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Motivation 

• Full deglaciation: sea level could rise up to ~65 meters* 
• Potential contributions to sea level rise by ice sheet:  

• Greenland ice sheet: ~7 meters 
• East Antarctic ice sheet: ~53 meters 
• West Antarctic ice sheet: ~5 meters 

Sea-level rise has received a lot of media attention in recent years! 

*Estimates given by Prof. Richard Alley 
of Penn State who testified in 1999 
about climate change to Al Gore. 



Motivation 

Sea-level rise has received a lot of media attention in recent years! 

• 2012 Award Winning Film “Chasing Ice”: National Geographic photographer 
James Balog deploys time-lapse cameras to capture a multi-year record of the 
world's changing glaciers. 



Motivation 

? 

Sea-level rise has received a lot of media attention in recent years! 

• 2015 Headlines: “Former Top NASA Scientist 
Predicts Catastrophic Rise in Sea Levels”, 
“Earth’s Most Famous Climate Scientist 
Issues Bombshell Sea Level Warning”, 
“Climate Seer James Hansen Issues His 
Direst Forecast Yet” 



Motivation 

Mass loss from the Greenland & Antarctic ice sheets is accelerating!   



Earth System Models (ESMs) 

Ice sheets are part of a global climate system.   

Mass balance: change in ice sheet mass     =    mass in   –   mass out 
                                            sea level change                snow fall    melt,calving 



Earth System Models: CESM, DOE-ESM 

• An ESM has six modular components: 
 

1. Atmosphere model 
2. Ocean model 
3. Sea ice model 
4. Land ice model 
5. Land model 
6. Flux coupler 

 

Flux Coupler 

Sea Ice 

Ocean Atmosphere 

Land Surface  
(ice sheet surface 

mass balance) 

Ice Sheet 
(dynamics) 

Goal of ESM: to provide actionable scientific predictions of 
21st century sea-level rise (including uncertainty). 

Climate Model passes: 
 

• Surface mass balance (SMB) 
• Boundary temperatures 
• Sub-shelf melting 

Land Ice Model passes: 
 

• Elevation 
• Revised land ice distribution 
• Oceanic heat and moisture fluxes (icebergs) 
• Revised sub-shelf geometry 
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Goal of ESM: to provide actionable scientific predictions of 
21st century sea-level rise (including uncertainty). 

2012: No 
robust land ice 

model!  

Climate Model passes: 
 

• Surface mass balance (SMB) 
• Boundary temperatures 
• Sub-shelf melting 

Land Ice Model passes: 
 

• Elevation 
• Revised land ice distribution 
• Oceanic heat and moisture fluxes (icebergs) 
• Revised sub-shelf geometry 
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The PISCEES Project 

• In its fourth assessment report (AR4)* in 2007, the Intergovernmental Panel on Climate 
Change (IPCC) declined to include estimates of future sea-level rise from ice sheet 
dynamics due to the inability of ice sheet models to mimic or explain observed dynamic 
behaviors, e.g., the acceleration and thinning then occurring on several of Greenland’s 
large outlet glaciers. 

* Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H. “Climate change 2007: The physical 
science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change”, 
Cambridge Univ. Press, Cambridge, UK, 2007. 
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The PISCEES Project 

• In its fourth assessment report (AR4)* in 2007, the Intergovernmental Panel on Climate 
Change (IPCC) declined to include estimates of future sea-level rise from ice sheet 
dynamics due to the inability of ice sheet models to mimic or explain observed dynamic 
behaviors, e.g., the acceleration and thinning then occurring on several of Greenland’s 
large outlet glaciers. 

 

• Although ice sheet models have improved in recent years, much work is needed to 
make these models robust and efficient on continental scales and to quantify 
uncertainties in their projected outputs. 

PISCEES (Predicting Ice Sheet Climate & Evolution at Extreme Scales) aims to: 
 

1. Develop/apply robust, accurate, scalable dynamical cores (dycores) for ice sheet 
modeling on structured and unstructured meshes. 

2. Evaluate models using new tools and data sets for verification/validation and 
uncertainty quantification. 

3. Integrate models/tools into DOE-supported Earth System Models. 

* Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H. “Climate change 2007: The physical 
science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change”, 
Cambridge Univ. Press, Cambridge, UK, 2007. 



The PISCEES Project (cont’d) 
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Stokes Ice Flow Equations 

Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) and 
is modeled using nonlinear incompressible Stokes’ equations. 

• Nonlinear incompressible Stokes’ ice flow equations (momentum balance): 
 

 
−𝛻 ∙ 𝝈 = 𝜌𝒈
−𝛻 ∙ 𝑢 = 0

    ,    in Ω 

 

with 
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→“nasty” saddle point problem 



The First-Order Stokes Model 
 

•  In our model, ice sheet dynamics are given by “First-Order” Stokes PDEs: “nice” elliptic 
approximation* to Stokes’ flow equations. 

 
−𝛻 ∙ (2𝜇𝝐 1) = −𝜌𝑔

𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇𝝐 2) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

    ,    in Ω 

Albany/FELIX 

• Relevant boundary conditions:  
 
 

• Stress-free BC:     2𝜇𝝐 𝑖 ∙ 𝒏 = 0, on Γ𝑠 
 

• Floating ice BC:  

             2𝜇𝝐 𝑖 ∙ 𝒏 =  
𝜌𝑔𝑧𝒏, if 𝑧 > 0 

0,       if 𝑧 ≤ 0
, on Γ𝑙 

• Basal sliding BC:  2𝜇𝝐 𝑖 ∙ 𝒏 + 𝛽𝑢𝑖 = 0, on Γ𝛽 

 

Basal boundary  Γ𝛽 
) 

Lateral boundary Γ𝑙 

Ice sheet 

 

•  Viscosity 𝜇 is nonlinear function given by “Glen’s law”:  

𝜇 =
1

2
𝐴(𝑇)−

1
𝑛

1

2
 𝝐 𝑖𝑗
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𝛽 = sliding coefficient ≥ 0 

𝝐 1
𝑇 = 2𝜖 11+ 𝜖 22, 𝜖 12, 𝜖 13  

𝝐 2
𝑇 = 2𝜖 12, 𝜖 11+ 2𝜖 22, 𝜖 23  

𝜖 ij =
1

2

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
 

Surface boundary Γ𝑠 

*Assumption: aspect ratio 𝛿 is small and normals to upper/lower surfaces are almost vertical. 
 

(𝑛 = 3) 



Importance of Boundary Conditions! 

Boundary conditions have tremendous effect on ice sheet dynamics! 
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• 𝛽 = 𝛽 𝑥, 𝑦 = measure of friction 
• Large 𝛽 ⇒ a lot of friction ⇒ no-slip: 𝑢𝑖 =  0 ⇒ frozen ice (does not move). 
• Small 𝛽 ⇒ not much friction ⇒ ice moves a lot!  

• Cannot be measured directly, and must be estimated from data (e.g., by solving an 
inverse problem).  
 

 



Importance of Boundary Conditions! 

Boundary conditions have tremendous effect on ice sheet dynamics! 

• Basal sliding BC:  2𝜇𝝐 𝑖 ∙ 𝒏 + 𝛽𝑢𝑖 = 0, on Γ𝛽 
 

• 𝛽 = 𝛽 𝑥, 𝑦 = measure of friction 
• Large 𝛽 ⇒ a lot of friction ⇒ no-slip: 𝑢𝑖 =  0 ⇒ frozen ice (does not move). 
• Small 𝛽 ⇒ not much friction ⇒ ice moves a lot!  

• Cannot be measured directly, and must be estimated from data (e.g., by solving an 
inverse problem).  
 

• Floating ice BC:  

             2𝜇𝝐 𝑖 ∙ 𝒏 =  
𝜌𝑔𝑧𝒏, if 𝑧 > 0 

0,       if 𝑧 ≤ 0
, on Γ𝑙 

 

• Floating ice = “ice shelves” ⇒ Antarctica 
• Ice shelves buttress interior ice ⇒ can cause a lot                                                                   

of sea-level rise (SLR) in short period.  
 

IPCC WG1 (2013): “Based on current understanding, only 
the collapse of marine-based sectors of the Antarctic ice 
sheet, if initiated, could cause [SLR by 2100] substantially 

above the likely range [of ~0.5-1 m].” 



Thickness & Temperature Equations 

• Model for evolution of the boundaries (thickness 
evolution equation): 

 

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ 𝒖 𝐻 + 𝑏  

 

      where 𝒖  = vertically averaged velocity, 𝑏  = surface mass  
       balance (conservation of mass). 
 
• Temperature equation (advection-diffusion): 
 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2𝝐 𝝈 

 

     (energy balance).  
 
• Flow factor 𝐴 in Glen’s law depends on temperature 𝑇: 

𝐴 = 𝐴(𝑇). 
 

• Ice sheet grows/retreats depending on thickness 𝐻. 
 
 

time 𝑡0 

Ice-covered (“active”) 
cells shaded in white 

(𝐻 > 𝐻𝑚𝑖𝑛) 
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 Objectives: to create a solver that  
 

• Is scalable, fast, robust. 
 

• Becomes a dynamical core (dycore) when coupled to codes that solve thickness and 
temperature evolution equations for integration in ESMs. 

 

• Possesses advanced analysis capabilities (adjoint-based deterministic inversion, Bayesian 
calibration, UQ, sensitivity analysis).  

 

• Is portable to new/emerging architecture machines (multi-core, many-core, GPUs).  

Sandia’s Role in the PISCEES Project: to develop and support a robust and 
scalable land ice solver based on the “First-Order” (FO) Stokes approximation 

Our algorithmic choices aligned with our objectives! 

Algorithms: 
 

• Component-based code-development approach. 
 

• Finite element method discretization. 
 

• Newton nonlinear solver with automatic differentiation Jacobians. 
 

• Preconditioned iterative methods for linear solves. 



Components-Based Code 
Development Approach 

Data Structures 

Direct Solvers 

Linear Algebra 

Preconditioners 

Iterative Solvers 

Eigen Solver 

Multi-Level Methods 

Nonlinear Solver 

Time Integration 

UQ Solver 

Continuation 

Optimization 

Sensitivity Analysis 

Stability Analysis 

Analysis Tools 
   (embedded) 

Mesh Tools 

Mesh I/O 

Adaptivity 

Partitioning 

Load Balancing 

Inline Meshing 

DOF map 

Mesh Database 

Field Manager 

Discretization Library 

Discretizations 

Sensitivities 

Derivative Tools 

Adjoints 

UQ / PCE 
Propagation 

Derivatives 

I/O Management 

Input File Parser 

Utilities 

Parameter List 

Memory Management 

Communicators 
Verification 

Visualization 

PostProcessing 

Model Reduction 

UQ (sampling) 

Parameter Studies 

Optimization 

Bayesian Calibration 

Reliability 

Analysis Tools 
   (black-box) 

*40+ packages; 120+ libraries; www.trilinos.org. 

New land-ice solver developed using Trilinos* libraries for everything but PDE description. 

http://www.trilinos.org/


Land Ice Physics Set 
(Albany/FELIX code)  

Other Albany 
Physics Sets 

The Albany*/FELIX** First Order 
Stokes dycore is implemented in a 
Sandia (open-source) parallel C++ 

finite element code called… 

• Discretizations/meshes 
• Solver libraries  
• Preconditioners 
• Automatic differentiation 
• Many others! 

• Parameter estimation 
• Uncertainty quantification 
• Optimization 
• Bayesian inference 

• Configure/build/test/documentation 

Albany/FELIX First-Order Stokes 
Solver 

Started 

by A. 

Salinger 

“Agile Components” 

*Open-source code available on github: https://github.com/gahansen/Albany. 
** “FELIX” = Finite Elements for Land-Ice eXperiments. 
 

https://github.com/gahansen/Albany
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• Parameter estimation 
• Uncertainty quantification 
• Optimization 
• Bayesian inference 

• Configure/build/test/documentation 

Albany/FELIX First-Order Stokes 
Solver 

Use of Trilinos components has enabled the rapid development of the 
Albany/FELIX First Order Stokes dycore (~3 FTEs for all of work shown!). 

Started 

by A. 

Salinger 

“Agile Components” 

*Open-source code available on github: https://github.com/gahansen/Albany. 
** “FELIX” = Finite Elements for Land-Ice eXperiments. 
 

https://github.com/gahansen/Albany
https://github.com/gahansen/Albany
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Discretization: unstructured grid finite element method (FEM) 
 

• Can handle readily complex geometries. 
• Natural treatment of stress boundary conditions. 
• Enables regional refinement/unstructured meshes. 
• Wealth of software and algorithms. 
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Example: finite difference discretization of basal BC via central differences 
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Meshes and Data 

Meshes: can use any mesh but interested specifically in  
 

• Structured hexahedral meshes (compatible with CISM). 
• Tetrahedral meshes (compatible with MPAS LI)  

• Unstructured Delaunay triangle meshes with regional          
refinement based on gradient of surface velocity. 

• All meshes are extruded (structured) in vertical direction as 
tetrahedra or hexahedra. 
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Data: needs to be imported into code to run “real” 
problems (Greenland, Antarctica). 
 

• Surface data are available from measurements 
(satellite infrarometry, radar, altimetry): ice                                     
extent, surface topography, surface velocity,               
surface mass balance. 

• Interior ice data (ice thickness, basal friction) cannot be 
measured; estimated by solving an inverse problem. 

 



Nonlinear & Linear Solvers 

Nonlinear solver: full Newton with analytic (automatic differentiation) 
derivatives and homotopy continuation 
 

• Most robust and efficient for steady-state solves. 
• Jacobian available for preconditioners and matrix-vector products. 
• Analytic sensitivity analysis.  
• Analytic gradients for inversion.  

 

Linear solver: preconditioned iterative method 
 

• Solvers: Conjugate Gradient (CG) or GMRES 
• Preconditioners: ILU or algebraic multi-grid (AMG) 

 

Nonlinear Solve 
for 𝒇(𝒙)  =  0 

(Newton) 

Preconditioned  
Iterative Linear Solve  

(CG or GMRES): 
Solve 𝑱𝒙 = 𝒓 

Automatic 
Differentiation 

Jacobian: 

𝑱 =  
𝜕𝒇

𝜕𝒙
 



Automatic Differentiation 
(Sacado) 

Automatic Differentiation (AD) provides 
exact derivatives w/o time/effort of 

deriving and hand-coding them!  
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• Computations are composition of simple 

operations (+, *, sin (), etc.) 
• Derivatives computed line by line then 

combined via chain rule. 

Automatic Differentiation (AD) provides 
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Automatic Differentiation 
(Sacado) 

• How does AD work?  → freshman calculus! 
• Computations are composition of simple 

operations (+, *, sin (), etc.) 
• Derivatives computed line by line then 

combined via chain rule. 
• Derivatives are as accurate as analytic 

computation – no finite difference truncation 
error! 

• Great for multi-physics codes (e.g., many 
Jacobians) and advanced analysis (e.g., 
sensitivities) 

• There are many AD libraries (C++, Fortran, 
MATLAB, etc.) that can be used 
(https://en.wikipedia.org/wiki/Automatic_differen
tiation) → we use Trilinos package Sacado. 

Automatic Differentiation (AD) provides 
exact derivatives w/o time/effort of 

deriving and hand-coding them!  Automatic Differentiation Example: 

https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Automatic_differentiation


Robustness of Newton’s Method via 
Homotopy Continuation (LOCA) 
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Glen’s Law Viscosity:  
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Full step: 𝛼𝑘 = 1 
 

Backtracking: line-search for 𝛼𝑘 
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Iterative Linear Solvers & 
Preconditioning 

• In practice, large sparse linear systems 𝑨𝒙 = 𝒃 are solved using iterative methods. 
• GMRES (Generalized Minimal RESidual). 
• CG (Conjugate Gradient) – for symmetric positive definite 𝑨. 
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• GMRES (Generalized Minimal RESidual). 
• CG (Conjugate Gradient) – for symmetric positive definite 𝑨. 
 

• Convergence of iterative methods for solving 𝑨𝒙 = 𝒃 depends on condition number 

of 𝑨: 𝜅 𝑨 =
𝜎
𝑚𝑎𝑥

𝜎
𝑚𝑖𝑛

. 

• Large condition number ⟹ slow convergence. 
 

• Convergence of iterative method can be accelerated through preconditioning:  
• Find a matrix 𝑷 such that 𝑷𝑨 has better condition number than 𝑨 and solve 

𝑷𝑨𝒙 = 𝑷𝒃. 
• Perfect preconditioner: 𝑷 =  𝑨−1.  
 

• Common preconditioners:  
• Incomplete LU (ILU) factorization preconditioners: 𝑨 ≈ 𝑳 𝑼 ; 𝑳 , 𝑼  sparse 

𝑷−1 = (𝑳 𝑼 )−1. 
• Multigrid (MG) preconditioners: use solution to problem on coarse mesh to 

accelerate convergence on fine mesh → Geometric Multigrid (GMG), Algebraic 
Multigrid (AMG).  



Definitions: Strong vs. Weak 
Scaling 

• Strong scaling: how the solution time varies with 
the number of cores for a fixed total problem 
size. 
 Fix problem size, increase # cores. 
• Ideal: linear speed-up with increase in # 

cores (“hyperbolic strong scaling curve”). 
 

• Weak scaling: how the solution time varies with 
the number of cores for a fixed problem size per 
core. 
 Increase problem size and # cores s.t. # 

dofs/core is approximately constant. 
• Ideal: solution time remains constant as 

problem size and # cores increases. 

Scalability (a.k.a. Scaling Efficiency) = measure of the efficiency 
of a code when increasing numbers of parallel processing 

elements (CPUs, cores, processes, threads, etc.).  

Note: scalability usually declines above some threshold 
number of cores (Amdahl’s Law, Gustafson’s Law) 
→ some operations are serial, communication is not 
free, etc. 



Scalability via Algebraic Multi-Grid  
Preconditioning with Semi-Coarsening 

Bad aspect ratios (𝑑𝒙 ≫ 𝑑𝑧) ruin 
classical AMG convergence rates! 
• relatively small horizontal 

coupling terms, hard to 
smooth horizontal errors 

  Solvers (AMG and ILU) must 
take aspect ratios into account 

We developed a new AMG 
solver based on aggressive 

semi-coarsening (available in 
ML/MueLu packages of Trilinos) 

Algebraic 
Structured MG 

Unstructured 
AMG  

Algebraic 
Structured MG 

Scaling studies (next slides):  
New AMG preconditioner vs. ILU 

See (Tuminaro, 2014), (Tezaur et al., 
2015), (Tuminaro et al., 2015). 



Greenland Controlled Weak 
Scalability Study 

• Weak scaling study with fixed 
dataset, 4 mesh bisections. 

 

• ~70-80K dofs/core. 
 

• Conjugate Gradient (CG) 
iterative method for linear solves 
(faster convergence than 
GMRES). 

 

• New AMG preconditioner 
developed by R. Tuminaro based 
on semi-coarsening (coarsening 
in 𝑧-direction only).   

 

• Significant improvement in 
scalability with new AMG 
preconditioner over ILU 
preconditioner!  

4 cores 
334K dofs 

8 km Greenland,  
5 vertical layers 

16,384 cores 
1.12B dofs(!) 

0.5 km Greenland,  
80 vertical layers 

× 84  
scale up 
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(faster convergence than 
GMRES). 

 

• New AMG preconditioner 
developed by R. Tuminaro based 
on semi-coarsening (coarsening 
in 𝑧-direction only).   

 

• Significant improvement in 
scalability with new AMG 
preconditioner over ILU 
preconditioner!  

4 cores 
334K dofs 

8 km Greenland,  
5 vertical layers 

16,384 cores 
1.12B dofs(!) 

0.5 km Greenland,  
80 vertical layers 

× 84  
scale up 

New AMG preconditioner 
preconditioner 

ILU preconditioner 



Albany/FELIX Glimmer/CISM 

Fine-Resolution Greenland Strong  
Scaling Study 

• Strong scaling on 1km Greenland with 40 vertical layers (143M dofs, hex elements). 
 

• Initialized with realistic basal friction (from deterministic inversion) and 
temperature fields → interpolated from coarser to fine mesh. 

 

• Iterative linear solver: CG. 
 

• Preconditioner: ILU vs. new AMG (based on aggressive semi-coarsening). 

ILU solver scales better than AMG but ILU solve is slightly slower: AMG solver becomes 
inefficient when # unknowns/core small (expensive setup; a lot of communications). 

ILU AMG 

1024 
cores  

16,384 
cores  # cores 

 

1024 
cores  

16,384 
cores  # cores 

 



Basal boundary  Γ𝛽 
) 

Lateral boundary 
Γ𝑙 

Ice sheet 

Surface boundary Γ𝑠 Albany/FELIX Glimmer/CISM 

Moderate Resolution Antarctica  
Weak Scaling Study 

(vertical > horizontal coupling)  
+  

Neumann BCs  
=  

nearly singular submatrix associated with vertical lines 

Antarctica is fundamentally different than Greenland:  
AIS contains large ice shelves (floating extensions of land ice).  

• Along ice shelf front: open-ocean BC (Neumann). 
• Along ice shelf base: zero traction BC (Neumann). 
 
 

⇒ For vertical grid lines that lie within ice shelves, top and 
bottom BCs resemble Neumann BCs so sub-matrix 
associated with one of these lines is almost* singular.  

⇒ Ice shelves give rise to severe ill-
conditioning of linear systems! *Completely singular in the presence 

of islands and some ice tongues. 



Albany/FELIX Glimmer/CISM 

Moderate Resolution Antarctica 
Weak Scaling Study 

• Weak scaling study on Antarctic problem (8km w/ 5 layers → 2km with 20 layers). 
 

• Initialized with realistic basal friction (from deterministic inversion) and 
temperature field from BEDMAP2. 

 

• Iterative linear solver: GMRES. 
 

• Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening      
(Tezaur et al GMD 2014, Tezaur et al ICCS 2015, Tuminaro et al SISC 2015). 

16 
cores  

1024 
cores  # cores 

 

16 
cores  

1024 
cores  # cores 

 

ILU AMG 

AMG 
preconditioner  

AMG preconditioner less sensitive than ILU to ill-conditioning (ice shelves → 
Green’s function with modest horizontal decay → ILU is less effective). 

Severe ill-conditioning 
caused by ice shelves! 

(vertical > horizontal 
coupling)  

+  
Neumann BCs  

=  
nearly singular 

submatrix associated 
with vertical lines 
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Deterministic Inversion: Estimation  
of Ice Sheet Initial State  

Objective:  find ice sheet initial state that 
• Matches observations (e.g., surface velocity, temperature, etc.)  
• Matches present-day geometry (elevation, thickness). 
• Is in “equilibrium” with climate forcings (SMB). 
 
Approach:  invert for unknown/uncertain ice sheet model 
parameters.  
• Significantly reduces non-physical transients without model 

spin-up. 
 
Available data/measurements:  
• Ice extent and surface topography. 
• Surface velocity. 
• Surface mass balance (SMB). 
• Ice thickness 𝐻 (sparse measurements). 
 
Field to be estimated: 
• Basal friction 𝛽 (spatially variable proxy for all basal processes). 
• Ice thickness 𝐻 (allowed to be weighted by observational 

uncertainties). 

Ice sheet 

𝛽 

𝐻 

Assumptions:  
• Ice flow described by FO 

Stokes equations. 
• Ice is close to 

mechanical equilibrium.  
• Temperature field is 

given.   

Basal sliding BC:   
2𝜇𝝐 𝑖 ∙ 𝒏 + 𝛽𝑢𝑖 = 0, on Γ𝛽 



Deterministic Inversion Problem 

First Order Stokes PDE Constrained Optimization Problem: 
 

minimize 𝛽,𝐻  𝐽 𝛽, 𝐻  

s.t. FO Stokes PDEs 

• Minimize difference between:  
• Computed and measured surface velocity (𝒖𝒐𝒃𝒔) → common  
• Computed divergence flux and measured surface mass balance (SMB) → 

novel 
• Computed and reference thickness (Hobs) → novel 
 

• Control variables:  
• Basal friction (𝜷). 
• Thickness (H).  

𝐽 𝛽, 𝐻 =
1

2
𝛼𝑣 𝒖− 𝒖𝑜𝑏𝑠 2𝑑𝑠

Γ𝑡𝑜𝑝

+
1

2
𝛼 𝑑𝑖𝑣 𝑼𝐻 − 𝑆𝑀𝐵 2𝑑𝑠 +

Γ

1

2
𝛼𝐻 𝐻 − 𝐻𝑜𝑏𝑠 2𝑑𝑠 + ℛ(𝛽) + ℛ(𝐻)

Γ𝑡𝑜𝑝

 

where 



Deterministic Inversion Algorithm  
and Software 

Algorithm Software 

Finite Element Method discretization Albany 

Quasi-Newton optimization (L-BFGS) ROL 

Nonlinear solver (Newton) NOX 

Krylov linear solvers AztecOO+Ifpack/ML 

• Some details: 
  

• Regularization: Tikhonov. 
• Total derivatives of objective functional 𝐽 computed using adjoints and 

automatic differentiation. 
• L-BFGS initialized with Hessian of regularization terms. 



Deterministic Inversion: Greenland 



Deterministic Inversion: Greenland 
(cont’d) 



Deterministic Inversion:  
Antarctica (basal friction only) 

FO Stokes PDE Constrained Optimization Problem: 
 

𝐽 𝛽 =
1

2
 𝛼 𝒖 − 𝒖𝑜𝑏𝑠 2𝑑𝑠
Γ𝑡𝑜𝑝

+ ℛ(𝛽) 

Antarctic ice sheet inversion performed on up to 1.6M parameters 

𝛽 (kPa y/m) obtained 
through inversion 

𝒖  (m/yr) computed 
with estimated 𝛽  

𝒖  (m/yr) for observed 
surface velocity 

Geometry: Cornford, Martin et 
al. (in prep.) 
Bedmap2: Fretwell et al., 2013 
Temperature: Pattyn, 2010. 
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Interfaces to CISM/MPAS LI for  
Transient Simulations 

7/20 

Albany/FELIX (C++) 
velocity solve 

CISM (Fortran) 
Thickness evolution,  
temperature solve, 
coupling to CESM 

cism_driver 

C++/Fortran 
Interface, Mesh 

Conversion 

MPAS Land-Ice 
(Fortran) 

Thickness evolution,   
temperature solve,  

coupling to DOE-ESM 

C++/Fortran 
Interface, Mesh 

Conversion 

LandIce_model 

CISM-
Albany 

MPAS LI-
Albany 

• Structured 
hexahedral meshes 
(rectangles extruded 
to hexes). 

• Tetrahedral meshes (dual of 
hexaganonal mesh,  
extruded to tets). 

Albany/FELIX has been coupled to two land ice dycores: Community Ice Sheet 
Model (CISM) and Model for Prediction Across Scales for Land Ice (MPAS LI)  

output file output file 



First Order Stokes-Thickness Coupling 
Methods 

 

−2𝜇𝛻 ∙ 𝝐 = −𝜌𝑔𝛻 𝑏 + 𝐻  ,    in Ω𝐻 
 

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ 𝒖 𝐻 + 𝑏  

Grounded ice:  
Ω𝐻 = { 𝑥, 𝑦, 𝑧 : 

𝑧 = 𝑏 𝑥, 𝑦 + 𝐻 𝑥, 𝑦 } 

• Sequential coupling (common approach):  
• Given 𝐻𝑛, solve FO Stokes system for 𝒖𝑛. 
• Compute 𝒖  and solve thickness evolution equation for 𝐻𝑛+1. 
• Thickness equation solved with upwind scheme + incremental remap. 
• Upside: fits nicely into existing codes 
• Downside: CFL requires tiny time steps for fine meshes. 
 

• Semi-Implicit coupling (new approach):  
 
 
 

 
• 𝒖 computed in Albany/FELIX with implicit solve; MPAS uses velocity to march in time explicitly. 
• Upside: semi-implicit discretization mitigates stability issue (can use larger Δ𝑡) 
• Downside: more intrusive implementation; larger system; expense associated to geometry 

changing between iterations (use Newton to compute shape derivatives). 

 

 

−2𝜇𝛻 ∙ 𝝐 𝒖 = −𝜌𝑔𝛻 𝑏 + 𝐻  ,    in Ω𝐻 
 

𝐻 − 𝐻𝑛

Δ𝑡
= −𝛻 ∙ 𝒖 𝐻𝑛 + 𝑏  



Results Using Sequential Approach: 
5km Greenland 

• Sequential approach works fine for relatively coarse meshes (e.g., 5km resolution). 
• Data from ice2sea experiment A.J. Payne et al., PNAS 2013. 

FO equations solved using 
Albany/FELIX (finite 

elements) [left] 
 

Evolution equations solves 
using MPAS (finite 

volume) [right] 



Preliminary Results Using Semi-
Implicit Approach: Dome 

Top left: reference 
solution computed 

using sequential 
approach and time 
step of 5 months Semi-implicit 

approach allows the 
use of much larger 

time-steps than 
sequential approach! 



Preliminary Results Using Semi-
Implicit Approach: Antarctica 

• Variable-resolution Antarctica grid with maximum 
resolution of 3km. 

• Sequential approach: ∆𝑡 =  𝑂(days) 
• Semi-Implicit approach: ∆𝑡 =  𝑂(months) 
• Cost of iteration is larger for semi-implicit scheme 

because of increased dimension of nonlinear 
system (more expensive assembly and solve). 

• Nonetheless, with semi-implicit scheme, we 
obtained speedup of 4.5× (~2 year run). 
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Uncertainty Quantification (UQ)  
Problem Definition 

Quantity of Interest (QoI) in Ice Sheet Modeling:  
total ice mass loss/gain during 21st century 

→ sea level rise prediction. 

There are several sources of uncertainty, most notably: 

  

• Climate forcings (e.g., surface mass balance). 
• Basal friction (𝛽) 
• Bedrock topography 
• Geothermal heat flux 
• Model parameters (e.g., Glen’s flow law exponent) 

Basal sliding BC:   
2𝜇𝝐 𝑖 ∙ 𝒏 + 𝛽𝑢𝑖 = 0, on Γ𝛽 

Basal boundary  Γ𝛽 
) 

Ice sheet 

𝜇 =
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2
𝐴−

1
𝑛

1

2
 𝝐 𝑖𝑗

2+
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2𝑛

−
1
2

 

𝑛 = Glen’s law exponent 
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• Bedrock topography 
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Uncertainty Quantification 
Workflow 

Goal: Uncertainty Quantification in 21st century sea level (QoI) 

• Deterministic inversion: perform adjoint-based deterministic 
inversion to estimate initial ice sheet state (i.e., characterize 
the present state of the ice sheet to be used for performing 
prediction runs). 
 

• Bayesian calibration: construct the posterior distribution 
using Markov Chain Monte Carlo (MCMC) run on an emulator 
of the forward model → Bayes’ Theorem: assume prior 
distribution; update using data: 

 
 
 
 
 

• Forward propagation: sample the obtained distribution and 
perform ensemble of forward propagation runs to compute 
the uncertainty in the QoI. 

What are the 
parameters that render 

a given set of 
observations?  

What is the impact of 
uncertain parameters in 
the model on quantities 

of interest (QoI)?  
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Bayesian Calibration: Demonstration 
of Workflow using KLE 

Difficulty in UQ: “Curse of Dimensionality” 
The 𝛽-field inversion problem has 𝑂(100𝐾) dimensions!  

Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 
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Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 

𝛽  =  initial condition for 𝛽 
(result of deterministic 
inversion or spin-up) 

*In practice, expansion is 
done on log(𝛽) to avoid 
negative values of 𝛽. 
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Bayesian Calibration: Demonstration 
of Workflow using KLE (cont’d) 



Bayesian Calibration: Illustration  
on 4km GIS Problem  

• Mean 𝛽  field obtained through spin-up over 100 years (cheaper than 
inversion, gives reasonable agreement with present-day velocity field).  

 

• Correlation length 𝐿 selected s.t. slow decay of KLE eigenvalues to enable 
refinement (left): 10 KLE modes capture 27.3% of covariance energy. 

• Mismatch function (calculated in Albany/FELIX): 
 

𝐽 𝛽 =  
1

𝜎𝑢
2
𝒖 − 𝒖𝑜𝑏𝑠 2𝑑𝑠

Γ𝑡𝑜𝑝

 

  
• PCE emulator was formed for the mismatch 𝐽 𝛽  using uniform [−1,1] prior distributions and 

286 high-fidelity runs on Hopper (286 points = 3rd degree polynomial in 10D). 
 

• For calibration, MCMC was performed on the PCE with 2K samples. 

𝛽  

Modes 1-5: 

Modes 6-10: 

𝒖  
computed 

with 𝛽  

Below: decay of KLE eigenvalues 

Disclaimer: results presented 
demonstrate that we have UQ 
workflow in place; quantifying 
uncertainty in 𝛽 and SLR will 

require re-running with better data.     



Bayesian Calibration: Illustration  
 on 4km GIS Problem (cont’d) 

• Posterior distributions for 10 KLE coefficients: 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

• Distributions are peaked rather than uniform ⇒ data informed the posteriors.  
 
• MAP point: 𝝃 = (0.372, −0.679, −0.420, −0.189, −7.38e−2, −0.255, 0.449, −0.757, 

0.847,−0.447) 



Bayesian Calibration: Illustration  
 on 4km GIS Problem (cont’d) 

𝛽 field at 
MAP point 

|𝒖| 
computed 
with 𝛽  at 
MAP point 

|𝒖𝑜𝑏𝑠| 

• Ice is too fast at MAP point.  Possible explanations: 
 

• Surrogate error (based on cross-validation). 
 

• Mean field error. 
 

• Bad modes (modes lack fine scale features). 

Mismatch 𝐽 𝛽  at 
MAP point: 1.87 × 

mismatch at 𝛽  

𝛽  

𝛽 from 
deterministic 

inversion 



Bayesian Calibration: Illustration  
 on 4km GIS Problem (cont’d) 
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Mismatch 𝐽 𝛽  at 
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Bayesian Calibration: Better Reduced  
Bases 

• Hessian of the merit functional (velocity mismatch) can provide a way to compute the 
covariance of a Gaussian posterior:  

 

𝑪𝑝𝑜𝑠𝑡 = 𝑪𝑝𝑟𝑖𝑜𝑟𝑯𝑚𝑖𝑠𝑓𝑖𝑡 + 𝑰 −1𝑪𝑝𝑟𝑖𝑜𝑟 

• We want to limit only the most important directions (eigenvectors) of 𝑪𝑝𝑜𝑠𝑡. 

 

Right: log-linear plot of the spectra of a prior-preconditioned data misfit Hessian at the MAP point 
for two successively finer parameter/state meshes of the inverse ice sheet problem.  

evec 1 evec 2 evec 100 

evec 200 evec 500 evec 4000 

Figures 
courtesy of 
O. Ghattas’ 
group (Isaac 
et al., 2004) 

# significant 
eigenvalues does 
not depend on # 

DOFs in grid 



Outline 

• Motivation. 
 

• The PISCEES project. 
 
• The Ice Sheet Equations. 

 
• The Albany/FELIX Steady Stress-Velocity Solver. 
 
• Deterministic Inversion for Ice Sheet 

Initialization. 
 

• Dynamic Simulations of Ice Sheet Evolution. 
 

• Uncertainty Quantification. 
 

• Summary & future work. 



Summary and Ongoing Work 

Summary: this talk described… 
 

• Equations, algorithms, software used in ice sheet modeling. 
 

• The development of a finite element land ice solver known as Albany/FELIX written 
using the libraries of the Trilinos libraries.  

 

• Coupling of Albany/FELIX to the CISM and MPAS LI codes for transient simulations of ice 
sheet evolution.  

 

• Some advanced concepts in ice sheet modeling: deterministic inversion, UQ.  

Ongoing/future work: 
 

• Science runs using CISM-Albany and MPAS-Albany.  
 

• Deploy UQ workflow with better basis than KLE (e.g., Hessian eigenvectors). 
 

• Porting of code to new architecture machines (GPUs, multi-core, many-core). 
 

• Delivering code to climate community and coupling to earth system models. 
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Appendix: Verification/Mesh 
Convergence Studies 

Stage 1: solution verification on 2D MMS 
problems we derived. 

Stage 2: code-to-code comparisons on canonical 
ice sheet problems. 

Stage 3: full 3D mesh convergence study on 
Greenland w.r.t. reference solution.  

Are the Greenland problems resolved?   
Is theoretical convergence rate achieved?  

Albany/FELIX LifeV 



Appendix: Mesh Partitioning &  
Vertical Refinement 

Mesh convergence studies led to some useful practical recommendations 
(for ice sheet modelers and geo-scientists)! 

• Partitioning matters: good solver performance obtained with 2D 
partition of mesh (all elements with same 𝑥, 𝑦 coordinates on same 
processor - right).  
 

• Number of vertical layers matters: more gained in refining # vertical 
layers than horizontal resolution (below – relative errors for 
Greenland). 

Horiz. res.\vert. layers 5 10 20 40 80 

8km 2.0e-1 

4km 9.0e-2 7.8e-2 

2km 4.6e-2 2.4e-2 2.3e-2 

1km 3.8e-2 8.9e-3 5.5e-3 5.1e-3 

500m 3.7e-2 6.7e-3 1.7e-3 3.9e-4 8.1e-5 
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Appendix: Mesh Partitioning & 
Vertical Refinement 

Mesh convergence studies led to some useful practical recommendations 
(for ice sheet modelers and geo-scientists)! 

• Partitioning matters: good solver performance obtained with 2D 
partition of mesh (all elements with same 𝑥, 𝑦 coordinates on same 
processor - right).  
 

• Number of vertical layers matters: more gained in refining # vertical 
layers than horizontal resolution (below – relative errors for 
Greenland). 

Horiz. res.\vert. layers 5 10 20 40 80 

8km 2.0e-1 

4km 9.0e-2 7.8e-2 

2km 4.6e-2 2.4e-2 2.3e-2 

1km 3.8e-2 8.9e-3 5.5e-3 5.1e-3 

500m 3.7e-2 6.7e-3 1.7e-3 3.9e-4 8.1e-5 

Vertical refinement 
to 20 layers 

recommended for 
1km resolution over 

horizontal 
refinement. 



Appendix: Importance of Node 
Ordering & Mesh Partitioning 

Our studies revealed that node ordering and mesh 
partitioning matters for linear solver performance, 

especially for the ILU preconditioner! 

• It is essential that incomplete factorization accurately 
captures vertical coupling, which is dominant due to 
anisotropic mesh. 

 
• This is accomplished by:  
 

• Ensuring all points along a vertically extruded grid 
line reside within a single processor (“2D mesh 
partitioning”; top right). 

 

• Ordering the equations such that grid layer 𝑘’s 
nodes are ordered before all dofs associated with 
grid layer 𝑘 + 1 (“row-wise ordering”; bottom 
right). 0 

6 
⋯ ⋯ ⋯ 1 

28 29 ⋯ ⋯ ⋯ 34 



We need to be able to run Albany/FELIX on new architecture machines (hybrid 
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) . 

• Kokkos: Trilinos library that provides performance portability across diverse 
devises with different memory models. 

 

• A programming model as much as a software library. 
 

• Provides automatic access to OpenMP, CUDA, Pthreads, etc. 
 

• Templated meta-programming: parallel_for, parallel_reduce (templated on 
an execution space). 

 

• Memory layout abstraction (“array of structs” vs. “struct of arrays”, locality). 
 

Appendix: Performance- 
Portability via Kokkos 

With Kokkos, you write an algorithm once, and just change a template 
parameter to get the optimal data layout for your hardware. 



We need to be able to run Albany/FELIX on new architecture machines (hybrid 
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) . 

• Kokkos: Trilinos library that provides performance portability across diverse 
devises with different memory models. 

 

• A programming model as much as a software library. 
 

• Provides automatic access to OpenMP, CUDA, Pthreads, etc. 
 

• Templated meta-programming: parallel_for, parallel_reduce (templated on 
an execution space). 

 

• Memory layout abstraction (“array of structs” vs. “struct of arrays”, locality). 
 

Appendix: Performance- 
Portability via Kokkos 

With Kokkos, you write an algorithm once, and just change a template 
parameter to get the optimal data layout for your hardware. 

• Finite element assembly in Albany has recently been rewritten using Kokkos 
functors. 



Appendix: Kokkos-ification of Finite 
Element Assembly 

ExecutionSpace parameter 
tailors code for device (e.g., 

OpenMP, CUDA, etc.) 



Appendix: Performance-Portability via  
Kokkos: 20km GIS Problem 

 

Shannon: 32 nodes 
• Two 8-core Sandy Bridge Xeon E5-

2670 @ 2.6GHz (HT deactivated) 
per node. 

• 128GB DDR3 memory per node 
• 2x NVIDIA K20x per node. 

“# of elements/workset” 
= threading index (allows 
for on-node parallelism) 

FEA Residual: less 
work done by 
GPU, so kernel 

launch overhead 
becomes 

significant. 



Appendix: Performance-Portability via  
Kokkos: Weak Scalability for GIS on Titan 

Titan: 18,688 AMD Opteron nodes 
 

• 16 cores per node 
• 1 K20X Kepler GPUs per node 
• 32GB + 6GB memory per node 

MPI+CUDA results on Titan 
coming soon!  (waiting for gcc 

4.7.2 compiler support for Cray) 

Increasing # 
OpenMP 

threads can 
increase thread 
synchronization 

overheads. 



Appendix: Spherical Grids 
Relative 

difference in 
surface velocity 

magnitude is 
10% in fast flow 

regions. 

• Current ice sheet models are derived using planar geometries – reasonable, 
especially for Greenland. 

• The effect of Earth’s curvature is largely unknown – may be nontrivial for Antarctica. 
• We have derived a FO Stokes model on sphere using stereographic projection. 



Appendix: Forward Propagation: 
Illustration on 4km GIS Problem 

Procedure: 
 

• We first ran 66* CISM-Albany high-fidelity simulations on Hopper with 𝛽 
sampled from a uniform [−1,1] distribution and no forcing for 50 years.    

Left: SLR distribution from 
ensemble of 66 high-
fidelity simulations 
(differenced against 

control run using the 𝛽  
distribution).  All 66 runs 
ran to completion out-of-

the-box on Hopper!  

• We then used the results of these runs to create a PCE emulator for the SLR. 
 

• Using emulator, propagated posterior distributions computed in Bayesian 
calibration (using KLE) through the model to get posteriors on SLR (MCMC on 
PCE emulator with 2K samples). 

Above: 𝛽, velocity and thickness 
perturbations.  Ice thickness 

changed > 500m in some places. 

*66 points = 2D polynomial in 10D. 

Disclaimer: results presented 
demonstrate that we have UQ 
workflow in place; quantifying 
uncertainty in 𝛽 and SLR will 

require re-running with better data.     



Appendix: Forward Propagation: 
Illustration on 4km GIS Problem (cont’d) 

PDF of SLR 

Prior informed (green): uniform distribution 
translates to distribution skewed w.r.t. model 
outputs. 
  

• Larger fraction of the ice sheet currently has a 𝛽 value 
that forces no (or slow) basal sliding. 

• Areas with little sliding: not affected by increase in 𝛽, 
but greatly affected by decrease in 𝛽 (velocity in these 
regions will change significantly from initial condition).  

• Since we sample from a uniform distribution when 
perturbing 𝛽, we expect to see a disproportionately 
large signal when reducing 𝛽 vs. increasing it.  

Expected (black): normal distribution centered 
around 0 SLR since no forcing. 

Posterior informed (blue): centered on positive tail of prior – not consistent with observations. 
 

• Could be due to “ad hoc” 𝛽 used as mean field (spin-up over 100 years). 
• May be that emulator was been built with a (non-physical) positive mass balance while calibration was done on 

present-day observations (consistent with ice losing mass). 



Appendix: Forward Propagation: 
Illustration on 4km GIS Problem (cont’d) 

PDF of SLR 

Prior informed (green): uniform distribution 
translates to distribution skewed w.r.t. model 
outputs. 
  

• Larger fraction of the ice sheet currently has a 𝛽 value 
that forces no (or slow) basal sliding. 

• Areas with little sliding: not affected by increase in 𝛽, 
but greatly affected by decrease in 𝛽 (velocity in these 
regions will change significantly from initial condition).  

• Since we sample from a uniform distribution when 
perturbing 𝛽, we expect to see a disproportionately 
large signal when reducing 𝛽 vs. increasing it.  

Expected (black): normal distribution centered 
around 0 SLR since no forcing. 

Posterior informed (blue): centered on positive tail of prior – not consistent with observations. 
 

• Could be due to “ad hoc” 𝛽 used as mean field (spin-up over 100 years). 
• May be that emulator was been built with a (non-physical) positive mass balance while calibration was done on 

present-day observations (consistent with ice losing mass). 

Results illustrate that we have in place all steps of our UQ workflow; 
they are NOT yet actual uncertainty bounds for sea-level rise.   

Next step: repeat UQ procedure with better modes, surrogates and 𝛽 . 


