Characterization of Communicable Disease Epidemics using Bayesian Inference

Cosmin Safta1, Jaideep Ray1, Karen Cheng2 and David Crary2

1Sandia National Laboratories, Livermore CA, \\
2Applied Research Associates, Inc, Arlington, VA

Presented at the 9th Annual Meeting of the International Society for Disease Surveillance \\
Park City, UT, December 1 & 2, 2010

Ms. Karen Cheng at ARA, is the Principal Investigator.
Contact Info: kcheng@ara.com and csafta@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Outline

- Motivation
- Communicable disease example
- Problem Formulation - Numerical Approach
- Results
 - Parameter Estimation
 - Epidemic Progression
 - Speed-up of the Parameter Inference – Surrogate Models
- Conclusions and Acknowledgement
Motivation & Approach

• Disease models are used in planning, resource allocation etc.
 – They contain parameters which have to be supplied
 – Generally biosurveillance data is used to detect, not characterize outbreaks (some exceptions – Held et al, *Stats. Modelling*, 2005)

• To develop statistical techniques that can characterize an epidemic from biosurveillance data
 – Characterization of the epidemic– estimate number of index cases, (time-dependent) spread rate, etc
 • NOT trying to characterize the pathogen – no genetic, immune-system response, etc.
 – Use biosurveillance data and real-time estimation
 • Estimates will be highly uncertain, so need to quantify uncertainty

• Questions
 – How small an epidemic can we detect and characterize?
 – What can we characterize with useful uncertainty bounds?
A Communicable Disease Example

• A simulated plague epidemic
 – Performed with an agent-based model for disease spread; includes visit-delay
 • Disease parameters from Gani & Leach, *EID*, 2004
 • Insert into ICD-9 stream for ILI from Miami
 • 100/1000 index cases; epidemic dies out in 40 days

• Extract epidemic, per Ray et al, *CBD Conf*, Orlando, 2010

• Aim:
 – Estimate the total size of the epidemic
 – Also, the infection rate and visit delay curves
 – Compare with the “true” figures from the simulation
Extraction of the Epidemic

100 Index Cases

1000 Index Cases

- No. of days since start of epidemic
- No. of people reporting

- Reported data
- KF prediction
Formulation of the Problem

• **Data** – the extracted epidemic: time-series of counts of people seeking care, on a daily basis

• **Model** - A *convolution* of a time-dependent infection rate (1 free parameter), incubation period (known), and *visit delay* (1 free parameter)

 – Also includes total size of the epidemic, time of infection of the index cases and fraction of index cases as free parameters (Brookmeyer’s 1988)

 – 5 free parameters in all

• **Fitting**

 – Estimate the PDFs of the 5 parameters using an adaptive Markov Chain Monte Carlo (MCMC) approach

 – Takes about 1-3 hrs depending upon the length of the time-series
Estimation of the No. of Index Cases

- The true values are 100 and 1000, respectively

- The estimate improves with time (and data!) for larger outbreaks

- Estimates performed with data starting from
 - Start of epidemic + 4 (s+4)
 - Start of epidemic + 6 (s+6)

- Easier for large outbreaks
Estimation of the Start of the Epidemic and its Total Size

Epidemic starts 4 and 6 days, respectively, before data collection.

Total size true value is approx. 11000.

[Graphs showing data analysis]
Estimation of the Parameters in Infection Rate and Visit Delay Models

- Both modeled as a Γ-functions
 - rate parameters are inferred; shape parameters are set
Joint Probability Distributions of the Inferred Parameters

5 Days of Data

15 Days of Data
Estimation of the Epidemic’s Progression

- Best estimate – based on maximum a-posteriori (MAP) distribution
- Developed using 15 days of data, starting 4 and 6 days, respectively, after first 1000 people got infected
Speed up the Inference – Surrogate Models

\[v_{\text{ind}} \left((t_i, t_{i+1}] \right) = N_{\text{tot}} (1 - \alpha) \int_{\tau}^{t_{i+1}} f_{\text{inc}} (s - \tau) \left[F_{\text{vd}} (t_{i+1} - s; r_{vd}) - F_{\text{vd}} (t_i - s; r_{vd}) \right] ds \]

\[v_{\text{sec}} \left((t_i, t_{i+1}] \right) = N_{\text{tot}} \alpha \int_{w=\tau}^{t_{i+1}} \int_{u=\tau}^{t_{i+1}} q_{\text{inf}} (u - \tau; r_{ir}) f_{\text{inc}} (w - u) \left[F_{\text{vd}} (t_{i+1} - w; r_{vd}) - F_{\text{vd}} (t_i - w; r_{vd}) \right] du dw \]

\[v_{\text{tot}} = v_{\text{ind}} + v_{\text{sec}} \]

- Double integral is very costly during the MCMC sampling
- Create a surrogate for the epidemic model and compute it offline
 - Use Polynomial Chaos representations (Ghanem & Spanos, 1991): accurate with respect to the pdf’s of interest and fast to evaluate.

\[v_{\text{tot}} (t) = \sum_{k=1}^{P} a_k \Psi_k^{(6)} (N_{\text{tot}}, \alpha, \tau, r_{vd}, r_{ir}, t) \rightarrow v_{\text{tot}} (t - \tau) = N_{\text{tot}} \sum_{k=1}^{P} (b_k + c_k \alpha) \Psi_k^{(3)} (r_{vd}, r_{ir}, t) \]
Surrogate Models – cont’d

Visit delay rate = 0.2
• Red mesh ➜ direct model
• Blue mesh ➜ surrogate model

Visit delay rate = 1.0
Conclusions

• Early in the development of techniques to characterize epidemics
 – Working off biosurveillance data
 – Provides information on the particular/ongoing outbreak
 – Second half of a detect-and-characterize algorithm; model selection algorithm is also in place

• Parameter estimation capability ideal for providing the input parameters into an agent-based model
 – Index cases, spread/infection rate, total epidemic size, etc
 – Since it’s real-time, can be used to check if medical interventions are effective

• To do
 – Tests with different kinds of background models
 – Tests with outbreaks of different sizes and spread/infection rates
 – Identification of a “proper” set of ICD-9 codes for monitoring biosurveillance data streams
Acknowledgements

The work was funded by DTRA under contract HDTRA1-09-C-0034

Dr. Nancy Nurthen is the DTRA PM.

Ms. K. Cheng at Applied Research Associates, Inc, is the PI