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Outlines 

  Scalable Multi-chain Markov Chain Monte Carlo Method 
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  Case 2: Soil moisture variations through ground 

penetrating radar (GPR) travel time data 

  Case 1: Reservoir porosity and saturation 
through invert marine seismic amplitude 
versus angle (AVA) and controlled-source 
electro-magnetic (CSEM) data  

 



Scalable Multi-chain Markov Chain Monte Carlo Method 
 Bayesian Formulation 

 
   Generate posterior distributions on model parameters, given 

  Experimental data  
  A prior distribution on model parameters 
  A presumed probabilistic relationship between experimental data and 
model output that can be defined by a likelihood function 
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Scalable Multi-chain Markov Chain Monte Carlo Method 
 Bayesian Formulation 

  Experimental data = Model output + error 
 
 
  If we assume error terms are independent, zero mean Gaussian 

random variables with variance σ2, the likelihood is:  
 
 

  Markov Chain Monte Carlo (MCMC) 
Generating a sampling density that is approximately equal to the 
posterior.   
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Scalable Multi-chain Markov Chain Monte Carlo Method 
 Markov Chain Monte Carlo  

  MCMC generates samples that approximate the posterior distribution 
 
  MCMC requires a “proposal density” which is used for generating ​𝜃↓𝑖
+1   in the sequence, conditional on 𝜃𝑖. 

 
  Metropolis-Hastings is a commonly used algorithm 

  Sample a candidate 𝑌 from the proposal density function 𝑞(𝑌| ​𝜃↓𝑖 ) 
  Calculate the acceptance ratio 
  If 𝛼(​𝜃↓𝑖 ,𝑌)>𝑈, set ​𝜃↓𝑖+1 =𝑌, else set ​𝜃↓𝑖+1 = ​𝜃↓𝑖 . 
  Increment 𝑖. 
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Scalable Multi-chain Markov Chain Monte Carlo Method 
 Markov Chain Monte Carlo  

  MCMC requires more than 10,000 evaluations of forward simulation 
model 

  We want to avoid surrogates 
 COMPUTATIONALLY VERY EXPENSIVE 

 
  Parallel MCMC 

MCMC is inherently sequential 
SaChES: Scalable Adaptive Chain-Ensemble Sampling 
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Scalable Multi-chain Markov Chain Monte Carlo Method 
 SaChES: Scalable Adaptive Chain-Ensemble Sampling 

 
  Hybrid method that incorporates:  

  DREAM (DiffeRential Evolution Adaptive Metropolis) to utilize 
multiple chains to obtain high-quality proposal densities 
  DRAM (Delayed Rejection Adaptive Metropolis ) to obtain 
posterior distributions efficiently 
  Parallel chains to accelerate computations 
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More details about the method is available on the poster 
Bayesian calibration of the Community Land Model using a multi-chain Markov chain Monte Carlo 

method  
Jaideep Ray, Laura Swiler, Maoyi Huang, Zhangshuan Hou 

Thursday, 17 December, 13:40 – 18:00 
Moscone South – Poster Hall 

 
 



Case 1: Gas Saturation Estimation  

  Inversion domain 
Seismic amplitude versus angle(AVA)  
Controlled-source electro-magnetic(CSEM) 
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5-layered reservoirs from the upper 
to bottom with water saturations:  
0.95, 0.05, 0.6, 0.9 and 0.1 
and the porosity: 
0.15, 0.25, 0.15, 0.1 and 0.05 

The source and receivers were 
both located 50m above the 
seafloor. 21 receivers were away 
from electrodes from 500m to 
5000m. 
 
  



Case 1: Gas Saturation Estimation  
  Seismic AVA data (80 time steps) was used to estimate porosity and narrow bounds 

were obtained for each layer, then estimate water saturation. 
  The reservoir thickness is 50m  
  CSEM data were obtained from 2Hz channel 
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Posterior	
  distribu8on	
  of	
  the	
  parameters	
  



Case 1: Gas Saturation Estimation  

  The effect of thickness for each reservoir layer  
  Each layer thickness: 25m, 50m and 75m  

  The effect of CSEM data frequency 
  CSEM data frequency: 0.5Hz, 1Hz and 2Hz 
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Case 2: Soil Moisture Variations 

  “True” dielectric permittivity field 
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  Synthetic test case 
3.8	
  X	
  15	
  m;	
  20	
  X	
  75	
  points	
  
8	
  pilot	
  points,	
  and	
  range	
  (correla8on	
  length)	
  
Generate	
  a	
  random	
  dielectric	
  field	
  in	
  SGSIM	
  

  Ground penetrating radar (GPR) travel 
time simulation 
Velocity:	
  𝑣= ​​𝑣↓𝑙 /√⁠𝜀  	
  
Calculate	
  the	
  radar	
  signal	
  travel	
  8me	
  
between	
  each	
  source	
  and	
  receiver	
  

“Observa8ons”	
  
Travel	
  8me	
  between	
  30	
  sources	
  and	
  30	
  
receivers	
  



  Posterior distribution of the parameters 
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Case 2: Soil Moisture Variations 

  Inversed dielectric permittivity field 

“True”	
  field	
  

10	
  best	
  inversed	
  fields	
  



Case 2: Soil Moisture Variations 

  Noise on observation 
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Noise’s	
  standard	
  devia8on	
  is	
  defined	
  as	
  the	
  
percentage	
  of	
  the	
  mean	
  of	
  the	
  true	
  
observa8on	
  

  Number of sources and receivers 
5,	
  10,	
  15,	
  20,	
  25,	
  30,	
  35,	
  40,	
  45,	
  50,	
  75,	
  and	
  
100	
  sources	
  and	
  receivers	
  



December 14, 2015 14 

Questions? 


