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Abstract

We present a general technique to solve Partial Differential Equations, called robust stencils,
which make them tolerant to soft faults, i.e. bit flips arising in memory or CPU calculations. We
show how it can be applied to a two-dimensional Lax-Wendroff solver. The resulting 2D robust
stencils are derived using an orthogonal application of their 1D counterparts. Combinations
of 3 to 5 base stencils can then be created. We describe how these are then implemented
in a parallel advection solver. Various robust stencil combinations are explored, representing
tradeoff between performance and robustness. The results indicate that the 3-stencil robust
combinations are slightly faster on large parallel workloads than Triple Modular Redundancy
(TMR). They also have one third of the memory footprint. We expect the improvement to be
significant if suitable optimizations are performed. Because faults are avoided each time new
points are computed, the proposed stencils are also comparably robust to faults as TMR for a
large range of error rates. The technique can be generalized to 3D (or higher dimensions) with
similar benefits.

Keywords: exascale computing, fault-tolerance, partial differential equations, robust stencils, advection

equation, parallel computing, resilient computing

1 Introduction

There is an increasing need for the ability to be resilient to faults for various scenarios of
computations [10, 3]. Two kind of faults may occur: hard faults, arising from the transient
or permanent failure of a software or hardware resource, and soft or silent faults, where the
computation continues but errors are introduced into data. The detection and recovery for
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either generally requires different approaches, with soft faults being generally regarded as being
more difficult [5].

In most situations, soft faults can lead to erroneous results; in some cases, this may not
be obvious. Soft faults normally manifest as a (random) bit flip in a data item: depending
on the importance of the item, and the significance of the bit, the fault maybe anything from
unnoticeable, insignificant, significant but not obvious, obvious or catastrophic. These can arise
either when the item is stored at some location in the memory hierarchy, while the item is on
a datapath, or while a new version of the item is being created in the CPU.

Soft errors are of concern when the probability of error reaches a point where the overall
chances of completing the computation correctly becomes uncertain. Various factors affect
this: the length of the computation, the size of the system (exascale computing), and error
rates in each component. The latter can be exacerbated by adverse operating conditions,
such as adverse operating environments, low-quality components, low power. The last two are
potentially important in the context of exascale computing, as low cost components can keep
the purchase cost down, and minimizing operational power of components lowers the running
costs.

Checkpointing can be used to mitigate soft faults, but this normally requires duplication
for detection, and triplication for recovery. It also requires a resilient store which, particularly
if distributed, is difficult to implement and expensive to access [4].

Algorithm-based fault tolerance (ABFT) can also be employed to mitigate soft faults. The
baseline is Triple Modular Redundancy (TMR) [6], which involves evolving three versions of the
computation (and data), with periodic comparison of the corresponding data items. A voting
scheme is normally used to determine the correct value, which must be replicated. The normal
overhead, compared to the original computation, is at least a factor of three, both in time and
space. However, the method is relatively simple and general, and is extremely robust: provided
the error does not occur in the voting phase itself, a corruption is required on at least two of
the three versions of the same data item.

However, application-specific versions of ABFT have the potential to provide the same
benefit for lower cost to TMR. Specifically, this is because the level of redundancy can be less
than 3. For example, in fault-tolerant versions of the Sparse Grid Combination Technique, the
redundancy can be as little as 20% [2]. In this case, some (small) loss of accuracy must be
tolerated.

In this paper, we extend the concept of robust stencils, introduced in [9], a form of ABFT
which is exact, but has the potential of reduced overheads to TMR. It can be applied in principle
to any explicit solution of a Partial Differential Equation (PDE). It can be implemented with
neglible memory overhead. While its computational overhead must be at least 3 in terms of
overall FLOPS, as most PDE solvers are memory-bound, its overhead in terms of memory
accesses can be reduced to a factor of 5/3, in the case of simple stencils. One such stencil arises
from the 2D advection equation via the Lax-Wendroff method [8], which is the object of study
in this paper.

To the best of our knowledge, no other work addresses the issue of making 2D (or higher)
PDE solvers tolerant to soft faults, in either a similar, or in a different and superior (in all
aspects), fashion.

This paper is organized as follows. Section 2 gives the derivation of the 2D robust stencils
from their 1D counterparts. A description of how the 2D stencils were implemented is given
in Section 3. The performance of the stencils, compared with the baseline (TMR), is given in
Section 4. This section details the error and speed in the fault-free case, and the robustness in
the fault-injected case. Conclusions and future work are summarized in Section 5.
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2 Derivation of stencils

The one dimensional Lax-Wendroff stencil [8] for solving the advection equation ∂u
∂t + a∂u∂x = 0

for fixed a ∈ R and u(x, t) : Ω ⊂ R × [0,∞) → R with appropriate initial and boundary
conditions is

u(x, t+ ∆t) ≈ u(x, t) +
a∆t

2∆x
(u(x−∆x, t)− u(x+ ∆x, t))

+
a2∆t2

2∆x2
(u(x−∆x, t)− 2u(x, t) + u(x+ ∆x, t)) .

It is well known this scheme is 2nd order consistent and stable for a∆t
∆x ≤ 1. In a finite difference

implementation with uni := u(i∆x, n∆t) and U := a∆t
∆x we may write this as

un+1
i ≈ uni +

U

2
(uni−1 − uni+1) +

U2

2
(uni−1 − 2uni + uni+1) .

We define the shift operator Sk for which Sku(x, t) = u(x+ k∆x, t), and thus Sku
n
i = uni+k.

With this we define the ‘normal’ Law-Wendroff stencil operator by

SN := S0 +
U

2
(S−1 − S1) +

U2

2
(S−1 − 2S0 + S1)

=

(
U

2
+
U2

2

)
S−1 + (1− U2)S0 +

(
−U

2
+
U2

2

)
S1 ,

and thus we may write un+1
i ≈ SNuni . A second stencil may be formed by simply replacing ∆x

with 2∆x. We refer to this as the ‘wide’ stencil, in particular we define

SW := S0 +
U

4
(S−2 − S2) +

U2

8
(S−2 − 2S0 + S2)

=

(
U

4
+
U2

8

)
S−2 +

(
1− U2

4

)
S0 +

(
−U

4
+
U2

8

)
S2 .

As this is effectively the Lax-Wendroff stencil on a coarser grid the consistency and stability
follows immediately. We define a third stencil we refer to as the ‘far’ stencil which is generated
by the operator

SF :=
−S−3 + 9S−1 + 9S1 − S3

16
+
U

6
(S−3 − S3) +

U2

16
(S−3 − S−1 − S1 + S1)

=

(
U

6
+
U2 − 1

16

)
S−3 +

9− U2

16
S−1 +

9− U2

16
S1 +

(
−U

6
+
U2 − 1

16

)
S3 .

The second order consistency of this stencil is easily shown via a Taylor series expansion (with
appropriate smoothness of u). Further, one may show the SF stencil is stable for a∆t ≤ 3∆x
with a standard von Neumann stability analysis. We leave the proofs of stability of the stencils
for future publication 1.

The fundamental idea of robust stencils is to compute many of these different stencils, each
using a different subset of neighbouring function values, so that given an isolated point whose
value is affected by a silent fault then at least one of the three stencils will provide the correct

1Interested readers should contact author Mayo for the proofs.
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result. Of course the difficulty is in having a robust way of determining which is correct at
runtime.

For the one dimensional problem these three stencils are not sufficient as the first two share
the centre point. Note that this can be avoided by an outlier detection techniqe [9]. However
we may use these 3 stencils to derive several different stencils for the advection equation in
higher dimensions to develop robust algorithms.

Fix d ∈ N and consider d-dimensional advection equation ∂u
∂t + a · ∇u = 0, where ∇u =(

∂u
∂x1

, . . . , ∂u∂xd

)
, for fixed a ∈ Rd and u(x, t) : Ω ⊂ Rd × [0,∞) → R with appropriate initial

and boundary conditions. To solve the d-dimensional advection equation one may use tensor
products of the one dimensional stencils above. For example, given α ∈ {N,W,F}d then we
define the stencil

Sα :=

d⊗
k=1

Sαk
.

For brevity we will often write Sα = S(α1,...,αd) as just Sα1···αd
. For example, with d = 2 and

α = (N,N) then Sα = SN ⊗ SN which we denote with SNN . Further, with Ui = ai∆t
∆xi

, SNN
may be expanded as

SNN =

(
U1

2
+
U2

1

2

)((
U2

2
+
U2

2

2

)
S−1 ⊗ S−1 + (1− U2

2 )S−1 ⊗ S0 +

(
−U2

2
+
U2

2

2

)
S−1 ⊗ S1

)
+ (1− U2

1 )

((
U2

2
+
U2

2

2

)
S0 ⊗ S−1 + (1− U2

2 )S0 ⊗ S0 +

(
−U2

2
+
U2

2

2

)
S0 ⊗ S1

)
+

(
−U1

2
+
U2

1

2

)((
U2

2
+
U2

2

2

)
S1 ⊗ S−1 + (1− U2

2 )S1 ⊗ S0 +

(
−U2

2
+
U2

2

2

)
S1 ⊗ S1

)
,

which, with uni,j := u((i∆x1, j∆x2), j∆t), leads to the update formula

un+1
i,j =

(
U1

2
+
U2

1

2

)((
U2

2
+
U2

2

2

)
uni−1,j−1 + (1− U2

2 )uni−1,j +

(
−U2

2
+
U2

2

2

)
uni−1,j+1

)
+ (1− U2

1 )

((
U2

2
+
U2

2

2

)
uni,j−1 + (1− U2

2 )uni,j +

(
−U2

2
+
U2

2

2

)
uni,j+1

)
+

(
−U1

2
+
U2

1

2

)((
U2

2
+
U2

2

2

)
uni+1,j−1 + (1− U2

2 )uni+1,j +

(
−U2

2
+
U2

2

2

)
uni+1,j+1

)
.

Similarly the SWN stencil leads to the update formula

un+1
i,j =

(
U1

4
+
U2

1

8

)((
U2

2
+
U2

2

2

)
uni−2,j−1 + (1− U2

2 )uni−2,j +

(
−U2

2
+
U2

2

2

)
uni−2,j+1

)
+

(
1− U2

1

4

)((
U2

2
+
U2

2

2

)
uni,j−1 + (1− U2

2 )uni,j +

(
−U2

2
+
U2

2

2

)
uni,j+1

)
+

(
−U1

4
+
U2

1

8

)((
U2

2
+
U2

2

2

)
uni+2,j−1 + (1− U2

2 )uni+2,j +

(
−U2

2
+
U2

2

2

)
uni+2,j+1

)
.

The remaining 7 stencils in two dimensions, namely SFN , SNW , SWW , SFW , SNF , SWF and
SFF , are also similarly obtained. In higher dimensions the total number of stencils obtained
in this way is clearly 3d. Such stencils can be viewed as an application of operator splitting
techniques (see for example the relevant chapter in [7]). In this case the splitting approximation
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Figure 1: A depiction of the nodes used in each stencil with the centre being uni,j . From left to
right, top to bottom the stencils depicted are NN, WN, FN, NW, WW, FW, NF, WF and FF.

is exact because the differential operators ak
∂
∂xk

commute with each other. It is also immediate
that each of these stencils are second order consistent and stable when Uk ≤ 1 for all k = 1, . . . , d
(that is ∆t ≤ mink ak∆xk). For stencils with α ∈ {W,F}d this could be relaxed but we would
generally like to choose ∆t such that all of the stencils are stable.

A robust approach to finite difference computations in the presence of silent errors (e.g. bit
flips) involves computing several of the above stencils described above and taking the median.
The points used by each of the stencils when applied to uni,j are depicted in Figure 1. With
these it is easy to verify how many times each neighbour is used in each collection of stencils.
For example, suppose we compute 5 stencils for which no more than 2 use any one of the
neighbouring function values (including the centre of the stencil), then given a sufficiently large
error one of the remaining 3 will be selected as the median. As a result one can effectively avoid
any errors that affect isolated floating point numbers stored in memory. As an example, five
such stencils in two dimensions would be those derived from the SNN , SWW , SWF , SFW and
SFF stencils. An example using only three stencils is SWW , SWF and SFW , or alternatively
SFF , SWF and SFW . Here no one neighbour is in more than one stencil. Another example
using seven stencils is SNW , SNF SWN , SWW , SWF , SFN and SFW . Here no one neighbour
is used in more than 3 of the seven stencils. Figure 2 depicts some of the examples mentioned
here.

Whilst the derivation of robust stencils above applies to dimensions d ≥ 2 the discussion in
the remainder of the paper will be restricted to the d = 2 case.
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Figure 2: A depiction of some of the robust stencil combinations for 2 dimensional advection
selected from the nine stencils available. From left to right we have examples of robust stencil
combinations consisting of three, five and seven stencils respectively.
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Figure 3: Implementation of both TMR and Robust Stencils

3 Implementation

We have implemented the stencils, as expressed in the previous section, coding them in a
straightforward way in C++. Due to time constraints, we have not optimized these codes.
It should be noted that, due to their complexity, robust stencils have a greater potential for
optimization than simple stencils (such as NN).

For example, with stencil combinations, each element gets reloaded for each stencil. This can
be avoided if we load the currently being processed elements into a 5× 3 local array (or better
still, block of registers): each stencil can access those elements without any extra movement
further down the memory hierarchy. This will mean that the amount of memory accesses of
any combination would be the same as a single (NN) stencil. As (single) stencil computations
are memory-bound, the overhead of robust stencils can now be made very low.

Figure 3 demonstrates our implementation of TMR and robust stencils for the 2D advection
solver.

Our implementation of TMR only uses the NN stencil, that provides the best accuracy, three
times. As depicted in Figure 3, at the beginning, the initial/updated field data is duplicated,
and, after computation, and the appropriate version of each element is stored in the first array.
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This is then copied to the other arrays.

For both TMR and robust stencils, we take the median when selecting multiple results, with
Inf and NaN values filtered beforehand. It should be noted that the result selection phase, in
either case, while critical for fault tolerance, affects performance very little.

Our 2D advection solver [1, 11] offers full MPI parallelization on a 2D logical process grid,
i.e. a p× q grid where p, q > 0. TMR is given the same process grid as the robust stencils: this
means that each process will have three local arrays, and processes them serially. This means
that the same compute resources are given to both, and TMR requires three times the memory
at each resource.

The alternate possibility is to give TMR a 3 × p × q grid, where three times the compute
resources is given to TMR but the memory requirement per compute resources remains constant.
While desirable for hard faults, this is undesirable for soft faults as the voting stage becomes
highly communication intensive.

Under the selected scheme for TMR, the communication volume for the two methods is
equivalent. Robust stencils for 2D advection requires a halo of width 3, and TMR requires the
exchange of three halos of width 1. In our current implementation, the halos are sent separately,
so TMR creates three times the number of messages. While this could be optimized, we do not
expect this to have a significant impact on performance for the (large) problem sizes of interest.
For such problems, we have found that our advection solver (1) is primarily memory bound
and secondly communication volume bound, and (2) scales at least to 2000 MPI processes [11].
We also use MPI Isend and Irecv to send messages, which minimizes the impact of the extra
message startup times. Thus, we do not expect our implementation of TMR and robust stencils
to have significant differences with respect to scalability.

In order to simulate memory corruption, we created a fault generator thread per each MPI
process, which runs independently from the main computation thread. The thread flips a bit
in the advection solver data area according to a given error probability at a fixed rate. This
probability is proportional to the size of the area, so TMR has approximately three times the
probability. This is basically the scheme used in [9].

4 Results

All experiments were conducted on the Raijin cluster managed by the National Computational
Infrastructure (NCI) with the support of the Australian Government. Raijin has a total of
57,472 cores distributed across 3,592 compute nodes each consisting of dual 8-core Intel Xeon
(Sandy Bridge 2.6 GHz) processors (i.e. 16 cores) with Infiniband FDR interconnect, an total of
≈ 160 terabytes of main memory, with an x86 64 GNU/Linux OS. g++ -O3 is used to compute
all results.

Figure 4 gives the elapsed time of all robust stencil combinations and TMR. ‘NN’ means
SNN etc (see Section 2). The other codes are as follows:

code combination code combination
C30 WF, FW, FF C50 NN, WW, WF, FW, FF
C31 WW, WF, FW
C32 NN, NW, NF TMR NN ×3

An (i, j) grid means the advection field size is 2i × 2j .

We see that each single stencil has similar performance, indicating that the computation
is memory bound. We see that C30 and C31 slightly out-performs TMR, especially for when
SSE2 is used, although SSE2 gives little or no benefit in any case. The extra cost of the 5
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Figure 4: Elapsed time of each stencil, robust stencil combination, TMR (a (14, 14) grid and
512 steps, 16 MPI processes on 16 core Xeon processor).

stencil combination results in it being slower than TMR. Results with a smaller (12, 12) grid
were qualitatively similar, except SSE2 results were closer to the others.

Note that the results are with unoptimized codes.
The error in the final field is shown in Figure 5. An exact analytical solution is computed

to determine the accuracy of our solver, with an L1-norm being employed. Again, results on
the smaller (12, 12) grid are qualitatively similar.

Figure 6 indicates the tolerance for each combination. The figure is best read looking right
across a particular level of error in the solution. As expected, looking at where the injected error
rate causes the computation to break down (Inf), the combinations become more robust the
more stencils are added. Of the 3-stencil combinations, C31 tends to be slightly more robust.
This is evident by looking along the 10−7 and 10−6 lines in the figure.

5 Conclusions

For 2D PDE solvers, robust stencils may be derived from various combinations of widened base
stencils. These combinations permit the avoidance of any single corrupted point; hence the
techniques can make the solver robust to soft faults. 3–5 stencil combinations are comparable
to TMR in terms of robustness.

Robust stencils have one third of the memory footprint of TMR. In our current naive
implementation, some 3-stencil combinations are slightly faster than TMR. We expect that,
however, with suitable optimization, this difference will become dramatic.

Future work includes exploring optimizing the robust stencils, and exploring higher dimen-
sions. For 3D, we would expect a set of 3 stencils (e.g. WWF, WFW and FWW; or NWF,
WFN, FNW) would suffice. As only the F stencil involves extra points, we would only ex-
pect a 4:3 increase in terms of floating point operations over TMR. We also envisage GPU
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(higher is better).
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implementations and generalizations to other PDEs.
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