
  

Knowledge of this correlation will help improve ensemble predictions of LH.  461	
  

 The MAP estimates of the three parameters (Fdrai, ln(Qdm), Sy or B), along with the 95% 462	
  

credibility intervals, for the 12 sites are summarized in Table 3.  Using ln(Qdm) as an example, 463	
  

we can see the MAP estimates vary dramatically from site to site: from around -13 for US-Dk3, 464	
  

US-IB1, US-IB2, US-Ne3, up to around -5 for US-ARM and US-Wlr. It shows that a simple 465	
  

constant default value is inadequate and unrealistic in modeling heat fluxes at various flux tower 466	
  

sites, not to mention to be used globally. The values in Table 3 provide recommended 467	
  

values/ranges for more accurate and realistic CLM simulations for future studies at the 468	
  

corresponding sites.  469	
  

Next we investigate whether the estimates of hydrological parameters bear any correlation to 470	
  

the soil and vegetation characteristics at the sites. The sites can be divided into different types 471	
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given their soil texture (sandy loam, sandy clay loam, loam, silty loam, silty clay loam, clay 472	
  

loam, silty clay, and clay) and plant functional types (PFTs: deciduous broadleaf, croplands, 473	
  

evergreen needleleaf, grasslands, and closed shrublands).  In Figure 5 we overlay the PDFs of the 474	
  

three parameters (Fdrai, ln(Qdm), Sy) at all sites, color-coded by the PFT. It is clear that the two 475	
  

sites with “evergreen needleleaf” PFT, US-Ho1 and US-Dk3, have very similar PDFs (plotted in 476	
  

red) for all three parameters. It is worth mentioning that these two sites also have loamy soils. 477	
  

Fdrai for both sites lies at the upper end of the range, while ln(Qdm) and Sy are at the lower end. 478	
  

Sites classified as “croplands” (plotted in green) show similar PDFs for ln(Qdm) and Sy, with the 479	
  

former at the lower end of the prior distribution and the latter at the upper end. This raises the 480	
  

possibility that sites of a given PFT class may share parameters and developing a calibration for 481	
  

one site might suffice for the others. The inverted parameters share some common features at 482	
  

sites with finer soil (e.g., US-IB2 and US-Ne3), particularly in ln(Qdm) and Sy. This indicates a 483	
  

certain level of soil texture control on the parameter values, but Fdrai behaves slightly differently 484	
  

at US-Ne3 compared to at US-IB2, probably due to the different PFTs. 485	
  

Finally, we validate the calibration results by checking whether the estimated PDFs can 486	
  

reproduce the calibration data and provide better predictions than the default parameter values. 487	
  

The validations are done with direct CLM4 simulations (i.e, not the surrogate models) for 488	
  

constructing the PDFs. For any given site, we draw 100 samples from the posterior sample sets 489	
  

and use them to seed an ensemble of CLM4 runs. This results in 100 LH predictions for each 490	
  

month, from which we compute the monthly mean, the interquartile range (IQR) and bounds to 491	
  

denote outliers (defined as 1.5 IQR, from the first and third quartiles of the predictions). This is 492	
  

repeated for all the sites. The results are summarized in Figure 6. The LH predictions obtained 493	
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using the default values of the parameters are in green, the mean prediction in red and the IQR is 494	
  

plotted using error bars.  495	
  

From Figure 6, we see that the credibility intervals (IQR and the outlier bounds) vary 496	
  

significantly between sites. This reflects the fact that the precision (sharpness) of the PDFs for 497	
  

different sites varies significantly (see SI for PDFs for other sites); wider PDFs lead to large 498	
  

uncertainty bounds. We see that in many cases the median predictions are not too different from 499	
  

the CLM4 predictions with default parameters (henceforth, “default predictions”). The main 500	
  

contribution of the Bayesian calibration is the establishment of a predictive distribution of latent 501	
  

heat fluxes, as summarized by the IQR and outlier bounds. We see that most of the observations, 502	
  

over all the sites, lie within the IQR. The exceptions are US-IB1, US-Ne3 and US-Wlr where 4-6 503	
  

observations lie outside the IQR bounds; this is not unusual since the IQR is expected to capture 504	
  

50% of the observations (i.e., the IQR ranges between the 25th and 75th percentiles of the 505	
  

predictions). Therefore, these exceptions do not indicate that the calibrations are particularly 506	
  

deficient. Further, there are no observations that can be classified as outliers, which illustrates the 507	
  

usefulness and effectiveness of Bayesian inversion. In certain cases, calibration rectifies CLM4’s 508	
  

shortcomings quite significantly. At the two loamy needleleaf sites, US-Dk3 and US-Ho1, the 509	
  

default simulations systematically underestimate the LH for almost all the months, with up to 510	
  

30% underestimates during summer; after calibration, the predictions are significantly improved. 511	
  

This demonstrates the necessity of parameter estimation to improve CLM4’s predictive skills. At 512	
  

the croplands and grasslands sites, the mean predictions are close to the predictions generated 513	
  

using the nominal/default values of the parameters, but Bayesian calibration allows us to define 514	
  

the uncertainty bounds over the predictions.  515	
  



26	
  

	
  

To summarize, Bayesian model calibration improves CLM4’s predictive skills, and provides 516	
  

reliable quantification and reduction of the uncertainties. Although due to structural and 517	
  

measurement errors, calibration will not enable CLM4 to reproduce latent heat fluxes exactly. 518	
  

Rather it would provide a means to quantify parametric uncertainty as prediction intervals. These 519	
  

are elements required for subsequent risk analysis and decision making.  520	
  

4. Discussion 521	
  

CLM has been widely used in climate and Earth system modeling. Accurate estimation of model 522	
  

parameters is needed for reliable model simulations and predictions under current and future 523	
  

conditions, respectively. In our previous work, a subset of hydrological parameters in CLM4 has 524	
  

been shown to have significant impact on surface energy fluxes based on parameter screening 525	
  

and sensitivity analysis, and therefore could potentially be inverted at the selected flux tower 526	
  

sites using observed surface fluxes. 527	
  

In this study, we assess the feasibility of calibrating CLM4 parameters at flux tower sites 528	
  

with various soil and climate conditions using a surrogate-based Bayesian model calibration 529	
  

procedure. The procedure starts with building surrogates using CLM4 simulations driven by 530	
  

perturbed parameter sets using a space-filling quasi-MC sampling approach. The surrogates 531	
  

provide simplified yet reliable relationships between dominant hydrological parameters (e.g, 532	
  

Fdrai, Qdm, Sy, and B) and response variables such as latent heat fluxes. The surrogates, after 533	
  

careful validation and selection, are then used as computationally efficient alternatives to the 534	
  

CLM numerical simulator, for improving the estimates of the hydrological parameters, and 535	
  

therefore LH predictions, with quantified uncertainties. This procedure had been demonstrated to 536	
  

be effective at two of the 12 selected sites in a previous study [Ray et al., 2015].  537	
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However, by extending the same technique to more sites, we acknowledge that there are 538	
  

limitations in the previous version of the procedure [Ray et al., 2015] in that the parameter space 539	
  

confined within prescribed bounds contains non-physical parameter sets as demonstrated in other 540	
  

studies [Sargsyan et al., 2014]. Therefore a classifier is needed to separate the parameter space 541	
  

into physical/non-physical portions, and serve as an informative prior (a joint PDF) before a 542	
  

Bayesian calibration could be performed. The posterior distribution, again a joint PDF, is 543	
  

obtained by inverting against climatologically-averaged latent heat fluxes derived from 544	
  

observations. The posterior distribution provides a complete quantification of uncertainty in the 545	
  

parameter estimates. 546	
  

We find that the simulated mean latent heat fluxes from CLM4 using the calibrated 547	
  

parameters are generally improved at all sites when compared to those from CLM4 simulations 548	
  

using default parameter sets. Those sites with similar soil texture (e.g., loam) and PFTs share 549	
  

similar posterior PDFs of the parameters, which indicate certain levels of parameter 550	
  

transferability between these sites (i.e., as shown in Figure 5). Nevertheless, the number of sites 551	
  

(i.e., 12) investigated is too small for evaluating model parameter transferability, and we would 552	
  

like to leave it as a topic to be investigated in the future by applying the method to more flux 553	
  

tower sites. On the other hand, it is worth mentioning that model parameter transferability among 554	
  

431 watersheds in the United States has been investigated in a separate study, in which 555	
  

sensitivity analysis results are used to classify the watersheds into different classes by grouping 556	
  

basins with similar parameter significance patterns. Such a parameter-sensitivity-based 557	
  

classification system helps reduce the complex climate/hydrologic system into subsets of more 558	
  

homogeneous and smaller systems, and provides necessary information to setup the parameter 559	
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estimation or model calibration problem. Interested readers are referred to Ren et al. [2015] for 560	
  

details. 561	
  

 Further, our calibration method also results in credibility bounds around the simulated 562	
  

median fluxes which bracket the measured LH data. Sites with large measurement errors, and 563	
  

potential large model structural errors (e.g., ignoring snow melting where the process may be 564	
  

critical) would result in large prediction intervals in model predictions, as shown in Figure 6. 565	
  

This demonstrates that Bayesian calibration could be useful for (1) parameter estimation at sites 566	
  

where model structural assumption is sound; and (2) identifying model structural uncertainty at 567	
  

sites where the current model parametrizations might fail. In this paper, however, we have not 568	
  

attempted to isolate the structural error in CLM4. The PDFs of the estimated parameters are 569	
  

sufficiently wide that the IQR of CLM4 predictions contain the observations. If we had more 570	
  

data, and could create surrogates for them, an isolation of the structural error of CLM4 for each 571	
  

of the sites could be possible. Interested readers are referred to Ray et al. [2015] for an example 572	
  

for US-ARM/Southern Great Plains site. 573	
  

In addition to the validation shown in Figure 6, validation is also done by checking if the 574	
  

posterior PDFs are useful for predicting LH during testing time periods using calibrations from 575	
  

training time periods. This validation is supplementary to the one shown in Figure 6; however, it 576	
  

could be misleading as it depends on the reliability of inversion itself and also requires that the 577	
  

favorable parameter values do not vary year to year. For example, Figure S12 shows the 578	
  

calibration results for the loamy needleleaf site, US-Dk3, using data from the period 2002-2006. 579	
  

The posteriors are very close to those inverted using data from the whole period 1997-2006 (see 580	
  

Figure S3), and the posterior ranges of LH predictions are almost identical. This validation is not 581	
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preferred for sites with relatively short time periods of observations or with large LH variations 582	
  

from year to year. Unfortunately, most sites investigated in this study have relatively short 583	
  

observational periods when the NACP site synthesis datasets were collected. We expect to be 584	
  

able to evaluate the influence of training/testing periods on model parameters when longer data 585	
  

records from the Ameriflux network become available. 586	
  

5. Conclusion and future work 587	
  

This work demonstrates a generalizable procedure that can be adopted for calibrating CLM4 588	
  

under various site and climate conditions using a Bayesian inversion technique integrated with 589	
  

surrogate model development. Surrogate models, as computationally-economic alternatives to 590	
  

the direct CLM simulator, can be successfully developed with 15% threshold for training and 591	
  

testing errors in the climatologically averaged heat fluxes. At all selected flux tower sites, most 592	
  

of the latent heat flux observations lie within the IQR ranges of predictions based on parameter 593	
  

values drawn from the posterior distribution. The procedure can be applied to other models 594	
  

including newer versions of CLM and other components of an Earth system model, given that 595	
  

the metrics for measuring model performance and for defining objective functions can be well-596	
  

defined. Further, since the calibration is performed using surrogates, the computational cost of 597	
  

the Earth system model (or its component) ceases to be an issue. As demonstrated in this study, 598	
  

the Bayesian calibration procedure could be used as a tool for parameter estimation with 599	
  

uncertainty bounds, as well as for identifying potential model structural errors by extensively 600	
  

exploring the parameter space and comparing discrepancies between model predictions and 601	
  

observations. Such a tool will be valuable for model applications for quantifying prediction 602	
  

intervals, as well as to model developers to better understand model structural uncertainties by 603	
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comparing the model uncertainty range to observations, and identify ways to improve the model. 604	
  

We will explore ways to integrate the procedure with model benchmark systems such as the 605	
  

International Land Model Benchmarking Project (http://www.ilamb.org) to accelerate such a 606	
  

process. 607	
  

On the other hand, a surrogate-based calibration procedure is intrinsically subject to errors as 608	
  

a result of approximating a complex model using simplified functions, not to mention the 609	
  

potential risk of failures in building the surrogates due to the complex relationships between 610	
  

model parameters and outputs of interest. To address this limitation, we are testing a scalable 611	
  

MCMC algorithm that features multiple chains on high performance computing facilities that 612	
  

could be integrated with any real ESMs to avoid the issues rooted from surrogates. We will 613	
  

report our progress towards that direction in the near future.  614	
  

  615	
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Tables: 824	
  

Table	
  1.	
  Site	
  characteristics	
  of	
  the	
  12	
  flux	
  towers.	
  825	
  

 Site  Longitude Latitude Elev Soil 

texture 

Plant functional 

type 

Period Reference 

1 US-Ha1 -72.1715 42.5378 343.00 sandy 

loam 

Deciduous 

Broadleaf 

1991-2006 Urbanski et al. [2007] 

2 US-Dk2 -79.1004 35.9736 163.00 sandy 

clay loam 

Deciduous 

Broadleaf 

2003-2005 [Oishi et al. [2008]; Stoy et al. 

[2008]] 

3 US-Dk3 -79.0942 35.9782 163.00 loam Evergreen 

Needleleaf 

1998-2005 [Oren et al. [2006]; Stoy et al. 

[2006]] 

4 US-IB1 -88.2227 41.8593 225.00 silty clay 

loam 

Croplands 2005-2007 Allison et al. [2005] 

5 US-IB2 -88.2410 41.8406 226.00 silty clay 

loam 

Grasslands 2004-2007 Allison et al. [2005] 

6 US-Shd -96.6827 36.9601 350.00 silty clay 

loam 

Grasslands 1997-2000 Suyker et al. [2003] 

7 US-SO2 -116.6230 33.3739 1406.00 loam Closed 

Shrublands 

1998-2006 H Luo et al. [2007] 

8 US-Ne3 -96.4397 41.1797 363.00 clay loam Croplands 2001-2006 [Suyker and Verma [2010]; 

Verma et al. [2005]] 

9 US-Ho1 -68.7403    45.2041      79.00 loam Evergreen 

Needleleaf 

2004-2007 Hollinger et al. [1999] 

10 US-MOz -92.2000     38.7441       219.00 loam Deciduous 

Broadleaf 

2004-2007 [Gu et al. [2006]; Yang et al. 

[2010]] 

11 US-ARM -97.4884 36.6050 311.00 clay Croplands 2000-2007 Fischer et al. [2007] 

12 US-Wlr -96.8550 37.5208 408.00 silty clay Grasslands 2001-2004 Gao et al. [1998] 

	
   	
  826	
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Table	
  2.	
  popt	
  computed	
  using	
  different	
  QRMSE	
  and	
  surrogate	
  models	
  of	
  different	
  qualities.	
  827	
  

QRMSE	
   Surrogate	
  model	
  accuracy	
   popt	
  =	
  {Fdrai,	
  ln(Qdm),	
  Sy}	
  

0.65	
   All	
  12	
  surrogates	
  have	
  <	
  10%	
  error	
   {5.00,	
  -­‐13.46,	
  0.27}	
  

0.70	
   2	
  out	
  of	
  12	
  surrogates	
  have	
  errors	
  between	
  10%	
  and	
  15%	
   {0.80,	
  -­‐13.77,	
  0.27}	
  

0.75	
   3	
  out	
  of	
  12	
  surrogates	
  have	
  errors	
  between	
  10%	
  and	
  20%.	
  
Surrogates	
  for	
  summer	
  months	
  have	
  the	
  largest	
  errors	
  

{1.33,	
  -­‐13.78,	
  0.27}	
  

0.85	
   All	
  surrogates	
  have	
  errors	
  above	
  10%	
   {1.09,	
  -­‐13.77,	
  0.27}	
  

	
  828	
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Table	
  3.	
  Summary	
  of	
  posterior	
  PDFs	
  for	
  the	
  12	
  sites.	
  For	
  each	
  site,	
  we	
  tabulate	
  the	
  maximum	
  a	
  posteriori	
  (MAP)	
  and	
  median	
  estimates	
  of	
  each	
  of	
  829	
  
the	
  parameters	
  and	
  the	
  2.5th	
  and	
  97.5th	
  percentiles	
  i.e.,	
  the	
  95%	
  credibility	
  bounds	
  of	
  the	
  estimates.	
  The	
  original	
  PDFs	
  are	
  in	
  the	
  Appendix.	
  830	
  

CLM	
  
parameter	
  

Fdrai	
   ln(Qdm)	
   Sy	
  or	
  B	
   σ  

Sites	
   MAP	
   Q2.5	
   median	
   Q97.5	
   MAP	
   Q2.5	
   median	
   Q97.5	
   MAP	
   Q2.5	
   median	
   Q97.5	
   MAP	
   Q2.5	
   median	
   Q97.5	
  

US-­‐Ha1	
   4.62	
   0.19	
   2.70	
   4.93	
   -­‐12.70	
   -­‐13.64	
   -­‐9.57	
   -­‐4.90	
   0.15	
   0.14	
   0.21	
   0.40	
   9.55	
   5.68	
   11.82	
   29.77	
  
US-­‐DK2	
   4.62	
   0.19	
   2.80	
   4.93	
   -­‐10.88	
   -­‐13.54	
   -­‐9.49	
   -­‐4.96	
   0.11	
   0.09	
   0.17	
   0.26	
   47.91	
   29.02	
   60.26	
   159.08	
  
US-­‐DK3	
   4.78	
   2.35	
   4.40	
   4.97	
   -­‐13.53	
   -­‐13.78	
   -­‐12.92	
   -­‐9.10	
   0.09	
   0.09	
   0.11	
   0.19	
   49.87	
   28.08	
   64.93	
   195.98	
  
US-­‐IB1	
   0.45	
   0.14	
   1.56	
   4.87	
   -­‐13.15	
   -­‐13.73	
   -­‐10.88	
   -­‐4.90	
   0.26	
   0.11	
   0.22	
   0.27	
   257.10	
   149.05	
   324.96	
   854.62	
  
US-­‐IB2	
   1.76	
   0.75	
   2.74	
   4.84	
   -­‐12.97	
   -­‐13.64	
   -­‐9.59	
   -­‐4.88	
   0.23	
   0.11	
   0.21	
   0.26	
   24.38	
   14.91	
   31.38	
   81.85	
  
US-­‐Shd	
   2.90	
   1.26	
   3.13	
   4.88	
   -­‐8.30	
   -­‐9.74	
   -­‐7.38	
   -­‐4.74	
   0.11	
   0.09	
   0.12	
   0.15	
   25.45	
   14.76	
   31.69	
   83.95	
  
US-­‐SO2	
   0.66	
   0.21	
   2.27	
   4.85	
   -­‐11.08	
   -­‐13.38	
   -­‐9.38	
   -­‐4.90	
   0.19	
   0.11	
   0.18	
   0.26	
   14.71	
   9.25	
   19.07	
   50.28	
  
US-­‐Ne3	
   4.28	
   0.34	
   3.33	
   4.91	
   -­‐13.04	
   -­‐13.70	
   -­‐9.97	
   -­‐4.89	
   0.27	
   0.17	
   0.25	
   0.27	
   372.85	
   222.77	
   459.19	
   1194.72	
  
US-­‐Ho1	
   4.56	
   3.12	
   4.26	
   4.96	
   -­‐13.55	
   -­‐13.78	
   -­‐12.99	
   -­‐11.23	
   0.11	
   0.09	
   0.11	
   0.14	
   10.33	
   6.09	
   12.98	
   35.54	
  
US-­‐MOz	
   0.34	
   0.12	
   0.82	
   4.75	
   -­‐9.87	
   -­‐13.46	
   -­‐9.52	
   -­‐5.20	
   0.21	
   0.11	
   0.21	
   0.27	
   41.31	
   23.83	
   51.38	
   143.37	
  
US-­‐ARM	
   0.20	
   0.11	
   0.40	
   1.57	
   -­‐4.95	
   -­‐9.38	
   -­‐5.62	
   -­‐4.64	
   1.05	
   1.00	
   1.12	
   1.86	
   130.89	
   95.09	
   140.11	
   215.80	
  
US-­‐Wlr	
   0.32	
   0.12	
   0.60	
   4.90	
   -­‐5.52	
   -­‐13.08	
   -­‐7.70	
   -­‐4.77	
   1.25	
   1.02	
   1.64	
   14.40	
   175.98	
   88.22	
   198.66	
   547.14	
  
Note:	
  the	
  third	
  parameter	
  is	
  	
  B	
  for	
  US-­‐ARM	
  and	
  US-­‐Wlr,	
  and	
  Sy	
  otherwise.	
  	
  831	
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Figure captions: 

Figure 1. CLM4 parameters (Fdrai, ln(Qdm), Sy), from the training data, that lie inside R. The red 
diamond plots the nominal value, the green triangle the parameter combination in the training set 
for US-IB1 with the best agreement with  observations.  

Figure 2. PDFs of the three parameters for each QRMSE with the GA estimate plotted as vertical 
lines. In the top right and bottom left sub-figures, the vertical lines showing the values of popt 
coincide and are thus obscured.  

Figure 3. Learning-set and testing-set relative predictive errors for surrogate validation at two 
selected example sites (US-IB1 and IB2).  

Figure 4. Marginal distribution of the joint prior (dashed), posterior (solid) PDFs, the default 
values (dashed vertical line), and the maximum a posteriori (MAP) values (solid vertical line), 
and paired scatters of posterior samples of the four parameters for inversion at US-IB2.  

Figure 5. Posterior distributions of inverted parameters color-coded by Plant Functional Types 
for 10 out of 12 sites that share the same parameters. It is evident that the two Evergreen 
Needleleaf sites have very similar PDFs for all three parameters. Croplands share similar 
estimates for Sy. 

Figure 6. Validation of posterior parameter using by CLM4. The symbols are the monthly-mean 
observed LH fluxes, climatologically averaged over the durations tabulated in Table 1. The line 
with the error bound is the median prediction from the ensemble of runs seeded with samples 
from the posterior distribution. The error bars are the first and third quartiles of the predictions. 
The green dashed line is the prediction using nominal parameter values. The dashed blue and 
purple lines denote outlier bounds. 
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Figures:	
  	
  

	
  

Figure 2. CLM4 parameters (Fdrai, ln(Qdm), Sy), from the training data, that lie inside R. The red diamond 

plots the nominal value, the green triangle the parameter combination in the training set for US-IB1 with 

the best agreement with  observations.  
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Figure 2. PDFs of the three parameters for each QRMSE with the GA estimate plotted as vertical lines. In 

the top right and bottom left sub-figures, the vertical lines showing the values of popt coincide and are thus 

obscured.  
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Figure 3. Learning-set and testing-set relative predictive errors for surrogate validation at two selected 

example sites (US-IB1 and IB2).  
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Figure 4. Marginal distribution of the joint prior (dashed), posterior (solid) PDFs, the default values 

(dashed vertical line), and the maximum a posteriori (MAP) values (solid vertical line), and paired 

scatters of posterior samples of the four parameters for inversion at US-IB2.  
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Figure 5. Posterior distributions of inverted parameters color-coded by Plant Functional Types for 10 out 

of 12 sites that share the same parameters. It is evident that the two Evergreen Needleleaf sites have very 

similar PDFs for all three parameters. Croplands share similar estimates for Sy. 
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Figure 6. Validation of posterior parameter using by CLM4. The symbols are the monthly-mean observed 

LH fluxes, climatologically averaged over the durations tabulated in Table 1. The line with the error 

bound is the median prediction from the ensemble of runs seeded with samples from the posterior 

distribution. The error bars are the first and third quartiles of the predictions. The green dashed line is the 

prediction using nominal parameter values. The dashed blue and purple lines denote outlier bounds. 
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