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Multi-Scale Modeling Motivation
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After Ferreira and Lee, 2007, 
Multiscale Modeling: A Bayesian 
Perspective

Data collected at one level informs values at other levels

Multiscale random fields with averaging “link” between them

Infer statistical summaries of the fine-scale, conditional on the 
observations at two scales, and generate fine-scale realizations 
that could plausibly reproduce them



Two Scales
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Model domain 3x2km,  Coarse Scale: 30x20 cells, Continuous variables

Fine Scale:
Binary Media
3000x2000 cells
Measured travel times to 20 sensors

Injector in lower left
Producer in upper right

True binary fine-scale K field with 
example particle tracks

True F field True Coarse K field 20 Well Locations

True Fine K fieldF = proportion of high conductivity



Inversion
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ζ ~ N(0,Γ)

 

Γij = C(xi, x j ) = a exp(− | xi − x j |2 /b2)

 

F (x) =
1
2

1+ erf ζ (x)
2

 
 
 

 
 
 

 

 
 

 

 
 

 

tb
0 = M(Ke )

multiGaussian process – defines spatially varying proportion field 

Definition of Gaussian cdf provides 
transform between ζ and F

 

Ke = L(F (x),δ,K1,K2) Link function provides K at the coarse scale

Flow model operating on fine scale K provides travel times

 

di = {K(x)0,tb
1 } i =1,...,Ns

wζ F(x)  Ke  tb
M(K)

L(δ,K1,K2)
G-1

KL modes



Linking Function
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McKenna, et al., (in review), Truncated MultiGaussian Fields and 
Effective Conductance of Binary Media, Submitted: November, 2010

Binary mixtures are modeled using truncated Gaussian fields

New upscaling function uses proportions (tied 
to truncation threshold) and average estimated 
distances between inclusions to estimate 
upscaled effective permeability
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Link Function Results
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New function is TG-DBU 
(Truncated Gaussian –
Distance Based Upscaling)

Results compare well with 
DBU and another EMT-
based approach

Numerical results are the 
average of 30 realizations

For results shown today, 
model errors are assumed 
mean zero and i.i.d. 

Estimated K’s Percent Error

H53E-1073: The Effect of Error 
Models in the Multiscale
Inversion of Binary Permeability 
Fields



Bayesian Inference
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Parameterize the Gaussian process: ζ, 
using Karhunen-Loeve decomposition 
with 30 coefficients, w’s

Use MCMC with delayed rejection 
adaptive Metropolis (DRAM) sampling 
to estimate 10,000 realizations of the 30 
KL coefficients and the single FWHM 
parameter

 

P(ζ ,δ | d) ∝ P(d |ζ ,δ)π (δ)

 

P(ζ ,δ | d) ∝exp −
[ek(ζ ) − µk]T[ek(ζ ) − µk]
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Estimated Proportion (F) Fields
• MCMC runs met convergence diagnostics
• Results obtained with 1,500,000 iterations 

– Approximately 50 hours on workstation
– Results in 9500 realizations of proportion field

Comparison of posterior pdfs for seven points on proportion field



Posterior Evaluation
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F field Z field MG field Binary field

Z = (-1.0)*G-1(f;0,1) If (MG - Z > 0.0), Binary = 1, else 0

Gaussian Field, FWHM = 11.774
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Inferred coarse-scale F fields and FWHM values provide 
information necessary to create fine-scale binary fields
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Coarse scale estimation provides 
the proportion of high permeability 
material within each coarse cell

Convolution of fine-scale uncorrelated 
field with estimated kernel produces 
smoothly varying field that is truncated 
to a binary field by Z-field



Performance Measures
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Coarse Scale Fine Scale
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Cell by cell 
estimation of 
true F and 
true K
Field by field 
estimation of 
true F and K 

Cell by cell 
estimation of 
true F and 
true K
Field by field 
estimation of 
true F and K 

Cell by cell estimation of 
median travel time and 
over/under estimation
Field by field estimation 
of median travel time 
and travel time 
distribution
Cell by cell estimation of 
median travel time and 
over/under estimation
Field by field estimation 
of median travel time 
and travel time 
distribution

Cell by Cell = Map

Field by Field= CDF

Coarse Data Only = 20 coarse K measurements

Coarse and Fine Data = 20 coarse K measurements and 20 fine-scale travel times



Coarse Field Estimation
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Proportion Errors Log10 (K) Errors

Coarse scale performance across 100 realizations evaluated at every cell
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Coarse Scale Evaluation
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Proportion AAE per field Log10(K) AAE per field

Coarse scale performance across 100 realizations evaluated for every field



Median Travel Time Estimation
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Coarse Data Only
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Coarse & Fine Data



Switching Flow Direction
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Distributions of the spatial average of the AAE of the median times 
(one value per realization)

Adding fine-scale data maintains small travel 
time error even for scenario of flipped source 
and sink locations

Original Configuration

Flipped Configuration



Accuracy and Precision at Sensors
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Coarse Data Only
Coarse and Fine Data

Original Pumping Configuration “Flipped” Pumping Configuration

Circle Radius = 95% Empirical CI in units of normalized time (pore volumes injected)

All distributions are accurate for the original case
All distributions using Coarse are accurate for the “flipped” case

16 of 20 are accurate when Coarse and Fine data are used
For almost all locations in both cases, adding fine-scale data decreases the CI width



Another Look

16Coarse Data Only
Coarse and Fine Data

Original Pumping Configuration

“Flipped” Pumping Configuration

What causes decrease in variability when 
fine-scale data are added?

Representation of coarse field with 30 KL 
coefficients is excessive – only the first 
10-15 KL coefficients have posterior 
distributions that differ from priors.  
Coarse data don’t impact fine-scale 
variability

Adding fine-scale data changes things –
all 30 posteriors are significantly different 
than priors

Inversion with either data set is robust to 
changes in the locations of the source and 
sink



Summary
• Demonstrated approach to multi-scale stochastic 

inversion
– Computationally feasible by constraining Bayesian 

estimation to coarse scale and limiting estimated 
parameters with KL decomposition

– Link function designed to work on binary media and 
incorporate inclusion size directly

– Posterior distributions are accurate (all) and precise 
(Coarse & Fine data)

– Estimations are robust w.r.t. to change in flow
• Future Work:

– Incorporate increased resolution of link function error
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