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Outline 

Motivation 
To reduce uncertainty in the Earth system models and improve prediction 
capability  

Background  
Sources of uncertainty  
Uncertainty identification and representation 
Parameter ranking/screening  
Surrogate / ROM development 
System classification 
Stochastic calibration/inversion 

MCMC-Bayesian using numerical forward models and/or surrogates 
Multi-chain MCMC 

Entropy (minimum-relative-entropy, MRE) approach for uncertainty 
quantification (UQ) and Bayesian inversion 

UQ based on MRE-derived prior probability density functions 
Bayesian inversion using MRE-priors 



Motivations 

Complex physical phenomena are of multi-phase, multi-component, 
and involve multiple biogeophysical/biogeochemical processes 
Integrated models introduce numerous model and coupling parameters 
and therefore formidable high-dimensional parameter spaces 
Many model parameter values were assigned without calibration which 
results in significant modeling errors (e.g., mismatches between 
observed and simulated flow and energy fluxes in land surface models) 



Sources of Uncertainty 

Model uncertainty 
Simplifications, structural model formulations/structures, 
extrapolations, resolution, model initial/boundary conditions 

Data uncertainty 
Instrumental errors, consistency, gaps, resolution, scaling 

Natural uncertainty/variability/heterogeneity 
Intrinsic quantities vary over time, over space, or across 
individuals in a population 
Physical processes/mechanisms/features vary over space, time, 
and individuals 

Parameter uncertainty 
Non-measurable, measurement errors, non-uniqueness, 
inaccurate calibration, mis-classification due to under-sampling… 



Uncertainty Reduction 

Sensitivity analyses  
Direct survey data – hard information 
Indirect observations for inference – soft information 
Classification of systems 
Filtering, gap filling, decomposition, co-kriging 
Surrogates (ROMs) for system predictions and risk 
analyses 
Parameter significances  guidance on conceptual model 
development and improvement 
Parameter calibration/inversion  improve model 
accuracy and confidence of predictions 



Uncertainty Representation – MRE priors 

In practice, measurements are not available, given prior knowledge 
including databases and experiences, close-form pdfs can be derived 
using minimum-relative-entropy (MRE) concept (Hou and Rubin 
2005): 
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MRE priors for major hydrological 
parameters in Land Modeling 



MRE-priors for UQ and SA: sampling 
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MRE priors for UQ and SA: response 
surface and parameter ranking 



Bayesian Inversion  

Bayesian updating: f(m|d,I)  f(d|m,I)* f(m|I) 
Prior pdf 
 
 
 
 
Likelihood function 
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Bayesian Inversion 

Metropolis-Hasting sampling with community land model 
simulator as the forward model (Sun et al 2013) 
MCMC inversion using computationally-efficient 
surrogates (Ray et al 2014, presentation MS29 Apr 1 
2014, 9:30-9:55)  
Entropy-Bayesian inversion has the following features: 

Honor all the prior knowledge in the form of MRE prior pdfs 
Enables simultaneous ensemble sampling and therefore parallel 
computing 
Can estimate dependence structure (i.e., ) of residuals =d-G(m) 
(differences between observed and simulated responses such as 
heat fluxes and streamflow rate), and help reduce data 
redundancy 



Entropy-Bayesian Procedure 

1. Derive closed-form prior pdfs using MRE theory, given 
bounds and statistical moments information about 
unknown parameters to be calibrated 

2. Generate the first ensemble of parameter sets and 
simulate the land models in a task-parallel manner 

3. Calculate the residuals at each data points for each 
sample set and then the error covariance matrix and 
likelihood functions  

4. Generate a new ensemble of parameter sets from the 
current intermediate posterior pdfs 

5. Repeat steps 3 and 4 until convergence of posterior pdfs 
 



Posterior pdfs of hydrological parameters 
at US-ARM flux tower site 

Entropy-Bayesian procedure has been applied to the latent heat flux 
observation data for calibrating the major hydrological parameters 



Posterior pdfs of hydrological parameters 
at US-ARM flux tower site 

 



Posterior pdfs of hydrological parameters 
at a MOPEX basin (id 07147800) 

Entropy-Bayesian procedure has been applied to the runoff 
(streamflow) data for calibrating the major hydrological parameters 



Posterior pdfs of hydrological parameters 
at US-ARM flux tower site 



Summary 

Entropy (MRE) concept can be used to derive prior probability 
density functions that serves as the basis for further sensitivity 
analyses, parameter screening, uncertainty propagation, and 
surrogate development 
Integrated Entropy-Bayesian inversion enables ensemble 
sampling and task parallel computing, which helps reduce the 
computational time to achieve posterior estimates of unknown 
parameters 
Entropy-based UQ and Bayesian calibration have been applied 
to various flux tower sites and US MOPEX basins, for 
improving the Community Land Model (CLM) –  

significant improvement in the modeling accuracy can be achieved using 
the calibrated parameters than using the existing hard-coded values 


