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Introduction iL

= Aim: Develop a predictive RANS model for transonic jet-in-
crossflow (JinC) simulations
"= Drawback: RANS simulations are simply not predictive

= They have “model-form” error i.e., missing physics

= The numerical constants/parameters in the k-¢ model are usually
derived from canonical flows

= Hypothesis
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= One can calibrate RANS to jet-in-crossflow experiments; thereafter the

residual error is mostly model-form error

= Due to model-form error and limited experimental measurements, the

parameter estimates will be approximate
We will estimate parameters as probability density functions (PDF)

= We hypothesize that most of the error in JinC simulations is
parametric, not model-form
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The problem

=  The model
Devising a method to calibrate 3 k-¢ parameters C = {Cw C,, C,} from expt. data
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= (Calibration parameters
= C={C, C,, C,}.C,: affects turbulent viscosity; C; & C,: affects dissipation of TKE

= Calibration method
Pose a statistical inverse problem using experimental data

Estimate parameters using Markov chain Monte Carlo (MCMC)

= 10% RANS calls
Construct a polynomial surrogate RANS simulations and use them inside MCMC



Target problem - jet-in-crossflow M.
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= A canonical problem for spin-
rocket maneuvering, fuel-air

mixing etc.
= We have experimental data (PIV lso
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RANS (k-m) simulations - crossplane results 1 .

= Crossplane results for stream

= Computational results (SST) are too round; Kw98 doesn’t have
the mushroom shape; non-symmetric!

= Less intense regions; boundary layer too weak i
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Aims of the study

= Aims of the calibration

= Calibrate to crossplane data but also match the midplane velocity
profiles

= (Calibratetoa M =0.8, J =10.2 interaction

= Also check predictive skill fora M =0.8, ) = 16.7 (as a check of accuracy
away from calibration points)

= Technical challenges

= Computational cost of 3D JinC RANS simulation

Replace 3D RANS with a surrogate model i.e., model crossplane
streamwise vorticity w®RANS) (y) = f(y; Cu, C,, C,), f(:; C) is a curve-fit

= Arbitrary combinations of (Cu, C,, C,) may be nonphysical
How to build surrogates when (Cu, C,, C,) are nonsensical?

= What functional form to use for f(:; C)?
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The Bayesian calibration problem  @&s.

* Model experimental values at probe j as o), = o0(C) + 0, e0) ~
N(0, o?)

J ( (J) (J)(C))
( <>|C) Hexp[— S

JEP

» Given prior beliefs & on C, the posterior density (‘the PDF’) is

P(C,0lwl)x A 1C,0)x,(C,) 7, (C,) 7, (C)r,(0)

* P(C|w,,) is a complicated distribution that has to be described/
visualized by drawing samples from it

* This is done by MCMC

— MCMC describes a random walk in the parameter space to identify
good parameter combination

— Each step of the walk requires a model run to check out the new
parameter combination
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Making surrogate models - 1

" Training data
» Parameter space )9: 0.06 < Cu<0.12;1.7<C,<2.1;1.2<C,;<1.7
= C,.,=10.09, 1.93, 1.43}
= Take 2744 samples in )? using a space-filling quasi Monte Carlo

pattern
Save the streamwise vorticity field w,(y; C)

= Choosing the “probes”
= Will try to create surrogate models for each grid cell on the crossplane

= Most grid cells have lots of numerical noise

= For a given run, choose the grid cells with vorticity the top 25%
percentile (56 grid cells)
= Take the union of such grid cells, union over the 2744 members of the
training set (comes to 108 grid cells)
We will try to make surrogate models for these 108 grid cells with large
vorticity )
I —————————————
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Making surrogate models - 2

= Model w, in grid cell j as a function of Ci.e. w = fi)(C)
= Approximate this dependence with a polynomial

(J) ~
a) —_ aO + aICM + a2C2 + a3C1 + a4CMC2 + aSCMCI + a6C2C1 + .....

= But how to get (a,, a,, ....) for each of the probe locations to
complete the surrogate model for each probe?
= Divide training data in a Learning Set and Testing Set

= Fit a full cubic model for to the Learning Set via least-squares
regression; sparsify using AIC
= Estimate prediction RMSE for Learning & Testing sets; should be equal

* Final model tested using 100 rounds of cross-validation
= 10% error threshold was used to select models for the probes
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Making surrogate models - 3

= Choosing R

= Surrogates failed — we could not

Runs in the top 25th percentile

model any surrogates to within +
10% accuracy . Y
= This is because many C = {Cu, C,, 3 RS IO
C,} combination are nonphysical g et e e T
- + +++I+:$++i++ ++II*}
= We compute the RMSE vorticity 7 PR f}l +tf+1+§f;§ R
- I 5 +F. * ++t: +i++ ++++++*&+ i ";: ++# ++
difference between the training = s ARSROEEE O RS
) RIS e 1l
set RANS runs and experimental : A TR N RN i
: g e T e 7 O
observations SRS AR Sk N
i * + * ++ I+++ +++++‘:~o +'t * 1.
= We retain only the top 25 ] A A
. o '_006 0.07 0.08 0.09 0.10 0.11 0.12
percentile of the runs (using .
RMSE) as training data (R)
10
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Making surrogate models - 4 h) .

Cubic surrogate model predictive errors

S aLs
n + T8 o | -
a S . g g i 4000
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(I) 5I0 1(I)0 1;0 2(I)0 IO : | £ |
Probe index 0.00 0.01 0.02 0.03 0.04
z[m]
= Attempted to fit cubic surrogates to all 108 grid cells
= Managed to achieve < 10% error at 52 / 108 grid cells
= These are our “probes” where we will try to match experimental
vorticity by optimizing C = {Cu, C,, C;}
11




Making the informative prior - 1 ) .

= Qur surrogate models are valid only inside ‘R in the
parameter space )9

* During the optimization (MCMC) we have to reject parameter
combinations outside ‘R (this is our prior belief T rior(C))
= We design a classifier based on treed linear models
= We define C(C) =1, for Cin R and C(C) = -1 for C outside R
= Then the level set C(C) = 0 is the boundary of R

= The training set of RANS runs is used to populate C(C)

= Treed models

= Divides )? into boxes of equal variances; the recursively divides the
boxes till the boxes are too small

= Fits a linear model T(C) inside the leaf nodes

= Allows a quick evaluation of C(C) for arbitrary C
12




8 N
=B8] —
T es
58S
N2 -

o
L <
o
1]
c
S
H
H I
c
S
3
o
— ]
r o0 [
o o _uuuua:.m; “lu_w_q ,_ s
O ° S ICHE RTINS LI B
s Y PO T Ly S i
o smm—m T T T T T T T - NI :_%u_lll_ - =
g 05t SvL O¥L  S€F 0gL  SZh  OTh [ ,“ - s
A R S o
O ° 0 et b T !
c um o u.n_,l_u . o P _\40|
m 1o o a . 1° o 1 S
=S Clee f 7 ol 0l '
r.m _ 0 o |, _n ° o ! "
e < ] ’ . T o)
2 J B A =
> : S RANRE
B [o | od °
5 I e SEAE N g ¥
o 9 i, S
(q0] !
n—v °
i LS
oy o
m _
_
g R L 8
T T T T I °
O %4 ['kr4 6} 8’} L'}
o
S _ cod el Teel e LT | S D
S I R ST R S KA
c _ B T N S
| . ,._ n_ | =
0 Emm— | h S
j
@ o
n m |n“ m s O (V)
C | c
B - m « O
[} < o L)
bp v B
g O v B ©
n 3 I8 w . O
o ——
o o— ] Q v © m o

v Tl s —_ LV un © N ®)

S O X 2 A

(O o O O ™ o s

s a O 0O o O .=
o
T T T T T T I
oS’ St or'L Se'L og’L jerAS oc't
M | |

o)




Solution of the inverse problem
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We solve the calibration
problem with MCMC (DRAM)

30

The treed classifier imposes
the prior st (C)

About 25,000 MCMC steps
need to reach converged 4-
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We test the 4-D PDF by:

Taking 100 (Cy, C,, C,)
samples from the PDF
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Density

Running the RANS simulator 3
Checking the flowfield
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This manner of prediction is
called a ‘pushed forward
posterior’
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Check # 1 — point vortex summary M.

= Use the crossplane vorticity
fields from the 100 RANS runs
(‘pushed forward posterior’) to
compute
= Total circulation
= Centroid of vorticity field

= Radius of gyration of vorticity
field
= Normalize each by their
experimental counterpart
= We expect to get an ensemble
of values for each metric
around 1
= WealsofindaC,, ={0.1025,

2.09, 1.42} that provides the
best predictions

Normalized predictions (numerical / experimental)

1.3

1.21

11
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Jet-in—crossflow predictions for M = 0.8 and J = 10.2

O
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Circulation Centroid-z Centroid-y Gyration-R

The spread of point vortex summaries are
tightly distributed around 1. The red circles
are the predictions from the nominal values

of C
15




Check # 2 — the vorticity field ) .

Vorticity (nominal case); J = 10.2 Vorticity (best case); J = 10.2
0:12 I-1ooo dile l-1ooo
0.1 - {-2000 0.1 - {-2000
0.08 . 1-3000 0.08 7 1-3000
0.06 [ - 14000  0.06 - 1-4000
0.04 I 5000  0.04 I -5000
*% 0.02 0.04 0000 0.2 0.02 0.04 0000

RANS predictions with C_ RANS predictions with C,

= Contours are plotted using the experimental measurements
= The improvement is significant

16




Check # 3 — mid-plane comparisons

X/Di =21 x/DJ. =21
15 or T 16
ot
: o Experimental 14r "‘ o Experimental i
Ensemble mean \\ Ensemble mean
+ Best case B\ +  Bestcase
12 R .
********* Nominal
10+
10
=X S S s
6 -
5 .
4 -
2 -
0 0 & ‘ : : :
-0.1 -0.1 0 0.1 0.2 0.3 0.4
(U(x) - u)/U(x) ViU,
Streamwise velocity deficit at x/D = 21 Vertical velocity at x/D = 21

" Flow quantities on the mid-plane were not used in the
calibration
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Check at an off-calibration point

Vorticity (nominal case); J = 16.7

0.1

0.08
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0.04

RANS predictions with C,

0.02
0 0.02 0.04

-1000
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Vorticity (best case); J = 16.7

0.1

0.08

0.06

0.04

0.02
0 0.02 0.04

RANS predictions with C,

-1000

1-2000

1-3000

-4000

-5000
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= Use the PDF from M =0.8, ) =10.2 to predictaM =0.8, ] =

16.7 flow

= The improvement is significant
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Checking at off-calibration point @i,

X/Di =21 x/Di =21

-0.1 O(U(X) ] u)/U(;))J 0.2 0.6
Streamwise velocity deficit at x/D = 21 Vertical velocity at x/D = 21

= |mprovement over C___ is substantial

19
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Model-form error )t

M=0.8,J=10.2

= Shear stress 20 2 | 2

o Experiment

completely off o f T Mean
= The TKEtermk oo
dominates in t,,, Sl
"E N
YY . e 0.01 0.02
= So numerical T, s
M=0.8,J=16.7
T, are almost S
equal sl
= For)=16.7 L op

predictions, post- s
calibration, are oLk

0 0.01 0.02 0.03

better s




Sandia
’11 National
Laboratories

Conclusions

= The errors in RANS simulations of JinC are mostly due to the
use of wrong parameters
= Can be correct via calibration

= Bayesian calibrations allows one to accommodate the uncertainty in
{Cu, C,, C,} estimates

= Calibrationtoa M =0.8, ) =10.2 interaction improved the flowfield’s
match to experiments (including for flow variables not used in the
calibration)

= The improvement in predictive skill carried over to a stronger jet (J =
16.7)

= Post calibration, the error is due to model-form error

= Much smaller than the error due to wrong parameters
= Makes itself felt most strongly in the prediction of turbulent stresses

21




BACKGROUND SLIDES
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What is MCMC? ) S

= A way of sampling from an arbitrary distribution
= The samples, if histogrammed, recover the distribution

= Efficient and adaptive

= Given a starting point (1 sample), the MCMC chain will sequentially
find the peaks and valleys in the distribution and sample
proportionally

= Ergodic

= Guaranteed that samples will be taken from the entire range of the
distribution

= Drawback

= Generating each sample requires one to evaluate the expression for
the density @

= Not a good idea if mwinvolves evaluating a computationally expensive
model



An example, using MCMC L

= Given: (Y°°, X), a bunch of n observations
= Believed:y=ax+b
=  Model: y°* =ax. + b, + ¢, e ~ N0, O)
= We also know a range where a, b and ¢ might lie
= j.e. we will use uniform distributions as prior beliefs for a, b, o
= For agiven value of (a, b, 0), compute “error” g, =y.°* — (ax, + b,)
= Probability of the set (a, b, 0) = IT exp( - ¢2/0?)
= Solution: i (a, b, o | Yobs, X' ) =TI exp( - £2/5?) * (bunch of uniform priors)
= Solution method:
= Sample fromz (a, b, o | Y, X ) using MCMC; save them

= Generate a “3D histogram” from the samples to determine which region in the (a, b, 0)
space gives best fit

= Histogram values of a, b and o, to get individual PDFs for them
= Estimation of model parameters, with confidence intervals!



MCMC, pictorially

" Choose a starting point, P" =
(acurr' b

= Propose anew a, a
:hv(acurw (ja)

" Evaluate i (a,,, bcurr | ...)/
T ( acurr' curr | ) -

= Accepta, ., (i.e.ac,, <-ay0p)

with proEa ility min(1, m)
= Repeat with b

= Loop over till you have
enough samples

curr)

prop

Sandia
’11 National
Laboratories

“good” values of (a, b)

A A
Y
P y

A

v




RANS (k-w) simulations — midplane @&.
results

U-defect | V - velocity
= Experimental results in black

= All models are pretty inaccurate (blue and red lines are the non-
symmetric results)
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Model-form error - 1 ) e,

= Calibration obtains good values of the parameter C

= Any error or mismatch with experiments that remains should
be largely due to model-form error or missing physics

" One of the largest modeling assumption in RANS is the
Boussinesq assumption
= The turbulent stresses are a linear function of the strain rate

= So the chances are that the largest error, post calibration, should be in
the turbulent stresses

= Luckily we have experimental measurementst,,, T

midplane

wx Ty Tyy ON the
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