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We demonstrate a Bayesian method that can be used to calibrate computationally ex-
pensive 3D RANS models with complex response surfaces. Such calibrations, conditioned
on experimental data, can yield turbulence model parameters as probability density func-
tions (PDF), concisely capturing the uncertainty in the estimation. Methods such as
Markov chain Monte Carlo construct the PDF by sampling, and consequently a quick-
running surrogate is used instead of the RANS simulator. The surrogate can be very
difficult to design if the model’s response i.e., the dependence of the calibration variable
(the observable) on the parameters being estimated is complex. We show how the training
data used to construct the surrogate models can also be employed to isolate a promising
and physically realistic part of the parameter space, within which the response is well-
behaved and easily modeled. We design a classifier, based on treed linear models, to
model the “well-behaved region”. This classifier serves as a prior in a Bayesian calibration
study aimed at estimating 3 k − ε parameters C = (Cµ, Cε2, Cε1) from experimental data of
a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated
by checking its predictions of variables not included in the calibration data. We also check
the limit of applicability of the calibration by testing at an off-calibration point.

Nomenclature

C Parameters in the k − ε RANS model to be calibrated
Cnom Nominal values of C
N (µ, σ2) Normal distribution with mean µ and standard deviation σ
R The physically relevant part of the C parameter space
J jet-to-crossflow momentum ratio
AIC Akaike information criterion
GP Gaussian Process
JIC Jet in crossflow
JPDF Joint probability density function
LS Learning Set
MCMC Markov chain Monte Carlo
RANS Reynolds-Averaged Navier-Stokes
TS Testing Set
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I. Introduction

RANS models1 are routinely used in aerodynamics due to their robustness and speed vis-à-vis other
simulations methods e.g., Large Eddy Simulations. Typically, they are used in conjunction with k − ε

equations to model the evolution of the turbulent kinetic energy and its dissipation rate. The equations for k
and ε contain empirical “constitutive laws”, e.g., the eddy viscosity model mapping strain-rates to turbulent
stresses, the model for turbulent viscosity in terms of k and ε and empirical constants (parameters). The
values of these parameters are deemed to be universal and obtained by calibrating to canonical flows e.g.,
channel and shear flows.2,3 We call these the “nominal” values of the parameters. However, there is nothing
sacrosanct about these parameters’ values and there have been attempts to tune them2,4, 5, 6, 7, 8, 9, 10 for
specific flows. The tuned parameters can vary quite substantially from the nominal ones.

Despite their widespread use, the predictive skill of k − ε simulations leave much to be desired. This
is especially true for complex turbulent flows, such as transonic jet-in-crossflow interactions. The lack of
predictive accuracy has two sources: (1) the structural or model-form error, due to approximations inherent
in the RANS k − ε formulation i.e., errors due to missing physics and (2) the use of sub-optimal values of
the parameters, simply picked from literature. The latter can be rectified by calibrating the RANS model
with experimental data from a flow interaction that is similar to the regime in which the calibrated model
will be used.

Our interest lies in devising a principled way for tuning/calibrating a RANS model for jet-in-crossflow
(JIC) interactions. JIC is a canonical model for many practical flow interactions e.g., the maneuvering of
launch vehicles, mixing of (injected) fuel with an oxidizer, and even the plume from a volcano interacting with
the wind.11 JIC interactions are poorly simulated using RANS12 when using parameters held at their nominal
values. As a first step towards improving the predictive accuracy of RANS in JIC, we hypothesized that more
relevant parameter values could obtained by calibrating to a strongly vortical flow. In our previous work,13

we tested this hypothesis by designing a Bayesian calibration technique to estimate 3 RANS parameters,
C = (Cµ, Cε2, Cε1), from data from an incompressible, flow over a square cylinder (FOSC) experiment. The
parameters were estimated as a 3D joint PDF (JPDF), capturing the uncertainty in the estimates due to
limited data and the inherent shortcomings of RANS. The predictions obtained by running JIC simulations
using parameters sampled from the post-calibration parameter PDFs were far more accurate that the one
obtained using Cnom = {0.09, 1.92, 1.44}, the nominal values of the same parameters. The improvement in
predictive accuracy was surprising since there is little obvious similarity between a transonic JIC interaction
and incompressible FOSC, beyond the strongly vortical nature of the flow. The main contributions of our
previous work were (1) to identify how inadequate Cnom were for JIC interactions, and a more relevant
flow interaction that could be used to obtained better C; (2) a rigorous method to create surrogate models
for Reynolds stresses in FOSC interactions; (3) developing a joint PDF for C using MCMC and surrogate
models of a relatively complex flow (2D turbulent flow over a square cylinder) and (4) demonstrating the
usefulness of ensemble predictions. Using parameters sampled from the post-calibration PDF, we found a
parameter set that was very close (about 15% relative errors) to measurements from a JIC experiment.

While our previous work showed the inadequacy of Cnom and a way to overcome it, it nevertheless did
not address whether k − ε models for JIC could be improved further. The prediction errors in Ref. 13
contained contributions from the structural error as well as parametric sub-optimality - recall that the joint
PDF was obtained by calibrating to FOSC, not JIC, experimental data. In this work, we seek to isolate
the impact of the structural error by calibrating to JIC experimental data. Thereafter, any deviations of
RANS predictions from observations can be attributed to structural deficiencies of the k− ε model itself and
the inaccuracies in the experimental data. We will investigate whether the structural error affects certain
variables more than others. We will also investigate whether the calibration is overly sensitive to the gross
flow properties, specifically the strength of the jet relative to the freestream. This is the first step in trying
to improve the predictive capability of RANS, and is the first contribution of this work.

As a first step to calibrating to JIC experimental data, we attempted to create surrogate models for JIC
interactions in the manner described in Ref. 13. It failed; the response of our calibration variable (vorticity
in the cross-plane; described in detail in Sec. III) to variations in C is too complex and non-stationary
(in the statistical sense i.e., the lengthscale of variation of the response changes in the parameter space)
to be captured by GP (also called kriging) surrogates or polynomials. Instead, we used experimental data
to identify a promising, but irregular sub-domain in the parameter space, which had a higher potential to
provide predictive RANS simulations. We call this region R. We developed polynomial surrogates that are
valid only inside R. We use R as an improper prior (for Bayesian calibration), with uniform density inside
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R, and zero outside. We develop a classifier, based on treed linear models, to model R, and use that inside
a MCMC calibration of C. The use of a classifier to model the valid parameter region R is borrowed from
climate modeling14 but, to date, it has not been used to as a prior in any aerodynamic studies. This new
way of using surrogate models, which are valid only in a sub-region of the parameter space, in a Bayesian
calibration setting is the second novel contribution of this work.

The paper is structured as follows. In Sec. II, we review literature on calibration of aerodynamic models
(both Bayesian and otherwise) and the use of surrogate models for calibration purposes in aerodynamics.
We also review treed models. We describe relevant work in JIC simulations. In Sec. III, we formulate our
inverse problem for estimating C (it is a conventional one), identify the need to develop surrogate models,
and provide the details of the construction. We also describe in detail the experimental studies that supply
us with our calibration data. In Sec. IV, we provide results of the calibration, and check the predictive skill
of the calibrated RANS model for variables omitted from the calibration’s likelihood. We also investigate
the usefulness of the calibration at off-calibration points. We conclude in Sec. V.

II. Background

II.A. Jet-in-crossflow interactions

JIC is a canonical flow interaction and is used as a model for a host of practical and natural flow phenom-
ena.11 It also plays a central role in the maneuvering of certain finned bodies of revolution e.g., launch
vehicles by spin rockets. In such cases, the exhaust from the spin rockets may interact with control surfaces,
modifying aerodynamic forces and moments.15,16 The problem is strongly vortical. Our interest lies in JIC
interactions where the freestream (or crossflow) is transonic, a problem that has been investigated in detail,
experimentally;17,18,19,20 we will refer to these as the “Beresh experiments”. The jet undergoes a Kelvin-
Helmholtz roll-up of the shear layer formed at the boundary of the jet and crossflow, and the flowfield is
dominated by a counter-rotating vortex pair (CVP). The CVP tracks the evolution of the jet in the crossflow,
and has horseshoe vortices circling it. The CVP and the horseshoe vortices are primarily responsible for
modification of the flow in the vicinity of the control surfaces.

The problem of JIC, in general, has also been studied numerically; references can be found in the review
paper by Mahesh.11 The particular supersonic jet-in-transonic-crossflow that is the subject of this study has
been investigated using k − ω models,12 and were also compared with the Beresh experiments. The study
found that all k − ω models overpredicted turbulent intensities inside the jet, resulting in simulated jets
“fatter” than their experimental counterpart i.e., the turbulent diffusion was too large in the simulations.
Further, the CVP, as captured on the crossplane (a plane perpendicular to the streamwise direction, that
slices through the CVP) resided at a point higher than in the experiments, a result at odds with overly strong
turbulent diffusion. The study conjectured that turbulent stress were underpredicted in the nearfield of jet,
resulting in an erroneous exchange of momentum between the jet and crossflow. The study investigated a
number of jet-to-crossflow momentum ratios (J) and jet cant angle, but the general behavior did not change
i.e., the lack of accuracy was due to a fundamental deficiency in k−ω models and was not a consequence of
the particular flow configuration. Large Eddy Simulations21,22,23 (LES) and Detached Eddy Simulations24

(DES) of the same JIC configuration have also been performed and compared to the Beresh experiments; the
mean-flow on the midplane was used as a figure of merit. No comparisons were performed on the crossplane.
As expected, their agreement with experimental observations were far better than RANS. While this is
encouraging, DES and LES are too computationally intensive to be used in routine design calculations.
Thus the need to analyse and reduce RANS prediction errors retains its importance.

II.B. Improving RANS

The accuracy that LES and DES simulations can achieve have allowed them to be used as “numerical
experiments” to quantify RANS errors as well as to calibrate RANS models. Note that such studies are
limited to (simple) flow configurations where LES or DNS are actually feasible. The motivation of these
studies have been to either quantify the uncertainty in RANS predictions or to actually improve RANS via
calibration. Both types of studies require one to augment the empirical models in RANS for the creation
and dissipation of turbulent kinetic energy with a “correction” term, which is estimated from LES or DNS
(Direct Numerical Simulation) data. The “correction”, or structural error is deemed to be spatially variable
and is modeled as such. The estimation of the structural error has been investigated in two ways. In the
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first case (typically geared towards uncertainty quantification of RANS predictions), the parameters of the
RANS model are deemed accurate, and the discrepancy between RANS and LES (or DNS) is computed
and its spatial variations modeled in various ways. In Ref. 25, turbulence variables from 2D RANS and
LES simulations of transonic flows over a bump were compared to estimate a spatially variable error. The
error was then modeled and a random term was introduced to evaluate its impact on flow variables. The
model of the error so constructed was tested by performing an ensemble of RANS simulations and adding
realizations of the error field by drawing from the PDF. Recently, this approach has been extended to 3D JIC
computations.26 The second approach is, quite simply, the calibration of RANS models using LES/DNS data.
Such studies have been performed for simple flows e.g., channel flows, flow over a flat plate etc.,27,28,29 and
involve estimating both flow turbulence model parameters via inverse modeling as well as fitting a structural
error model that captures the inadequacy of the calibrated model. The method is very data-intensive i.e.,
in order to estimate the structural error, the “good” DNS/LES results have to be made available at each
point of the RANS mesh. In Ref. 28, parameter estimates and structural error is estimated for the Spalart-
Allmaras model using a Bayesian approach, with observational data from incompressible boundary layer
flows over a flat plate under both favorable and adverse pressure gradients. The study by Edeling et al. 30

addressed the same problem, but used a k − ε model instead.
A subsequent study by Edeling et al. 31 addressed the question whether turbulent flow parameters de-

veloped for a certain pressure gradient could simply be transfered to a different flow configuration and be
predictive there. They were not. They hypothesized that RANS models, once calibrated, could only be used
in “similar” flow regimes. They demonstrated this hypothesis in the context of incompressible flat-plate
boundary layer flows, at different pressure gradients (called scenarios). They chose a set of scenarios (the
training scenarios) and calibrated a collection of models (k − ε , k − ω , Spalart-Allmaras, etc.) to esti-
mate both the models’ parameters and their probability i.e., the relative probability of a model’s ability to
reproduce observations vis-à-vis others in the collection. These models were subjected to Bayesian Model
Averaging over a number of pressure gradients (to weigh models appropriately) and used to predict both the
calibration variable (scaled streamwise velocity) and the skin-friction coefficient at pressure gradients that
were not included in the training scenarios. Much of the mathematical development in their study involves
the choosing and weighing of scenarios that are used for training/calibrating the models.

The studies described above i.e., Refs. 28,30,31 used MCMC to perform the calibration and all inferences
were probabilistic. The simplicity of the flow configuration (incompressible, flat-plate boundary layer) was
instrumental in reducing computational costs and making the phenomenally expensive MCMC method
feasible for calibration purposes. The use of MCMC to calibrate models for more complex flows requires
one to replace the flow simulator with a surrogate. In Ref. 32 the authors constructed surrogate models,
using kriging, for the velocities and temperatures predicted by LES in the crossplane of a hot jet-in-crossflow
interaction. They used the surrogates to estimate optimal values of the constant in the Smagorinsky model
and a fourth-order dissipation constant using JIC data obtained from a DNS simulation. In Ref. 13 the
authors constructed polynomial surrogate models for the Reynolds stress in the wake of an incompressible
2D flow over a square cylinder (as simulated using RANS) as a function of (Cµ, Cε2, Cε1) and used Bayesian
calibration to estimate a JPDF for them using experimental data. The PDFs were then tested for their
predictive skill in a transonic JIC interaction.

II.C. Treed models

The use of simple GP (kriging) and polynomials to construct surrogate models assumes that the mapping
between the calibration variable(s) (observables) and the parameters being calibrated is simple and smooth.
This assumption often holds true only in a small portion of the parameter space. In most cases, the pa-
rameter space is defined using upper and lower bounds on each parameter, and a random combination of
parameters may not even be physical i.e., the RANS or LES model may not even run successfully to com-
pletion. Further, non-physical parameter combinations do not provide model predictions that are close to
experimental observations. In such cases, one could, pragmatically, excise the non-physical portion of the
parameter space and focus on constructing a surrogate model that is valid only in R, the valid, physically
realistic part of the parameter space. This approach was followed in Ref. 14, where the authors used a
random forest classifier to discriminate between the physical and non-physical parts of the parameter space
of a climate model. The classifier was trained on a training set of 10,000 climate model runs.

A second way of constructing a separatrix between physical and non-physical parts of a parameter space
is to define a function ζ(C) that assumes a value of ±1 in the physical and non-physical parts of the
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parameter space respectively. Then the level-set ζ(C) = 0 defines the separatrix. The problem then reduces
to approximating ζ(C) using a training set of points in the parameter space where the binary function is
defined.

Complex, non-stationary functions can be approximated, from a training set of data, using Classification
and Regression Trees33 (CART). CART models are particularly simple if the parameter space is a hyper-
cuboid. CART models are built under the assumption that the space of predictors C can be divided into
smaller subdomains where a piecewise constant model would provide an adequate representation of the
available data. Subdomains are created by recursively splitting along a dimension and computing the means
and variances in the newly created subdomains; an improvement of fit (reduction in variance) results in the
split being deemed acceptable. Depending on the function approximated by the training data, very different
partitions of the subdomain may result in CART models of very similar accuracies i.e., the partitioning is
non-unique. The initial domain is assumed to be the root node in a tree; thereafter, the splits lead to the
subdomains becoming the children nodes in a binary tree. The binary tree can change by further splitting
of nodes, coalescing of a parent-children pair (provided the child is a leaf node in the binary tree) and by
randomly changing the splitting rule of a node. Due to the non-unique nature of partitionings, stochastic
search methods are often used to discover multiple trees/CART models that fit the data.

A variation of CART is the treed linear model, where the function in a subdomain is approximated by a
linear model (Treed linear models; Ref. 34) or by a kriged model (treed Gaussian Process models; Ref. 35),
rather than a constant. Due to the recursive splitting of the domain, complex, non-stationary variations of
ζ(C), including discontinuities, can be easily accommodated. In Ref. 35, the authors modeled lift generated
by a rocket booster as a function of Mach number, angle of attack and a sideslip angle. Discontinuous
changes in lift in the transonic regime and increase in the angle of attack (due to formation of shocks on
aerofoil surfaces) were captured by the recursive nature of subdividing the parameter space. Thus a treed
model can serve as a classifier since it can model ζ(C) and identify which side of a separatrix an arbitrary
C lies on. We will use this approach to model R, the physically relevant portion of the parameter space.

III. Formulation of the calibration problem

In this section, we formulate a Bayesian inverse problem for estimating C = {Cµ, Cε2, Cε1} from ex-
perimental measurements. We identify the need for surrogate modeling and also develop an informative
prior.

Let ye be a vector (of length Np) of experimental observations, measured at a set of Np locations
(“probes”). Let ym(C) be model predictions of the same, produced by a parameter setting C. They are
related by ye = ym(C) + ε where ε is a combination of measurement and structural error (the inherent
inability of the model to reproduce observations due to approximations). We make a modeling assumption
that the errors at the probes are uncorrelated, independently and identically distributed as a zero-mean
Gaussian i.e. ε = {εi}, εi ∼ N (0, σ2). σ2 thus provides a crude measure of the model - data misfit after
calibration. If the measurement errors are low, σ2 provides an estimate of the structural error.

Let P (C, σ2|ye) be the joint probability density function of the parameters and the model - data misfit
conditional on the observed data ye. Let Π1(C) and Π2(σ2) be our prior belief regarding the distribution of
C and σ2. The likelihood of observing ye, given a parameter setting C, L(ye|C), is given by

L(ye|C, σ2) ∝ 1

σNp
exp

(
−||ye − ym(C)||22

σ2

)
,

where || · ||2 is the `2-norm of the vector. By Bayes’ theorem, the calibrated distribution (or posterior
distribution) of (C, σ2) can be given as

P (C, σ2|ye) ∝ L(ye|C, σ2) Π1(C) Π2(σ2) ∝ exp

(
−||ye − ym(C)||22

σ2

)
Π1(C) Π2(σ2) (1)

This inverse problem can be solved via sampling i.e., we use a method such as MCMC36 to draw samples of
{C, σ2}. We reconstruct P (C, σ2|ye) empirically by plotting histograms or via kernel density estimation.37

In this particular work, we use an adaptive MCMC method called Delayed Rejection Adaptive Metropolis
(DRAM; Ref. 38), as implemented in the R39 package FME.40 The convergence of the MCMC chain to a
stationary distribution P (C, σ2|ye) i.e., the determination of the sufficiency of {C, σ2} samples to construct
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P (C, σ2|ye) is performed using the Raftery-Lewis method41 implemented in the R package mcgibbsit.42

The prior density for σ2 is defined in terms of its reciprocal i.e., Π2(σ−2) and is modeled using a Gamma
prior i.e., σ−2 ∼ Γ(k, θ), where (k = 1, θ = 1). The inverse Gamma prior for σ2 is a conjugate prior which
simplifies sampling of σ−2 via a Gibbs sampler. Also, the prior is virtually non-informative for σ2 > 5.

The MCMC method requires O(104) samples to construct P (C, σ2|ye), each of which requires a 3D
RANS model evaluation to provide ym(C). Since this is impractical, we will develop a surrogate model, a
polynomial that maps the dependence of our calibration variable (described below) on C. This mapping
is expected to hold true (i.e., within an acceptable level of error) in the support of Π1(C). The surrogate
model will serve as a computationally inexpensive proxy for SIGMA, our compressible 3D RANS simulator.
SIGMA implements a k− ε model (as described in Ref. 43) and uses linear model for the turbulent viscosity.
The model uses a turbulent Reynolds number based (y+ independent) damping functions at the walls making
it suitable for large scale parallel computations of complex flows. A Roe-TVD flux scheme with a min-mod
limiter for discontinuity capturing has been used for the spatial discretization. Time integration is carried
out using a first order point-implicit scheme. The calculations presented herein are initialized using a first-
order spatial scheme and relaxed to convergence using the second order scheme. Time marching was carried
out in steady state mode (local time stepping) with a gradual CFL ramp to accelerate convergence.

We consider the following bounds on C : 0.06 ≤ Cµ ≤ 0.12, 1.7 ≤ Cε2 ≤ 2.1, 1.2 ≤ Cε1 ≤ 1.7, taken
from Ref. 2. While it is tempting to combine these bounds into a uniform distribution in the cuboid C in
(Cµ, Cε2, Cε1) space, we shall refrain from doing so since random samples drawn from it may not be phys-
ically relevant. While the experiment revealed that the flow is turbulent, but steady, many (Cµ, Cε2, Cε1)
combinations drawn from C lead to RANS computations that do not converge to steady state; other combi-
nations lead to converged solutions that bear little resemblance to high Reynolds number transonic flowfields
(and consequently the discrepancy ye − ym(C) is very large). The inability to generate reasonable model
predictions ym makes it very difficult to construct surrogate models that are accurate proxies for RANS
predictions everywhere in C. Consequently, to circumvent this problem we will develop a prior density that
restricts the parameters to a region R, within which the parameters produce physically realistic flowfields.

III.A. Experimental data
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Figure 1. Left: Schematic of the test section showing the orifice where the jet is introduced and the mid- and crossplane
where experimental measurements are made. Right: Plot of the experimental streamwise vorticity and the window
W (0 ≤ z ≤ 0.04, 0.031 ≤ y ≤ 0.11) containing on of the vortices. Calibration and validation based on vorticity will be
performed inside this box.

The wind tunnel experiments from which we obtain our calibration and validation data are described in
Ref. 17, 18, 19. The test section simulated using SIGMA (see schematic in Fig. 1 (left)) has a square cross
section, 304.8 mm per side. Turbulent flow is introduced into the test section from the left. A jet, 9.53 mm in
diameter and perpendicular to the inflow, is introduced at the floor of the test section. PIV measurements of
the flowfield are conducted in the midplane (the plane of symmetry in JIC interaction) as well as a crossplane
(perpendicular to the jet), 321.8 mm (33.8 jet diameters) downstream from the center of the jet. Measured
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quantities include velocities and the fluctuating turbulent velocities, from which turbulent stresses (u′iu
′
j)

are computed. The studies track the penetration of the jet into the crossflow. This tracking is performed by
plotting streamwise and vertical velocity profiles at 5 locations, starting at a distance 200 mm downstream
of the center of the jet and thereafter, 50 mm apart. Velocity and turbulent stress distributions in the
crossplane are used to demarcate the CVP. Most of the measurements are for M = 0.8 freestream flow, with
J = 10.2. Both midplane and crossplane measurements are also available for J = 5.6, 16.7. Measurements
are restricted to the midplane for M = 0.6, 0.7.

In this study we will use the M = 0.8, J = 10.2 experiment as our calibration case. In particular, we will
use the experimental velocity measurements on the crossplane to compute the streamwise vorticity. Fig. 1
(right) shows a plot of the experimental crossplane vorticity field, clearly showing the CVP. The window W
(0 ≤ z ≤ 0.04 m, 0.031 m ≤ y ≤ 0.11 m), surrounding one of the vortices, demarcates the region where the
vortices are observed in the RANS solution as C is varied. The window also eliminates the boundary layer
seen at the bottom of the figure. Superimposing the RANS grid on the crossplane reveals that the window is
covered by a 8× 28 grid. We refer to these 224 grid cells as the set Pf of “probes” where both experimental
and model predictions of streamwise vorticity are available for comparison and matching during calibration.

III.B. Designing an informative prior
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Figure 2. Scatterplot of the set of Ns points in the
(Cµ, Cε2, Cε1) space that constitute R.

In this section we devise a way of selecting R, the
part of C containing (Cµ, Cε2, Cε1) values that produce
physically realistic flowfields. We draw 2744 (143)
samples of (Cµ, Cε2, Cε1) from C using a space-filling,
quasi Monte Carlo method (Halton sequence) and use
them to seed 3D RANS JIC simulations. Each sim-
ulation (approximately 10 hours on 1024 cores of a
PowerPC A2 processor) results in a streamwise vor-
ticity prediction on the crossplane. 100 runs failed
and a number of the remaining 2644 runs resulted
in non-physical flowfields. On the whole, the vari-
ation of (Cµ, Cε2, Cε1) led to CVPs of varying sizes
and strengths; they were also seen to vary in location
(above or below the experimentally observed CVP po-
sition).

In order to identify R, we compute the root mean
square error (RMSE) between the streamwise vortic-
ity produced by each of the simulations and the ex-
perimental counterpart on the crossplane. We retain
the Ns = 525 runs whose RMSE lie below the 20th

percentile. The (Cµ, Cε2, Cε1) for these selected runs,
which identify R, are plotted in Fig. 2. The 3D scat-
terplot clearly show that R excludes a large portion
of C. Our next step lies in using the training set of Ns (Cµ, Cε2, Cε1) points to devise a function in C that
can be used to demarcate R.

We define a function ζ(C) in C that is set to 1 at the Ns points that define R and -1 at the remaining
2744 - 525 = 2219 (Cµ, Cε2, Cε1) combinations that we had drawn from C. We define the level set ζ(C) = 0
as ∂R, the demarcation surface for R. The technical challenge then reduces to finding a model ζm(C) that
approximates ζ(C) at any arbitrary C. We use a Bayesian treed linear model34 to construct ζm(C). We
use a MCMC method to stochastically generate new trees, followed by newly fitted linear models in the
leaf nodes. It allows us to generate an ensemble of trees (and associated linear models), which are then all
used to generate a mean prediction for ζm(C), given a specific C. We use the implementation of Bayesian
treed linear models in the R package tgp.44 In Fig. 3, we plot 2D projections of the most probable tree of
subdomains, along with the Ns points in C where ζ(C) = 1. ζ(C) = −1 points are not plotted as there are
too many of them; however, they are uniformly distributed in the “empty” space in the figure. It is clear
that there are subdomains which predominantly contain ζ(C) = 1 (or -1); a few contain a mixture. It is in
these few nodes that linear models will be useful in predicting ζm(C) at an arbitrary C; a positive value of
ζm(C) indicates that C lies inside R. Thus the Bayesian treed linear model acts as a classifier.
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Figure 3. The highest probability or maximum a posteriori partitioning tree of the Ns points in C that define R. The
points that lie outside R are used in the calculation of the tree, but are not plotted here because there are too many
of them for a clear plot. They inhabit the blank regions of the plots above and are uniformly distributed there. The
boxes are the nodes of the tree projected on 2D slices. Data in leaf nodes are approximated with a linear model.

We test the accuracy of ζm(C) using repeated random subsampling validation (a form of cross-validation).
Results were averaged over 20 rounds (or splits). We randomly divide the 2744 samples of ζ(C) into a
Learning Set (LS) with 2332 samples (85% of the total) and a Testing Set (TS) with the rest. A treed linear
model (classifier) is built using the LS and used to classify/predict at the (Cµ, Cε2, Cε1) combinations in the
TS. The misclassification rate is then computed. This is repeated 20 times, with different LS/TS pairs, and
the mean misclassification rate is found to be around 4%. Thus we find the resulting classifier to be quite
accurate. We will use this classifier to define ∂R, the boundary of R. We model the prior density within
R as a uniform distribution i.e., all (Cµ, Cε2, Cε1) combination are equally probable. Outside R, the prior
density is zero.

III.C. Polynomial surrogate models

Due to the large number of model evaluations that are needed for an MCMC method to converge to a
stationary posterior distribution, our surrogate models are meant to serve as computationally inexpensive
proxies for 3D RANS predictions of streamwise vorticity on the crossplane. Let y(p)(C) be the streamwise
vorticity on the crossplane, predicted by RANS at probe p, p ∈ Pf . We seek to construct an approximation

y
(p)
s (C) using multivariate polynomials involving C,C ∈ R. Since y(p)(C) is obtained by taking the derivative

of the velocity field, it tends to be contaminated with some numerical noise. For probes p in or near the
center of the CVP, the large magnitude of the vorticity allows its dependence on C to be discovered and
modeled. The rest of the probes, where numerical noise is substantial, have to be eliminated.

For a given RANS run, we compute the 75th percentile of the vorticity magnitudes obtained at probes
p, p ∈ Pf and retain the 224/4 = 56 probes with absolute vorticities above this threshold. The vorticity
predicted at these probes are expected to be large enough to be minimally affected by numerical noise. This
is repeated for all C,C ∈ R; a different set of probes are selected for each run since the CVP changes its
size and location as C varies. We take a union of these probes to create a set P∗, containing 108 probes,
where we will attempt to create surrogate models. The probes in P∗ are plotted on top of the experimental
vorticity field in Fig. 4 (left). Note that P∗ is not the set of probes that we will use in the calibration; as
we will see below, we will be able to create surrogate models, of an acceptable quality, only for a subset of
them.

The method to create and test the robustness of surrogate models is the same as the one described in
Ref. 13. At any probe p, p ∈ P∗, we postulate that

y(p) =

l=3∑
l=0

m=3∑
m=0

n=3∑
n=0

α
(p)
l,m,n(Cµ)l(Cε2)m(Cε1)n + d,

= y(p)s + d,

3 ≥ l +m+ n, (2)
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Figure 4. Left: Plot of experimental vorticity inside W with the probes constituting P∗ overlaid on it and marked with

◦. Right: Comparison of δ
(p)
LS and δ

(p)
TS for all 108 probes in P∗. We note that the two relative errors are of the same

magnitudes, indicating that there is little overfitting of the surrogates. We also see that for some probes, the relative
errors can be big i.e., surrogates are not necessarily accurate for all probes. Some of the errors also lie outside the
range of the vertical axis and are not plotted. The green line at 10% error demarcates the probes that can be used in
calibration; the rest of the polynomial surrogates are too inaccurate for any practical use. The probes which lie under
the green line are plotted on the right with + symbols.

where y
(p)
s is the polynomial approximation (surrogate) of the 3D RANS prediction of the crossplane stream-

wise vorticity y(p) and d is the approximation error. In order to estimate the coefficients α
(p)
l,m,n, we create a

dataset {Cµ, Cε2, Cε1, y(p)}i,Ci ∈ R, and fit the model in Eq. 2 via least-squares fitting. The cubic model
so formed is rarely useful in practice due to its tendency to overfit the {Cµ, Cε2, Cε1, y(p)} data. We simplify
the model by incrementally removing high-order terms and refitting the shrunk model to the same data.
The (original) cubic model and its shrunk counterpart are competed using AIC; if the shrunk model results
in a lower AIC, it is retained and subjected to the same incremental simplification process. We find that
simplification removes terms from Eq. 2 for all probes in P∗, and in some cases reduces the cubic model to
quadratic.

We next test whether the AIC-based simplification procedure yields robust surrogate models. This is
done via repeated random subsampling validation, and results are averaged over 100 rounds. The Ns RANS
runs are separated into a LS containing 446 (approximately 85% of the runs) randomly selected runs, while
the remainder constitute the TS. The simplified polynomial model is constructed using the LS and the

relative error for each parameter combination i in the LS, δ
(p)
i,LS = (y

(p)
i − y

(p)
s,i )/y

(p)
i , i ∈ LS, evaluated.

Here y
(p)
i refers to RANS predictions computed using the parameters Ci, i ∈ LS. The fitted model is also

used to evaluate y
(p)
s,j for the parameter set j, j ∈ TS, and calculate the corresponding relative error i.e.,

δ
(p)
j,TS = (y

(p)
j − y

(p)
s,j )/y

(p)
j , j ∈ TS. These individual relative errors are summarized by their RMS (root mean

square) value for the LS and TS. This process is repeated 100 times, using different LS/TS pairs; the mean

of the RMS relative errors, δ
(p)
LS and δ

(p)
TS , are taken as measures of accuracy of the polynomial surrogate.

The process is repeated for all the 108 probes in P∗.
In Fig. 4 (right) we plot δ

(p)
LS and δ

(p)
TS for all the probes. We notice that for about half the probes, the two

relative errors are very close i.e., the polynomial model fitted to the LS data is equally predictive of the TS.

This indicates that the polynomial model does not overfit the LS data; had this not been the case, δ
(p)
LS would

have been substantially smaller than δ
(p)
TS . We also notice that for certain probes the relative error is high

i.e., the polynomial model is not an accurate representation of y(p), and should not be used in calibration.
Using 10% error (green line in Fig. 4 (right)) as the criterion, we retain 52 out of 108 probes in P∗ where
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the polynomial model is deemed to be sufficiently accurate. Further, for these selected probes, the LS and
TS relative errors are very close. We refer to this set of 52 probes as P; since we can construct accurate
surrogate models for all probes p, p ∈ P, we will use them for calibration purposes. The probes in P are
plotted in Fig. 4 (left) using + signs. They occupy the center of the experimental vorticity field with large
vorticity magnitudes. We repeated the same surrogate model construction, but with the models limited to
second-order terms rather than cubic terms; we could construct accurate surrogates at on 32 / 108 probes
in P∗. This provides a second verification that the surrogate models do not overfit the RANS data and thus
provide an accurate proxy for the 3D RANS simulator.

III.D. The inverse problem

We will solve a slight variation of Eq. 1 to estimate C from the Beresh experiments

P (C, σ2|ye) ∝ L(ye|C, σ2) Π1(C) Π2(σ2) ∝ exp

(
−||ye − ys(C)||22

σ2

)
Π1(C) Π2(σ2), (3)

the modification being the substitution of crossplane streamwise vorticity predictions via a 3D RANS model,

ym, by predictions via surrogates ys = {y(p)s }, p ∈ P. We will use the inverse Gamma prior described above
for σ2. The prior for C,Π1(C), is a uniform distribution described over R. It is defined as an improper
prior i.e., Π(C) = 1,C ∈ R and zero otherwise. It is implemented as a classifier, which in turn makes use of
Bayesian treed linear models to demarcate R inside C. We will estimate the posterior distribution (Eq. 3)
using the DRAM algorithm implemented in FME. Post-calibration, we will draw samples of (Cµ, Cε2, Cε1)
from P (C, σ2|ye) and run RANS simulations to generate an ensemble of crossplane vorticity predictions.
Statistical summaries of the vorticity field lying inside the window W will be used for validation purposes
i.e., to check the predictive skill of the of the calibration at J = 16.7 when the Mach number is held fixed.
We will also check the degree of accuracy with which we can predict the time-averaged (mean) flow on the
midplane.

IV. Results
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Figure 5. Marginalized PDFs for Cµ, Cε2, Cε1, σ computed
as a solution to Eq. 3. The nominal values of the parame-
ters are shown using the vertical line. The MAP estimates
of all parameters except Cε1 vary significantly from their
nominal value.

The Bayesian inverse problem defined in Eq. 3 is
solved using DRAM and tested for convergence us-
ing the Raftery-Lewis method. About 25,000 MCMC
steps are required to reach a stationary posterior dis-
tribution. The posterior is marginalized and the 1D
PDFs for the individual parameters are plotted in
Fig. 5; the nominal values are plotted using verti-
cal lines. Its is clear that the maximum a posteri-
ori (MAP) values of the parameters vary significantly
from the nominal ones, especially for Cε2. An estimate
of the model - data mismatch, in the form of σ is also
obtained. Comparing σ with the vorticity plotted in
Fig. 4 (left), we see that the misfit is quite large. We
also performed a calibration, using the same formula-
tion, but using a genetic algorithm; the convergence of
the algorithm is in Ref. 45. The best/converged value
of the parameters are Cµ = 0.105, Cε2 = 2.099, Cε1 =
1.42. These reflect the values of these parameters that
are found to be most probable in Fig. 5.

We next examine the calibrated model’s predic-
tive skill at a different value of J . We use the 100
(Cµ, Cε2, Cε1, σ

2) samples from the posterior distri-
bution to generate vorticity fields on the crossplane
by running the 3D RANS simulator. The vorticity
field is then approximated by a point vortex, whose
circulation is obtained by integrating the vorticity in W. The centroid of the vorticity distribution in W
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Figure 6. Left: Distribution of circulations, the centroids and radii of gyration generated from 100 samples from the
posterior distribution, normalized by their experimental counterparts. Predictions using Cnom are plotted with ◦. The
results correspond to the M = 0.8, J = 10.2 case. Right: Distributions for the M = 0.8, J = 16.7 case.

is assigned the position (y, z) of the point vortex. In addition, we compute the radius of gyration of the
vorticity distribution inside the W as a simple proxy for its size. We will refer to these metrics as the “point
vortex metrics”. In Fig. 6 (left), we boxplot the “point vortex metrics”, normalized by their experimental
counterparts for the M = 0.8, J = 10.2 case. The individual circles plot the predictions obtained using
Cnom. We see that for circulation and the position, our errors are well within 5%; this holds true even for
the interquartile range. The radius of gyration is underpredicted by about 10%. Such an accurate represen-
tation is somewhat expected since the vorticity field was used to calibrate the model. In Fig. 6 (right), we
plot the results for the M = 0.8, J = 16.7 case. Note that the model was not calibrated for this case and
the plot measures the predictive skill of the model at an off-calibration point. We see that the circulation
and height of the centroid are accurately captured for the J = 16.7 case, but 20% - 30% errors are seen in z
and the radius of gyration. The improvement of the predictions, post-calibration, are stark.
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Figure 7. Left column: Streamwise vorticity in the crossplane computed using
Cnom, overlaid with vorticity, as measured in experiments. J = 10.2 and 16.7
for the top and bottom rows. Right column: Crossplane streamwise vorticity
predicted using the “optimal” values of (Cµ, Cε2, Cε1),Copt. Qualitatively, the
agreement is quite good. The improvement over Cnom (left column) is stark.

The set of runs plotted in Fig. 6,
for the M = 0.8, J = 10.2 case, al-
low us to identify an optimal pa-
rameter combination (from the 100
points sampled form the posterior).
The deviations (from 1) of the ra-
tios plotted in Fig. 6 allow us to
define an error (bounded by ±1)
and consequently a mean square er-
ror that combines the deviations in
circulation, centroidal position and
the radius of gyration. The run
with the minimum mean squared
error yields the best (Cµ, Cε2, Cε1)
combination Copt =
{0.1025, 2.099, 1.416}. Note that
this value is not very different
from the optimal values yielded by
the genetic algorithm optimization
(Cµ = 0.105, Cε2 = 2.099, Cε1 =
1.42). In Fig. 7, we plot, in the
left column, the streamwise vortic-
ity distribution computed on the
right half of the crossplane using
Cnom. In the right column, we plot
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the corresponding vorticity distribution obtained using Copt. Overlaid on each are contour plots of the vor-
ticity distribution obtained experimentally. The top row contains results for the M = 0.8, J = 10.2 case;
J = 16.7 is plotted in the the bottom row. In general, the vorticity distribution obtained using Copt (right
column) is very close to the experimental values. The improvement over the predictions with Cnom (left
column) is substantial. These figures bear out the summaries in Fig. 6, which showed that calibration to the
M = 0.8, J = 10.2 case improved the predictive skill of RANS at an off-calibration value of J .
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Figure 8. Top row: Streamwise velocity deficit at x/Dj = 21, as com-
puted for the J = 10.2 and J = 16.7. In each subfigure on the left, we
plot the streamwise velocity deficit (U(x)−u)/U(x), where U(x) is the bulk
(or plug) flow velocity as measured experimentally (◦), as predicted using
Cnom (dashed red line, - - - ) and Copt (+ ). We also plot the ensemble
mean predictions from the 100 (Cµ, Cε2, Cε1) samples from the posterior
distribution as the thin black line — (it is very close to the Copt predic-
tion). Bottom row: We compare the vertical velocity v/U∞ instead of
streamwise velocity deficit, for both values of J.

In Fig. 8 (top), we plot the stream-
wise velocity deficit in the midplane at
x/Dj = 21 for M = 0.8, J = 10.2
and 16.7. In Fig. 8 (bottom) we plot
the vertical velocity on the midplane
at the two flow conditions. The data
for the plots were obtained using Cnom,
Copt and the ensemble mean (from the
100 (Cµ, Cε2, Cε1) samples drawn from
the posterior). These are compared
with the experimental values (◦). We
see that the ensemble mean and Copt

predictions always lie closer to the ex-
perimental value than Cnom; in the
case of M = 0.8, J = 10.2, the agree-
ment between the predicted and exper-
imental values is very close. Predic-
tions using Cnom bear out the infer-
ences drawn from Fig. 6 - the CVP sits
far above the experimentally observed
CVP, and is much too strong, at both
values of J . Post-calibration, the po-
sition as well as the strength of the
CVP is closer to the experimental val-
ues. The vertical velocity in the mid-
plane is largely governed by the CVP.
Fig. 6 and Fig. 7 show that the cali-
bration immensely improves our abil-
ity to capture the crossplane vorticity
(vis-à-vis predictions with Cnom), and
improvements in predictions of verti-
cal velocity largely follow. Note that
the calibration was performed only on
the M = 0.8, J = 10.2 case, and that
too, using streamwise vorticity on the
crossplane; however, the calibration im-
proves the entire flowfield (as seen in
the streamwise deficit and vertical ve-
locity profiles) and is applicable also at
other values of J .

Post-calibration, the only cause of
the discrepancy between experimental
observations and numerical predictions
is the structural or model-form error in
RANS. These errors are cause by the
manner in which the turbulent stresses
and their evolution are modeled. We
use a linear eddy viscosity model, which
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relates the turbulent stresses τij to strain-rates Sij and turbulent kinetic energy k, is stated as

τij = −u′iu′j =
2

3
kδij − 2νTSij , k =

∑
i

u2i and Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
δij
∑
k

∂uk
∂xk

(4)

and forms a convenient place to quantify and analyze the structural error our RANS model after calibration.
In Fig. 9, we compare ensemble mean predictions of turbulent stress obtained from the 100 (Cµ, Cε2, Cε1)
samples obtained from the posterior distribution against experimental measurements from Ref. 18 for our
two tests. We also plot the predictions obtained using Cnom. Calibration to crossplane vorticity (for the
M = 0.8, J = 10.2 case) results in a loss of agreement with measurements for τ22 (under-prediction) and τ11
(over-prediction). τ12 is grossly underpredicted. In fact, the ensemble mean predictions of τ11 and τ22 are
almost indistinguishable. The predictions with Cnom show the CVP sitting too high. The same behavior is
seen at the off-calibration point - there is agreement for τ22 but the rest of the turbulent stresses are badly
predicted. The agreement between the experimental values and the ensemble mean prediction degrades
somewhat the off-calibration point. This behavior pinpoints the source of the structural error.
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Figure 9. Profiles of −τ11/U2
∞ (first column), −τ22/U2

∞ (second column) and −τ12/U2
∞ (last column) as a function of

y/Dj at x = 200 mm behind the jet on the mid-plane (x/Dj = 20.9). Experimental measurements are plotted with a ◦,
the ensemble mean predictions from our 100 ((Cµ, Cε2, Cε1)) values from the posterior are plotted with a solid line (–)
and the predictions with Cnom are plotted with a dashed line (- - -). Top row, we plot results from the calibration case
(M = 0.8, J = 10.2). The bottom row contains results from the (M = 0.8, J = 16.7) test case.

The reason the ensemble mean predictions of τii are so close is because the strain rates in the RANS
predictions are too small. This leads to a gross under-prediction of τ12 using Eq. 4 (see Fig. 9) whereas as
for τii, k dominates over the term with Sij . Calibration leads to a k that splits the difference between τ11
and τ22. At higher values of J , the calibrated parameters over-predict k. This error is systematic and is
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observed even at off-calibration points. The linear eddy viscosity model has too simple a form to capture the
significant differences in the magnitude of the three stresses and a more complex model is required to bridge
this gap. Yet, despite these large errors in the turbulent stress predictions, the large scale structures in the
mean flow were only moderately affected, suggesting that the effect of these stresses are somewhat muted.

V. Conclusions

In this study, we have investigated whether RANS models can be calibrated to be predictive in jet-
in-transonic-crossflow interactions. We have proceeded under the hypothesis that the nominal values of
(Cµ, Cε2, Cε1) = Cnom are unsuitable and a better set could be identified via calibration to experimental
data. We find that it is possible to do so; further, the calibrated RANS model is predictive for a jet quite
different from the one employed in the calibration.

We adopted a Bayesian calibration method and estimated the RANS parameters (Cµ, Cε2, Cε1) as a joint
PDF, thus quantifying the uncertainty in the estimation. We employed an adaptive Markov chain Monte
Carlo (MCMC) method to do so. We also obtained a crude estimate of the data - model mismatch, an
amalgamation of measurement and structural errors. Vorticity on the crossplane was used as the observable,
and was found to be sufficient for estimating (Cµ, Cε2, Cε1). The calibration used surrogates of the 3D RANS
simulator, due to the phenomenal computation cost of using MCMC. Construction of the surrogates posed
a formidable challenge. While the bounds on Cµ, Cε2 and Cε1 are known, their random combinations do
not yield physically realistic flows, and in some cases, the RANS simulator will not even yield results. We
identified a physically realistic region R of the parameter space and developed polynomial surrogates that
were valid only inside R. The region R is complex and we developed a classifier, using treed linear models,
to identify whether an arbitrary (Cµ, Cε2, Cε1) combination was inside it. R was also leveraged to serve as
an informative, if improper, prior for (Cµ, Cε2, Cε1) - prior density was 1 inside R and zero outside. The
classifier, as well as the polynomial surrogates, were used with MCMC to obtain a 4-dimensional joint PDF
for (Cµ, Cε2, Cε1, σ

2).
The joint PDF for (Cµ, Cε2, Cε1, σ

2) was constructed using streamwise vorticity data (from the crossplane)
from an experiment conducted at M = 0.8, J = 10.2. 100 samples drawn from the posterior were used to
run the 3D RANS simulator and predict the vorticity on the crossplane . Prediction errors were ≤ 5%,
which was expected since vorticity was the calibration variable. However, the same runs yielded very good
agreement with the experimentally measured streamwise velocity deficit and vertical velocity on the midplane,
providing some corroboration that flowfield away from the crossplane was similar to the experimental one.
The improvement over the flowfield computed with the nominal values of (Cµ, Cε2, Cε1), Cnom are substantial,
and can be seen in all the flow variables that we investigated. We used the joint PDF, computed using M =
0.8, J = 10.2 data, to predict the flowfield at J = 16.7. Our calibrated RANS model yielded improvements
that ranged from substantial to surprising. Thus our hypothesis that the inaccuracy of RANS in jet-in-
crossflow interactions was due to the unsuitability of Cnom proved correct; in comparison, the structural
error was small.

The structural error, nevertheless, does exist, and post-calibration, is the dominant error term. The
structural error causes the degradation of predictive skill when we apply our RANS model at off-calibration
points. We isolated the effect of the structural error on the midplane and pinpointed its source to be the
simplicity of the linear eddy viscosity model used in our simulations. It predicts certain turbulent stresses
well and is utterly ineffective for others. The contributions to the turbulent stresses by mean flow quantities
(strain rate in the case of the linear eddy viscosity model) are grossly underpredicted. This error could be
rectified by augmenting this closure model, for example, by employing a nonlinear eddy viscosity model.
This investigation is left for future work.
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