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SUMMARY

A reduced order model (ROM) based on the proper orthogonal decomposition (POD)/Galerkin projection
method is proposed as an alternative discretization of the linearized compressible Euler equations. It is
shown that the numerical stability of the ROM is intimately tied to the choice of inner product used to
define the Galerkin projection. For the linearized compressible Euler equations, a symmetry transformation
motivates the construction of a weighted L2 inner product that guarantees certain stability bounds satisfied
by the ROM. Sufficient conditions for well-posedness and stability of the present Galerkin projection
method applied to a general linear hyperbolic initial boundary value problem (IBVP) are stated and
proven. Well-posed and stable far-field and solid wall boundary conditions are formulated for the linearized
compressible Euler ROM using these more general results. A convergence analysis employing a stable
penalty-like formulation of the boundary conditions reveals that the ROM solution converges to the exact
solution with refinement of both the numerical solution used to generate the ROM and of the POD basis.
An a priori error estimate for the computed ROM solution is derived, and examined using a numerical
test case. Published in 2010 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Despite improved algorithms and powerful supercomputers, computational fluid dynamics (CFD)
modeling of unsteady, three-dimensional (3D) fluid flows continues to remain an expensive enter-
prise. To alleviate the cost of CFD simulation, efforts have been made in the fluid dynamics
community to develop low-dimensional models that capture the essential dynamics of a full-
order model but that contain far fewer degrees of freedom. These so-called reduced order models
(ROMs) allow for the systematic generation of cost-effective representations of complex, large-
scale systems, enabling and enhancing the understanding of fluid dynamical systems at a relatively
low computational cost.

In the past decade, numerous approaches to building ROMs have been proposed, each with
its own inherent strengths. The reduced basis method [1–4], balanced truncation [5, 6] and goal-
oriented ROMs [7] are some examples. Recent improvements in model-reduction methodologies
have increased these models’ potential usefulness, making it possible, for instance, to develop
ROMs in predictive settings such as flow controller design [8], shape optimization [9] and aeroe-
lastic stability analysis [10, 11]. Reduced order modeling has also shown considerable potential in
real-time applications, that is, applications where real-time simulations must be run using real-time
data for on-the-spot decision making, optimization and/or control.

The use of ROMs in a predictive setting raises some fundamental questions regarding their
numerical properties, namely consistency, stability and convergence. Many ROM techniques in
fluid mechanics are derived from the proper orthogonal decomposition (POD)/Galerkin projection
approach [12–14]. In this context, the ROM may be viewed as an alternative discretization of the
governing system of partial differential equations (PDEs). The fact that general results pertaining to
these properties for POD/Galerkin models of compressible fluid flow are lacking leads to practical
limitations of the use of ROMs. A ROM might be stable for a given number of modes but unstable
for other choices of basis size; see [15] for an example of this for a POD model.

Stable formulations for ROMs have been proposed in some settings. Stability of ROMs for
electrical circuit analysis was considered by Freund et al. in [16], where it was shown that
preservation of passivity, or energy dissipation, of the circuit system guarantees stability of the
ROM. In fluid dynamics, Kwasniok [17] recognized the role of energy conservation in ROMs
of non-linear, incompressible fluid flow for atmospheric modeling applications, constructing the
Galerkin projection so that the non-linear terms in the ROM conserve turbulent kinetic energy
or turbulent enstrophy. Other model reduction techniques whose numerical properties have been
studied include balanced truncation, a particular form of POD that uses the observability Gramian
as an inner product, and least-squares projection. In [5], Rowley and coworkers demonstrated that
balanced truncation and balanced POD methods are guaranteed to be stable for linear systems,
and also preserve the stability of an equilibrium point at the origin for non-linear systems. It was
shown in [7] that least-squares projection can result in a stable ROM.

Convergence analyses and error estimates for POD-based ROMs are complicated by the fact
that the span of the POD basis is not complete in the Hilbert space to which the exact solution
belongs; it is only complete in the space defined by the CFD solutions used to generate it, and
only in an average sense. Since the POD basis contains only information of the kinematics of
the flow field that were already encoded in the observations, it cannot be expected to contain all
the features present in the exact analytical solution. Nevertheless, significant progress has been
made in deriving error estimates for fluid dynamic ROMs in recent years. A general convergence
result for a least-squares projection approach can be found in [7], where it is shown that as the
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reduced basis is enriched, the state error in a steady reduced model is strictly monotonically
decreasing. In [18], Rathinam et al. provide an error analysis of the POD method applied to a
general non-linear dynamical system. In [19, 20], Kunisch and Volkwein develop convergence
estimates for ROMs based on a POD approximation in space and a backwards Euler discretization
in time for non-linear parabolic systems arising in fluid dynamics, including the incompressible
Navier–Stokes equations. In [1, 2], Veroy et al. and Nguyen et al. derive rigorous a posteriori
L2 error bounds for reduced basis approximations of the steady and unsteady viscous Burgers
equation (respectively). Veroy, Patera and their collaborators have also developed a convergent
method for ROMs of the incompressible Navier–Stokes equations and provided a posteriori error
estimates [3, 4].

In [21] a POD/Galerkin ROM of compressible inviscid fluid flow over a solid wall boundary was
proposed and shown to be numerically stable. The present work provides a rigorous analysis of the
stability and convergence properties of this ROM, including effects of boundary conditions. The
approach described herein is based on a Galerkin projection of the governing PDEs, in common
with the perspective of, for example, [4, 20]. This ‘continuous projection’ approach differs from
many POD/Galerkin applications for compressible flow, where the semi-discrete representation of
the governing equations is projected, and numerical analysis proceeds from the perspective of a
dynamical system of ordinary differential equations. The continuous projection approach has the
advantage that the ROM solution behavior can be examined using methods that have traditionally
been used for numerical analysis of spectral approximations to PDEs [22].

The remainder of this paper is organized as follows. Section 2 contains an overview of the
POD/Galerkin method for model reduction. The governing fluid equations, namely the linearized
compressible Euler equations with appropriate far-field and solid wall boundary conditions, are
presented in Section 3. In Section 4, an energy stability analysis leads to sufficient conditions for
well-posedness of the boundary conditions for a hyperbolic system, and also reveals that the inner
product used to define the Galerkin projection is closely tied to the stability of the resulting model.
A stable symmetry inner product is defined and a means of implementing the prescribed boundary
conditions in a way that preserves the stability of the ROM is developed. A priori error estimates
for the computed ROM solution relative to the CFD solution and the exact analytical solution are
derived in Section 5. Following the analysis is a numerical example that demonstrates the actual
convergence properties of the ROM on a problem involving the propagation and reflection of a
cylindrical acoustic pulse from two parallel walls in a uniform mean flow (Section 6). Conclusions
are offered in Section 7.

2. THE PROPER ORTHOGONAL DECOMPOSITION (POD)/GALERKIN METHOD FOR
MODEL REDUCTION

Before turning our attention to the equations of interest, namely the linearized compressible Euler
equations (Section 3), we give an overview of the POD/Galerkin method for reducing the order
of a complex physical system governed by a general set of PDEs. The approach consists of
two steps:

Step 1: Calculation of a reduced basis using the POD of an ensemble of flow-field realizations.
Step 2: Galerkin projection of the governing (continuous) PDEs onto the basis of POD modes

in some appropriate inner product.
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1348 I. KALASHNIKOVA AND M. F. BARONE

In the first step, kinematic information is transferred from the high-fidelity simulation to a
relatively small number of modes. Discussed in detail in Lumley [23] and Holmes et al. [13], POD
is a mathematical procedure that, given an ensemble of data, constructs a basis for that ensemble
that is optimal in a well-defined sense. Let H(�) be a Hilbert space with associated inner product
(·, ·), and let {uk(x)}⊂H(�) be an ensemble of real vector fields on a domain �⊂R3. In the
present context, the ensemble {uk(x) :k=1, . . . ,N } is a set of N instantaneous snapshots of a
CFD numerical solution field. Mathematically, POD seeks an M-dimensional (M�N ) subspace
HM (�)⊂H(�) spanned by the set {/i } such that the projection of the difference between the
ensemble uk and its projection onto HM (�) is minimized on average; that is, it seeks the set {/i }
that solves the following constrained optimization problem:

min
{/i }Mi=1

〈‖uk−�Muk‖2〉

subject to (/i ,/ j )=�i j , 1�i�M, 1� j�i
. (1)

Here, 〈·〉 is a discrete averaging operator, e.g. 〈‖uk‖2〉≡1/N∑N
k=1 ‖uk‖2, and �M :H(�)→

HM (�) is an orthogonal projection operator onto the subspace HM (�), satisfying properties 1–6
in Section A.2 of the Appendix. It is a well-known result [13, 18, 20, 21] that the solution to (1)
reduces to the eigenvalue problem R/=�/ where R≡〈uk⊗uk〉 is a self-adjoint and positive
semi-definite operator. If one assumes that R is compact, then there exists a countable set of non-
negative eigenvalues �i with associated eigenfunctions /i . It can be shown [13, 23] that the set of
M eigenfunctions, or POD modes, {/i : i=1,2, . . . ,M} corresponding to the M largest eigenvalues
of R is precisely the set of {/i } that solves (1). The truncated basis {/i : i=1,2, . . . ,M} is optimal
in the sense that it describes more energy (on average) of the ensemble than any other linear basis
of the same dimension M . Given this basis, the numerical ROM solution uM can be represented
as a linear combination of POD modes

uM (x, t)=
M∑
j=1

a j (t)/ j (x), (2)

where the a j (t) are the so-called ROM coefficients, to be solved for in the ROM.
The second step in constructing a ROM involves projecting the governing system of PDEs

onto the POD basis {/i } in the inner product (·, ·) defining the Hilbert space H(�). In
this step, the full-system dynamics are effectively translated to the implied dynamics of the
POD modes. If the governing system of equations for the state variable vector u has the
form

�u
�t
=Lu+N2(u,u)+N3(u,u,u), (3)

where L is a linear differential operator, and N2 and N3 are (non-linear) quadratic and
cubic operators, respectively, then the Galerkin projection of (3) onto the POD mode / j for
j=1,2, . . . ,M is(

/ j ,
�uM

�t

)
=(/ j ,LuM )+(/ j ,N2(uM ,uM ))+(/ j ,N3(uM ,uM ,uM )). (4)
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Substituting the POD decomposition of u (2) into (4) and applying the orthonormality property
of the basis functions /i gives a set of time-dependent ordinary differential equations (ODEs) in
the modal amplitudes (also referred to as the ROM coefficients) that accurately describes the flow
dynamics of the full system of PDEs for some limited set of flow conditions:

da

dt
≡ ȧ j =

M∑
l=1

al(/ j ,L(/l))+
M∑
l=1

M∑
m=1

alam(/ j ,N2(/l ,/m))

+
M∑
l=1

M∑
m=1

M∑
n=1

alaman(/ j ,N3(/l ,/m,/n)), (5)

for j=1,2, . . . ,M .
We emphasize that, in the ROM presented herein, the Galerkin projection step is applied to

the continuous system of PDEs. In many applications of reduced order modeling, the discrete
representation of the equations is projected onto the POD modes. This discrete approach has
the advantage that, depending on the implementation, boundary condition terms present in the
discretized equation set are inherited by the ROM. Additionally, certain properties of the numer-
ical scheme used to solve the full equations may be inherited by the ROM. The continuous
approach, on the other hand, is appealing in that it does not require an intrusive or code-specific
implementation. It is also similar in procedure to spectral numerical approximation methods,
allowing the use of analysis techniques employed by the spectral methods community [22]
(Section 5).

It is also worth remarking that the POD basis {/i : i=1,2, . . . ,M} described above is not
complete inH(�). It is, however, complete in an average sense, that is 〈‖uk−∑ j (u

k,/ j )/ j‖〉=0
for M=N . Note that bases other than POD could be used in constructing the ROM using the
present model reduction technique, and in fact, the stability results presented in this work do not
depend on the choice of basis. To show convergence of the ROM to the exact solution, however,
one must choose a basis whose span contains the exact solution.

3. INITIAL BOUNDARY VALUE PROBLEM (IBVP) FOR COMPRESSIBLE FLOW

3.1. Linearized Euler equations for compressible flow

Let qT ≡(u1 u2 u3 � p)∈R5 denote the vector of fluid state variables. Here, u1, u2 and u3 are
the x1-, x2-, and x3-components of the velocity vector uT ≡(u1 u2 u3), p is the fluid pressure,
and �≡1/� is the specific volume of the fluid (� denoting the fluid density).

We take as the governing fluid equations the compressible Euler equations, linearized about a
steady base (or mean) state q̄. Splitting the state variable vector q into a steady mean plus a time-
varying fluctuation (q(x, t)= q̄(x)+q′(x, t)), this linearization (cf. [24, 25]) results in a system of
the form

�q′

�t
+Ai

�q′

�xi
+Cq′︸ ︷︷ ︸

≡Lq′

=0, (6)
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1350 I. KALASHNIKOVA AND M. F. BARONE

where

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ū1 0 0 0 �̄

0 ū1 0 0 0

0 0 ū1 0 0

−�̄ 0 0 ū1 0

� p̄ 0 0 0 ū1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A2=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ū2 0 0 0 0

0 ū2 0 0 �̄

0 0 ū2 0 0

0 −�̄ 0 ū2 0

0 � p̄ 0 0 ū2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ū3 0 0 0 0

0 ū3 0 0 0

0 0 ū3 0 �̄

0 0 −�̄ ū3 0

0 0 � p̄ 0 ū3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�ū1
�x1

�ū1
�x2

�ū1
�x3

� p̄
�x1

0

�ū2
�x1

�ū2
�x2

�ū2
�x3

� p̄
�x2

0

�ū3
�x1

�ū3
�x2

�ū3
�x3

� p̄
�x3

0

��̄

�x1

��̄

�x2

��̄

�x3
−∇ ·ū 0

� p̄
�x1

� p̄
�x2

� p̄
�x3

0 �∇ ·ū

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

Here, 0∈R5 is the zero vector, �=CP/CV is the ratio of specific heats and L is a linear, spatial
differential operator. The {Ai : i=1,2,3} matrices are functions of the base flow vector q̄; the
matrix C is a function of ∇q̄. All the matrices (7)–(8) are independent of time, as the mean flow q̄
is assumed to be steady. In the case of uniform base flow, ∇q̄≡0, so that �Ai/�xi≡0 and C≡0.

It is a well-known fact that the system (6) is hyperbolic. This implies that the tensor An≡A1n1+
A2n2+A3n3, for some spatial orientation nT =(n1 n2 n3), is diagonalizable: An=SKnS−1. Here
S is the matrix that diagonalizes An and Kn is a diagonal matrix containing the eigenvalues of An
(also referred to as the characteristic speeds):

Kn=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ūn

ūn

ūn

ūn+ c̄
ūn− c̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (9)
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STABILITY AND CONVERGENCE OF A GALERKIN ROM OF COMPRESSIBLE FLOW 1351

with c̄=
√

� p̄�̄ denoting the speed of sound. Defining v′ ≡S−1q′, the linearized Euler Equations (6)
in these so-called ‘characteristic’ variables are§

�v′

�t
+S−1AiS

�v′

�xi
+S−1

[
Ai

�S
dxi
+CS

]
v′ =0. (11)

3.2. Boundary conditions

In typical applications, � may contain a fixed or moving solid wall boundary, denoted by ��W,
over which the fluid flows. Additionally, since the computational domain � is by construction
finite, in contrast to the infinite physical space on which the initial boundary value problem (IBVP)
is defined, boundary conditions should be prescribed on the artificial far-field boundary ��F. In
this context, it is useful to introduce the following partition of ��:

��=��F∪��W, ��F∩��W=∅ (12)

into a far-field boundary (��F) and a solid wall boundary (��W). With boundary conditions
imposed on these two boundaries, an IBVP for the compressible Euler equations (6) has the form

�q′

�t
+Ai

�q′

�xi
+Cq′ = 0, x∈�, 0<t<T,

Pq′ = h, x∈��W, 0<t<T,

Rq′ = g, x∈��F, 0<t<T,

q′(x,0) = f(x), x∈�.

(13)

Here, P and h specify the solid wall boundary conditions, R and g specify the far-field boundary
conditions and f :�→R5 is a given vector-valued function of initial data.

3.2.1. Non-reflecting far-field boundary conditions. Without far-field boundary conditions, non-
physical reflections of unsteady waves will be observed at the far-field. These unwanted reflections
can affect the accuracy of the simulation and possibly lead to numerical instability. An appropriate
far-field boundary condition is one that will suppress the reflection of waves from the outer
computational boundaries. This is the so-called non-reflecting boundary condition on ��F, specified
in the characteristic variables v′. All outgoing unsteady characteristic waves are allowed to exit
the flow domain at the far-field boundary without reflection, that is, without being allowed to
re-enter the domain through the boundary. This is accomplished by setting the components of v′
corresponding to characteristic waves traveling into � (those corresponding to negative eigenvalues

§The reader is referred to Section A.1 of the Appendix for explicit expressions of S, S−1 and v′. Note that under
the uniform base flow assumption, (11) simplifies to

�v′

�t
+S−1AiS

�v′

�xi
=0. (10)
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1352 I. KALASHNIKOVA AND M. F. BARONE

of An) to zero:

v′i←(v′f )i≡
{
0 if �i<0

v′i if �i�0,
(14)

for i=1, . . . ,5, with {�i : i=1, . . . ,5} denoting the five eigenvalues of the matrix An (the diagonal
entries of Kn). In matrix form, the far-field condition can be written as

RSv′ =0 on ��F, (15)

where

RS≡RS=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

05 if ūn<− c̄
diag{0,0,0,0,1} if − c̄<ūn<0

diag{1,1,1,0,1} if 0<ūn<c̄

I5 if ūn>c̄.

(16)

Here 05 is the 5×5 zero matrix, I5 is the 5×5 identity matrix and diag{·} denotes a diagonal matrix
with diagonal entries given by the set in between the brackets. The ranges in (16) correspond to the
four cases that can occur at the far-field: supersonic inflow (ūn<− c̄), subsonic inflow (−c̄<ūn<0),
subsonic outflow (0<ūn<c̄) and supersonic outflow (ūn>c̄).

3.2.2. Acoustically reflecting (no-penetration) solid wall boundary condition. In applications
where the domain � contains a stationary or moving solid wall boundary ��W, the natural choice
of boundary condition at the solid wall boundary is a linearized version of the no-penetration
boundary condition, u·n=−�̇:

u′n=−ū·∇�− �̇≡u′w on ��W. (17)

Here, � and �̇ are, respectively, the solid wall displacement and velocity in the −n direction, with
n denoting the outward unit normal to the solid wall boundary ��W and u′n≡u′ ·n. The linearized
no-penetration condition (17) is posed in the characteristic variables v′ as an acoustically reflecting
condition. Assuming that the base flow satisfies a no-penetration condition at the wall (ūn≡0
on ��W), the characteristic speeds are {0,0,0, c̄,−c̄}. In particular, the fourth characteristic is
outgoing and the fifth characteristic is incoming. For a stationary wall, specifying the acoustically
reflecting boundary condition amounts to setting the incoming characteristic, v′5, equal to the
outgoing characteristic, v′4. When the wall velocity is u′w≡u′w(x, y, t), the following relation
satisfies (17):

v′5=v′4−2u′w on ��W. (18)

That is, (18) and (17) are mathematically equivalent. Equation (18) can be written in matrix form as

PSv′ =h on ��W, (19)
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with

PS≡PS=

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

0

−1 1

⎞
⎟⎟⎟⎟⎟⎠ , h=

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

0

−2u′w

⎞
⎟⎟⎟⎟⎟⎠ , (20)

or

v′←v′w≡(v′1 v′2 v′3 v′4 v′4−2u′w)T on ��W. (21)

A stable and efficient weak implementation of the far-field (14) and solid wall (18) boundary
conditions is outlined in Section 4.4.

4. STABLE POD/GALERKIN METHOD FOR HYPERBOLIC SYSTEMS

4.1. Symmetrized compressible Euler equations

A key property of the hyperbolic system (6) is that it is symmetrizable;¶ that is, there exists
a symmetric, positive-definite matrix H such that {HAi : i=1,2,3} are all symmetric. The
symmetrizer of (6) is given by

H=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̄ 0 0 0 0

0 �̄ 0 0 0

0 0 �̄ 0 0

0 0 0 �2��̄2 p̄ �̄�2

0 0 0 �̄�2
(1+�2)

� p̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

where �2 is an arbitrary real, nonzero parameter. Pre-multiplying (6) by the matrix H yields the
following symmetrized system:

�(Hq′)
�t
+HAi

�q′

�xi
+HCq′ =0. (23)

Similarly, there exists a positive-definite symmetrizer‖

¶Among other hyperbolic systems of interest that are symmetrizable are the non-linear Euler equations [26], the
compressible Navier–Stokes equations [27], and the shallow water equations [28]. Most hyperbolic systems derived
from conservation laws can be symmetrized; see [29, Chapter 6]. A (non-unique) symmetrizer of a matrix (or set
of matrices) can be derived using the eigenvectors of the matrix (or matrices), following techniques presented by
Gustafsson in [24, 30]. Other symmetric forms of both the linearized Euler and linearized Navier–Stokes equations
can be found in Oliger and Sundstrom [25] and in Abarbanel and Gottlieb [31].
‖One may check positive-definiteness of Q by computing its eigenvalues, 1

2 �̄, �̄, �̄,� p̄/2c̄2,�2�̄2 p̄�, which are all >0
if � �=0.
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1354 I. KALASHNIKOVA AND M. F. BARONE

for the governing system of PDEs in the characteristic variables (11), denoted here by Q, which
has the property that the matrices {QS−1AiS : i=1,2,3} are all symmetric:

Q≡STHS=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̄− �̄n21(1−�2�̄ p̄) �̄n1n2(1−�2�̄ p̄) −�̄n1n3(1−�2�̄ p̄) 0 0

�̄n1n2(1−�2�̄ p̄) �̄− �̄n22(1−�2�̄ p̄) �̄n2n3(1−�2�̄ p̄) 0 0

−�̄n1n3(1−�2�̄ p̄) �̄n2n3(1−�2�̄ p̄) �̄− �̄n23(1−�2�̄ p̄) 0 0

0 0 0
1

2
�̄ 0

0 0 0 0
1

2
�̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

4.2. Symmetry inner product and Galerkin projection

As discussed in Section 2, in a POD/Galerkin ROM, the inner product defines the Hilbert space
on which the analysis proceeds. The inner product is also a mathematical expression for the energy
in the ROM. The majority of POD/Galerkin models for fluid flow use as the governing equation
set the incompressible Navier–Stokes equations. For these equations, the natural choice of inner
product is the L2(�) inner product. This is because in these models the solution vector is taken to
be the velocity vector u, so that ‖u‖L2(�) is a measure of the global kinetic energy in the domain
�. The L2(�) inner product is therefore physically sensible: the POD modes optimally represent
the kinetic energy present in the ensemble from which they are generated. The same is not true for
the compressible linearized Euler equations (6) with solution vector q′ as defined in Section 3.1.
This fact is discussed at length in [21, 32–34], where it is demonstrated on several test cases that
the L2(�) inner product for these equations does not correspond to an energy integral, meaning
if it is selected as the inner product defining the projection, the ROM does not satisfy the energy
conservation relation implied by the governing equations.

As we will show in Section 4.3, an appropriate choice of inner product for the system (6) is
the so-called ‘symmetry inner product’. For any symmetric positive-definite matrix M∈Rn×n and
bounded domain �⊂R3, define the (M,�)–inner product and (M,�)–norm by

(v1,v2)(M,�)≡
∫

�
vT1 Mv2 d�, ‖v‖(M,�)≡

√
(v,v)(M,�), (25)

for v1,v2,v∈Rn . The set of functions {f :�→Rn :‖f‖(M,�)<∞} taken together with the (M,�)–
inner product forms a Hilbert space. In the context of Equations (6) and (11), we will consider
the (H,�)-and (Q,�)-inner products, respectively, with H defined in (22) and Q in (24). Given
H (22), the expression for the symmetry inner product with respect to H over � is

(q′(1),q′(2))(H,�)=
∫

�

[
�̄u′(1) ·u′(2)+�2��̄2�′(1)�′(2)+ 1+�2

� p̄
+�2�̄(�′(2) p′(1)+�′(1) p′(2))

]
d�. (26)

The (H,�)-and (Q,�)-inner products are equivalent in the sense that

(q′(1),q′(2))(H,�)=(v′(1),v′(2))(Q,�), (27)
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where v′(1)=S−1q′(1), and similarly for v′(2). Using the relationship (24), it is straightforward to
show that, denoting /Sk ≡S−1/k and letting �M denote an orthogonal projection operator onto the
space HM (�) (see (1) and Section A.2 of the Appendix),

�Mq′ =
M∑
k=1

(/k,q
′)(H,�)/k=S

M∑
k=1

(/Sk ,v
′)(Q,�)/

S
k ≡S(�Mv′). (28)

Expanded in its modal basis, the ROM solutions q′M and v′M are expressed as:

q′M (x, t)=
M∑
k=1

ak(t)/k(x), v′M (x, t)=
M∑
k=1

ak(t)/
S
k (x). (29)

The components of the five-vector /k are denoted /ik for i=1, . . . ,5, that is /Tk =(	1
k 	2

k 	3
k 	4

k

	5
k). The Galerkin projection of the system of Equations (6) onto the j th POD mode in the

(H,�)-inner product is(
/ j ,

�q′M
�t

)
(H,�)

+
(
/ j ,Ai

�q′M
�xi

)
(H,�)

+(/ j ,Cq
′
M )(H,�)=0. (30)

Equation (30) gives rise to the following set of M linear ODEs for the time-dependent ROM
coefficients {a j (t) : j=1,2, . . . ,M}:

ȧ j (t)=−
M∑
k=1

ak(t)

(
/ j ,Ai

�/k
�xi

)
(H,�)

−
M∑
k=1

ak(t)(/ j ,C/k)(H,�). (31)

4.3. Stability of the Galerkin projection in the symmetry inner product

Before beginning a convergence analysis of a ROM for (6), it is crucial to ensure that the IBVP for
this system of equations is well-posed, and that the Galerkin projection in the chosen inner product
is stable. Theorem 4.3.1 gives sufficient conditions on the boundary conditions for well-posedness
of a hyperbolic IBVP of the form (13) and shows that the (H,�)-norm is an energy measure.
The proof, given in Section A.5 of the Appendix, is based on the energy approach: an IBVP is
well-posed if the energy associated with the analogous homogeneous IBVP (that is, the original
IBVP but with homogeneous Dirichlet boundary conditions and no source term) is bounded.∗∗

Theorem 4.3.1
Consider a bounded domain �⊂R3 with connected boundary ��=��W∪��F, ��W∩��F=∅.
Let nT ≡(n1 n2 n3) denote the outward-pointing unit normal vector to ��, and let Kn≡diag{�i }=
S−1AnS be the diagonal matrix containing the eigenvalues of An≡A1n1+A2n2+A3n3. The linear
hyperbolic IBVP (13) is well-posed if

5∑
i=1

�i [(v′w0)i ]2�0 and
5∑

i=1
�i [(v′f 0)i ]2�0, (32)

∗∗Refer to Section A.3 of the Appendix for formal definitions of well-posedness, quoted from [35].
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with energy estimate

‖q′(·,T )‖(H,�)�e
T/2‖f(·)‖(H,�), (33)

where 
 is an upper bound on the eigenvalues of the matrix††

B≡H−T/2 �(HAi )

�xi
H−1/2−H1/2CH−1/2−(H1/2CH−1/2)T (34)

Here, q′w (q′f ) is the state satisfying the boundary conditions on ��W (��F) (13); q′w0 (q′f 0) is
the state satisfying the homogenous form of the boundary conditions on ��W (��F), that is, (13)
with h=0 (g=0); v′w0=S−1q′w0, v

′
f 0=S−1q′f 0.

Proof
Given in Section A.5 of the Appendix. �

An immediate consequence of Theorem 4.3.1 is that, provided the IBVP (13) is well-posed, the
Galerkin projection of the ROM approximation q′M in the (H,�)–inner product is stable. Replacing
/ j in (30) by q′M , one obtains

1

2

d

dt
‖q′M‖2(H,�)=−

∫
�
q′TMHLq′M d�≡−(q′M ,Lq′M )(H,�), (35)

and the analysis proceeds exactly as in (A5)–(A8) but with q′ replaced with q′M . It follows that
if (32) holds, that is, if the IBVP (13) is well-posed, the semi-discrete Galerkin approximation
satisfies the definition of stability (Appendix A.4), with energy estimate

‖q′M (·,T )‖(H,�)�e
T/2‖q′M (·,0)‖(H,�), (36)

or, in terms of the ROM coefficients,
∑M

j=1 a2j (T )�exp{
T }∑M
j=1 a2j (0). In the uniform base flow

case (
≡0), (36) reduces to the following strong stability condition:

‖q′M (·,T )‖(H,�)�‖q′M (·,0)‖(H,�), (37)

or
∑M

j=1 a2j (T )�
∑M

j=1 a2j (0) in terms of the ROM coefficients.
The energy estimate (36) establishes the semi-boundedness of the governing spatial differential

operator L defined in (6) in the (H,�)–norm, from which it follows that (·, ·)(H,�) is an energy
inner product, with corresponding energy norm ‖·‖(H,�). As a consequence, the Galerkin projection
step (30) using the symmetry inner product is guaranteed to produce a stable ROM, provided
well-posed boundary conditions are prescribed. We emphasize again that the same is not true if
the Galerkin projection is performed using the L2(�) inner product, as exhibited in [21].

Theorem 4.3.1 can be used to show the well-posedness of the IBVP of interest here, namely
(13) with R defined in (16), g=0, and P and h defined in (20) (Corollary 4.3.2), from which
the stability of the corresponding Galerkin approximation q′M in the (H,�)-inner product follows
immediately.

††The shorthand (M1/2)T ≡MT/2 is employed, where M is a positive-definite matrix and M1/2 is its square root
factor, so that M=MT/2M1/2.
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Corollary 4.3.2
Let �⊂R3 be an open bounded domain with connected boundary ��=��W∪��F, ��W∩
��F=∅. Assume ūn=0 on ��W. Then the IBVP (13) with the acoustically reflecting boundary
condition (18) on ��W and the non-reflecting condition (14) on ��F is well-posed, with energy
estimate given by (33), and the corresponding Galerkin approximation q′M is stable with energy
estimate (36). In the case of uniform base flow (∇q̄≡0), these energy estimates simplify to

‖q′(·,T )‖(H,�)�‖f(·)‖(H,�), ‖q′M (·,T )‖(H,�)�‖q′M (·,0)‖(H,�) (38)

(that is, 
=0 in (33) and (36), respectively).

Proof
Substituting the components of (21) into the left-hand side of (32) and using the fact that ūn=0
at the wall:

5∑
i=1

�i [(v′w)i ]2= c̄(v′4)2− c̄(v′4−2u′w)2. (39)

The right-most expression in (39) is identically zero if u′w=0, that is, if one considers v′w0. By
condition (32), the acoustically reflecting boundary condition (21) on ��W is well-posed. For the
far-field non-reflecting boundary condition, observe from (14) that, by construction,⎧⎨

⎩
�i [(v′f 0)i ]2 = 0 if �i<0

�i [(v′f 0)i ]2 � 0 if �i�0,
(40)

as incoming characteristics (those for which �i<0) are zeroed out whereas outgoing characteristics
(those for which �i�0) are left unaltered. Since (32) is satisfied, the far-field condition (40) is
well-posed as well. By Theorem 4.3.1, the corresponding energy estimate in the (H,�)-norm is
(33). When the base flow is uniform �(HAi )/�xi≡0 and C≡0, so that B≡0 (34), meaning 
=0.
Thus, (33) reduces to the first expression in (38).

Noting that q′M satisfies the same set of equations as q′, by Theorem 4.3.1, well-posedness of
(13) with boundary conditions (18) and (14), shown above using the (H,�)-norm, implies stability
of the Galerkin approximation q′M in the (H,�)-norm, with energy estimate (36). When 
=0,
this estimate reduces to the second expression in (38). �

One can see from Corollary 4.3.2 that the uniform base flow assumption yields a clean stability
analysis, since the mean flow supports only neutral or decaying disturbances (38). In the non-
uniform base flow case, there may exist exponentially growing instabilities, for example, the
Kelvin–Helmholtz shear layer instability. It is then difficult to distinguish between natural instability
modes supported by the continuous equations and spurious instabilities generated by the numerical
discretization.

4.4. Stability preserving implementation of the solid wall and far-field boundary conditions

An efficient implementation of boundary conditions for a Galerkin ROM is through a weak
formulation. The system of PDEs (6) is projected onto the j th POD mode in the (H,�)-inner
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product, the advection term in (6) is integrated by parts, and the vector specifying the boundary
condition is inserted into the boundary integral over �� that arises:(

/ j ,
�q′M
�t

)
(H,�)

=−
∫

��W

/Tj HAnq′w dS︸ ︷︷ ︸
≡IW j

−
∫

��F

/Tj HAnq′f dS︸ ︷︷ ︸
≡IFj

+
∫

�

[
�

�xi
[/Tj HAi ]−/Tj HC

]
q′M d�. (41)

Performing an additional integration by parts on the first term in the volume integral in (41) yields∫
�

�
�xi
[/Tj HAi ]q′M d�=

∫
��W

/Tj HAnq′M dS+
∫

��F

/Tj HAnq′M dS−
∫

�
/Tj HAi

�q′M
�xi

d�, (42)

so that (41) is equivalent to(
/ j ,

�q′M
�t

)
(H,�)

=−
(
/ j ,Ai

�q′M
�xi
+Cq′M

)
(H,�)

+
∫

��W

/Tj HAn(q′M−q′w)dS

+
∫

��F

/Tj HAn(q′M−q′f )dS. (43)

Inviscid compressible flow conditions are most often implemented in terms of the characteristic
variables v′w, so that q′w←Sv′w (and similarly for q′f ) in the appropriate boundary integral in (43).

Next, the modal representation q′M←
∑M

k=1 ak(t)/k is inserted into (43) to yield the following
system of M ODEs for the ROM coefficients: for j=1, . . . ,M

ȧ j (t)=−
M∑
k=1

ak(t)

(
/ j ,Ai

�/k
�xi
+C/k

)
(H,�)

+
M∑
k=1
[ak(t)IWu jk− IW j ]+

M∑
k=1
[ak(t)IFu jk− IFj ],

(44)

where

IWu jk ≡
∫

��W

/Tj HAn/k dS, IFu jk ≡
∫

��F

/Tj HAn/k dS, (45)

IW j ≡
∫

��W

/Tj HSKnv′w dS, IFj ≡
∫

��F

/Tj HSKnv′f dS. (46)

are the boundary integral expressions appearing in the j th ROM equation.‡‡ To solve for the ROM
coefficients, (44) is advanced in time using a time-integration scheme.

‡‡Explicit expressions of the integrals IFj in terms of the ROM coefficients and basis functions are given in the
Appendix of Barone et al. [21].
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Remark 1
Note that (43) is the projection of the equations

�q′M
�t
+Ai

�q′M
�xi
+Cq′M=An(q′M−q′w)���W

+An(q′M−q′f )���F
(47)

onto / j in the (H,�) inner product, where ��� is an indicator function marking the boundary ��:

���≡
{
1 for x∈��

0 otherwise.
(48)

Formulating a boundary condition using the penalty method [22, 36–38] amounts to rewriting the
given (generic) boundary value problem as:

{
Lu−f=0, in �

Bu=h, on ��
→ Lu−f=−C(Bu−h)��� in �∪��, (49)

where C is a matrix of penalty parameters selected such that stability is preserved. The right-hand
side of (47) is a penalty-like formulation of the far-field and solid-wall boundary conditions in
which the matrix −An plays the role of C, and will be employed in the subsequent convergence
analysis (Section 5). The projection of (47) in the (H,�) inner product is stable by Corollary 4.3.2.

5. CONVERGENCE ANALYSIS AND A PRIORI ERROR ESTIMATES

We are now ready to present a priori error estimates for the Galerkin ROM with boundary condi-
tions. These error bounds are derived by adapting techniques traditionally used in the numerical
analysis of spectral approximations to PDEs [22] and employ the stable penalty-like formulation
exhibited in the previous section (Remark 1). The estimates (Theorem 5.2.3) show that the ROM
solution does not blow up in finite time and give insight into the conditions for convergence of
the ROM solution to the exact solution. This error bound is computable (Section 6), provided the
error in the CFD solution ‖q′h−q′‖(H,�) can be estimated in some way.

5.1. Mathematical preliminaries and formulation

There are three solutions one can speak of in the context of the ROM, belonging to the following
three Hilbert spaces, all subspaces of R5:

q′(x, t)∈H(�), q′h(x, t)∈Hh(�), q′M (x, t)∈HM (�). (50)

The Hilbert spaces H(�) are essentially weighted L2(�) spaces, formed by equipping the vector
space of functions {f :�→R5 :‖f‖(H,�)<∞} with the (H,�)-inner product (26). q′ denotes the
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exact solution to the IBVP for (6), q′h denotes the computed CFD solution and q′M denotes the
computed ROM solution. The exact solution in the characteristic variables q′ ∈H(�) satisfies

�q′

�t
+Ai

�q′

�xi
+Cq′ = 0, x∈�, 0<t<T,

q′−q′w = 0, x∈��W, 0<t<T,

q′−q′f = 0, x∈��F, 0<t<T,

q′(x,0) = f(x), x∈�.

(51)

Here f :�→R5 is a given vector-valued function of initial data, q′w=Sv′w is the vector defining
the solid-wall boundary condition (21) and q′f =Sv′f is the vector defining the far-field boundary

condition (14). The CFD solution q′h(x, t)∈Hh(�)⊂R5 as defined in (50) is piecewise continuous
in space and in time. In the numerical implementation, the CFD solution q′h is considered as semi-
discrete: that is, it is discrete in space and continuous in time. The CFD data may be generated using
virtually any relevant numerical method.§§ Motivated primarily by Funaro and Gottlieb [22], the
ROM solution, q′M , is defined as the solution to the following IBVP with a penalty-type boundary
treatment for 0<t<T :

�q′M
�t
+Ai

�q′M
�xi
+Cq′M = An[q′M−q′w]���W

+An[q′M−q′f ]���F
, x∈�∪��W∪��F,

q′M (x,0) = f(x), x∈�.

(52)

The right-hand side of (52) involves the penalty-like formulation of the boundary conditions
exhibited in Section 4.4. Its Galerkin projection in the (H,�) inner product is stable by Remark 1.

Let q′ ∈H(�) and q′M ∈HM (�). Let e≡�Mq′−q′M , where �M :H(�)→HM (�) is an
orthogonal projection operator satisfying properties 1–6 listed in Section A.2 of the Appendix. In
the context of the ROM, the natural definition of �M is (28). Applying �M to (51) gives

�(�Mq′)
�t

+Ai
�(�Mq′)

�xi
+C�Mq′+

[
�M

(
Ai

�q′

�xi
+Cq′

)
−
(
Ai

�(�Mq′)
�xi

+C�Mq′
)]
=0, x∈�,

�M (q′−q′w)=0, x∈��W,

�M (q′−q′f )=0, x∈��F,

�Mq′(x,0)=�M f(x), x∈�.

(53)

§§ In the current implementation, the CFD data are represented as piecewise linear fields. Discretizing the domain �
into n grid-points and denoting the CFD solution at the i th grid-point as q′h(xi , t), the discretized CFD solution
vector is then q̂′h(t)≡(q′h(x1, t) . . . q′h(xn, t))T . The reader is referred to [21] for a thorough discussion of
the finite element representation of the CFD solution.
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for 0<t<T . Now, subtracting (52) from (53), one has that

�e
�t
+Ai

�e
�xi
+Ce+w = An[e−ew]���W

+An[e−e f ]���F
, x∈�∪��W∪��F, 0<t<T,

e(x,0) =�M f(x)−f(x), x∈�,

(54)

where ew≡�Mq′w−q′w, e f ≡�Mq′f −q′f and

w≡�M

(
Ai

�q′

�xi
+Cq′

)
−
(
Ai

�(�Mq′)
�xi

+C�Mq′
)
=�M (Lq′)−L(�Mq′). (55)

5.2. Error estimates in the H(�) Hilbert space

In the upcoming proofs, the shorthand

v′M≡(v′1,M v′2,M v′3,M v′3,M v′5,M )T , �Mv′ ≡(v′1,� v′2,� v′3,� v′4,� v′5,�)T (56)

will be employed, where, as expected v′M=S−1q′M and, from (28), �Mv′ =S−1�Mq′ so that

e=S(�Mv′−v′M )≡SeS, (57)

and similarly for ew and e f . We begin by proving the following two lemmas.

Lemma 5.2.1
Let q′ ∈H(�) satisfy (51) and let q′M ∈HM (�) satisfy (52). Denote e≡�Mq′−q′M , ew≡�Mq′w−
q′w, e f ≡�Mq′f −q′f with e satisfying (54). Then

‖e(·,T )‖2(H,�)�exp{1+
T }‖e(·,0)‖2(H,�)+T
∫ T

0
‖w(·, t)‖2(H,�) dt, (58)

where w is defined in (55) and 
 is an upper bound on the eigenvalues of the matrix B
defined in (34).

Proof
Begin with (54). Taking the inner product with e, integrating by parts and exploiting the symmetry
property of the HAi matrices gives

1

2

d

dt
‖e‖2(H,�) =

1

2

∫
�
eTHT/2BH1/2ed�+

∫
��W

eTHAn

(
1

2
e−ew

)
dS

+
∫

��F

eTHAn

(
1

2
e−e f

)
dS−(w,e)(H,�)

� 1

2

‖e‖2(H,�)+

∫
��W

eTHAn

(
1

2
e−ew

)
dS+

∫
��F

eTHAn

(
1

2
e−e f

)
dS

−(w,e)(H,�), (59)
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where 
 is an upper bound on the eigenvalues of the matrix B defined in (34). By (57) and
employing the relation (24),∫

��W

eTHAn

(
1

2
e−ew

)
dS =

∫
��W

(eS)TQKn

(
1

2
eS−eSw

)
dS, (60)

∫
��F

eTHAn

(
1

2
e−e f

)
dS =

∫
��F

(eS)TQKn

(
1

2
eS−eSf

)
dS. (61)

Exploiting the fact that Q is symmetric positive definite and QKn=KnQ, as in the proof of
Theorem 4.3.1 (Section A.5 of the Appendix), (59) can be written as:

1

2

d

dt
‖e‖2(H,�) �

∫
��W

QT/2

[
5∑

i=1
�i

(
1

2
(eSi )2−eSi [(eSw)i ]

)]
Q1/2 dS

+
∫

��F

QT/2

[
5∑

i=1
�i

(
1

2
(eSi )2−eSi [(eSf )i ]

)]
Q1/2 dS−(w,e)(H,�)

+1
2

‖e‖2(H,�). (62)

Then, from the solid wall boundary condition (21) and employing the shorthand (56),

5∑
i=1

�i

(
1

2
(eSi )2−eSi [(eSw)i ]

)
= c̄

[
1

2
(eS4 )2−eS4 (eSw)4− 1

2
(eS5 )2+eS5 (eSw)5

]

= 1

2
c̄[−(v′4,�−v′4,M )2−(v′5,�−v′5,M )2

+2(v′5,�−v′5,M )(v′4,�−v′4,M )]. (63)

By Young’s inequality,

2(v′5,�−v′5,M )(v′4,�−v′4,M )�(v′4,�−v′4,M )2+(v′5,�−v′5,M )2. (64)

Substituting this bound into the right-hand side of (63) gives

5∑
i=1

�i

(
1

2
(eSi )2−eSi [(eSw)i ]

)
�0. (65)

Equation (65) implies that the term (60) can be omitted from (62), as it is non-positive. Turning
our attention to the integral over ��F, remark that, from (14),

(eSf )i=
{
0 if �i<0,

eSi if �i�0.
(66)

It follows that

5∑
i=1

�i

(
1

2
(eSi )2−eSi [(eSf )i ]

)
=−1

2

5∑
i=1

∑
�i�0

�i (e
S
i )2�0, (67)
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which implies that the expression (61) is also non-positive and can be omitted from (62). Thus,
(62) simplifies to, invoking Young’s inequality,

d

dt
‖e‖2(H,�)�−2(w,e)(H,�)+
‖e‖2(H,�)�

(
1

T
+


)
‖e‖2(H,�)+T ‖w‖2(H,�). (68)

Applying Gronwall’s Lemma to (68) gives (58). �

Lemma 5.2.2
Let w be as defined in (55). Let q′h ∈Hh(�) be the CFD solution. Then the following bound holds

‖w(·,T )‖avg
(H,�)

� ‖�M (L{q′−q′h})(·,T )‖avg
(H,�)
+‖L{�M (q′−q′h)}(·,T )‖avg

(H,�)

+‖{�M (Lq′h)−L(�Mq′h)}(·,T )‖avg
(H,�)

. (69)

where

‖q′‖avg
(H,�)
≡
√

1

T

∫ T

0
‖q′‖2

(H,�)
dt . (70)

is the ‘time-averaged’ (H,�)-norm.

Proof
Let q′h ∈Hh(�) be the CFD solution. From (55) and applying the Minkowski inequality,

‖w(·,T )‖avg
(H,�)

=
(
1

T

∫ T

0
‖�M (Lq′)−L(�Mq′)‖2(H,�) dt

)1/2

=
(
1

T

∫ T

0
‖�M (Lq′)−�M (Lq′h)+�M (Lq′h)−L(�Mq′)

+L(�Mq′h)−L(�Mq′h)‖2(H,�) dt

)1/2

�

√
1

T

∫ T

0
‖�M (L{q′−q′h})‖2(H,�)

dt+
√

1

T

∫ T

0
‖L{�M (q′−q′h)}‖2(H,�)

dt

+
√

1

T

∫ T

0
‖�M (Lq′h)−L(�Mq′h)‖2(H,�)

dt . (71)

Recognizing the expressions in (71) as time-averaged (H,�)–norms gives (69). �

Lemmas 5.2.1 and 5.2.2 lead to the following theorem, in which the error in the ROM solution
‖(q′−q′M )(·,T )‖(H,�) is bounded in the space H(�).
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Theorem 5.2.3
Let q′ ∈H(�) satisfy (51) and q′M ∈HM (�) satisfy (52). Let �M :H(�)→HM (�) be an orthog-
onal projection operator satisfying properties 1–6 of Section A.2 of the Appendix, and let e≡
�Mq′−q′M . Let q′h ∈Hh(�) be the CFD solution. Then

‖(q′−q′M )(·,T )‖(H,�) � exp{ 12 (1+
T )}‖e(·,0)‖(H,�)+‖(q′h−�Mq′h)(·,T )‖(H,�)

+T ‖{�M (Lq′h)−L(�Mq′h)}(·,T )‖avg
(H,�)
+2‖(q′−q′h)(·,T )‖(H,�)

+T ‖�M (L{q′−q′h})(·,T )‖avg
(H,�)
+T ‖L{�M (q′−q′h)}(·,T )‖avg

(H,�)
,

(72)

where 
 is an upper bound on the eigenvalues of the matrix B defined in (34).

Proof
Note that q′−q′M=q′−�Mq′+�Mq′−q′M=(q′−�Mq′)+e. By the triangle inequality,

‖(q′−q′M )(·,T )‖(H,�)�‖(�Mq′−q′)(·,T )‖(H,�)+‖e(·,T )‖(H,�), (73)

where ‖e(·,T )‖2
(H,�)

is bounded according to (58). Applying the triangle inequality again and
using the fact that ‖�M‖(H,�)=1, �M being an orthogonal projector (see Section A.2 of the
Appendix):

‖q′−�Mq′‖(H,�) = ‖q′−�Mq′+q′h−�Mq′h−q′h+�Mq′h‖(H,�)

� ‖q′h−�Mq′h‖(H,�)+‖q′−q′h‖(H,�)+‖�M (q′−q′h)‖(H,�)

� ‖q′h−�Mq′h‖(H,�)+(1+‖�M‖(H,�))‖q′−q′h‖(H,�)

= ‖q′h−�Mq′h‖(H,�)+2‖q′−q′h‖(H,�). (74)

Substituting (74) into (73) gives

‖(q′−q′M )(·,T )‖(H,�)�‖(q′h−�Mq′h)(·,T )‖(H,�)+2‖(q′−q′h)(·,T )‖(H,�)+‖e(·,T )‖(H,�). (75)

Using the fact that
∫
� f 2 d��(

∫
� | f |d�)2 and the inequalities (58) and (69), we have

‖e(·,T )‖(H,�) � {e1+
T ‖e(·,0)‖2(H,�)+T 2(‖w(·, t)‖avg
(H,�)

)2}1/2

� e
1
2 (1+
T )‖e(·,0)‖(H,�)+T ‖w(·,T )‖avg

(H,�)

� e
1
2 (1+
T )‖e(·,0)‖(H,�)+T ‖�M (L{q′−q′h})(·,T )‖avg

(H,�)

+T ‖L{�M (q′−q′h)}(·,T )‖avg
(H,�)
+T ‖{�M (Lq′h)−L(�Mq′h)}(·,T )‖avg

(H,�)
.

(76)

Substituting (76) into (75) gives (72). �
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Table I. Nomenclature for the terms present in the error estimate (77).

Term Name Symbol

‖(q′−q′M )(·,T )‖(H,�) ROM solution error �ROM
‖e(·,0)‖(H,�) Initial ROM subspace error �0
‖(q′h−�Mq′h)(·,T )‖(H,�) CFD representation error �rep
‖{�M (Lq′h)−L(�Mq′h)}(·,T )‖avg

(H,�)
CFD operator representation error �Lrep

‖(q′−q′h)(·,T )‖(H,�) CFD solution error �CFD
‖�M (L{q′−q′h})(·,T )‖avg

(H,�)
+

‖L{�M (q′−q′h)}(·,T )‖avg
(H,�)

CFD operator error �L

e
1
2 (1+
T )�0+�rep+T �Lrep+2�CFD+T �L Total error estimate �tot

Let us analyze the estimate (72), repeated below for clarification and emphasis:

‖(q′−q′M )(·,T )‖(H,�)︸ ︷︷ ︸
�ROM

� e
1
2 (1+
T ) ‖e(·,0)‖(H,�)︸ ︷︷ ︸

�0

+‖(q′h−�Mq′h)(·,T )‖(H,�)︸ ︷︷ ︸
�rep

+T ‖{�M (Lq′h)−L(�Mq′h)}(·,T )‖avg
(H,�)︸ ︷︷ ︸

�Lrep

+2‖(q′−q′h)(·,T )‖(H,�)︸ ︷︷ ︸
�CFD

+T [‖�M (L{q′−q′h})(·,T )‖avg
(H,�)
+‖L{�M (q′−q′h)}(·,T )‖avg

(H,�)
]︸ ︷︷ ︸

�L

.

(77)

The error terms comprising (77) are named in Table I for ease of reference.
The initial error �0 is the difference (57) between the ROM solution and the projection of the

exact solution onto the POD subspace at time t=0. For non-uniform mean flow (
 �=0), this
‘initial subspace error’ is amplified by the time-dependent factor e
T/2. The last two terms in (77),
2�CFD+T �L , are essentially estimates of the error in the CFD solution. These terms converge,
provided the error in the CFD solution q′h relative to the exact solution q′ is bounded as the CFD
mesh is refined. A consequence of the POD approach for model reduction is that the second term
in (77), the ‘CFD representation error’ �rep, also converges: that is, �Mq′h→q′h provided both N
(the number of snapshots used in constructing the ROM)→∞ and M (the basis size)→∞.

It turns out that some additional analysis is required to show rigorously the convergence of
the third term in (77), the ‘CFD operator representation error’ �Lrep . As it stands, convergence of
this term is not apparent. This is because in the POD approach, the ROM basis is constructed
to represent well q′h , and not to represent Lq′h . Representing Lq′h is nonetheless critical to
the performance of the ROM. Recalling that, from the governing equations, Lq′ =−dq′/dt , and
characterizing the numerical time integration error for the CFD solution with time step increment
�t as Lq′h=−dq′h/dt+�tr for some r�1, it can be shown (Lemma 5.2.4) that as the time
increment between CFD snapshots and the representation error of the snapshots by the POD basis
both decrease to zero, �Lrep also converges conditionally.
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Lemma 5.2.4
Let q′h ∈Hh(�) be the CFD solution, with time derivative q̇′h≡dq′h/dt . Consider the case where
P equally spaced CFD snapshots are used to construct the POD basis, with time increment �tp
separating each snapshot, so that the time derivative of the CFD solution can be estimated using
a stable polynomial approximation of the form

q̇′h=
1

�t P−1p

P∑
j=1

g jq
′ j
h +O(�t P−1p ), (78)

for some weights g j ∈R, j=1, . . . , P . Let �M :H(�)→HM (�) be an orthogonal projection
operator satisfying properties 1–6 of Section A.2 of the Appendix and characterize the numerical
time integration error in the CFD solution by

q̇′h+Lq′h=O(�tr ), r�1, (79)

where �t is the time step increment. Then

‖{�M (Lq′h)−L(�Mq′h)}(·,T )‖avg
(H,�)

� ‖L{�Mq′h−q′h}(·,T )‖avg
(H,�)

+ 1

�t P−1p

P∑
j=1

g j‖(�Mq′h−q′h)(·, t j )‖avg(H,�)

+max{O(�tr ),O(�t P−1p )}. (80)

Proof
Note first the identity

�M (Lq′h)=�M (−q̇′h+ q̇′h+Lq′h)=−�M q̇′h+�M (q̇′h+Lq′h). (81)

One also has that

L(�Mq′h)=L(�Mq′h−q′h+q′h)
=L(�Mq′h−q′h)+Lq′h
=L(�Mq′h−q′h)− q̇′h+(q̇′h+Lq′h)

=L(�Mq′h−q′h)− q̇′h+O(�tr ). (82)

where O(�tr ) with r�1 is a measure of the projection of the temporal error in the CFD solution,
which depends on the time step used in the CFD calculation and the order r of the CFD time
integration scheme. Taking the norm of the difference between (82) and (81), applying the triangle
inequality and invoking the fact that ‖�M‖avg(H,�)

=1 (Section A.2 of the Appendix) gives

‖�M (Lq′h)−L(�Mq′h)‖avg(H,�)
= ‖L(�Mq′h−q′h)+�M q̇′h− q̇′h−�M (q̇′h+Lq′h)+O(�tr )‖avg

(H,�)

� ‖L(�Mq′h−q′h)‖avg(H,�)
+‖�M q̇′h− q̇′h‖avg(H,�)

+‖�M‖avg(H,�)
‖q̇′h−Lq′h‖avg(H,�)

+O(�tr )

� ‖L(�Mq′h−q′h)‖avg(H,�)
+‖�M q̇′h− q̇′h‖avg(H,�)

+O(�tr ). (83)
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Consider the case where P equally spaced CFD snapshots are used to construct the POD basis, with
time increment �tp separating each snapshot, so that the time derivative of the CFD solution can be
estimated using a polynomial approximation of the form (78). The projection of this approximation
onto HM (�) is

�M q̇′h=
1

�t P−1p

P∑
j=1

g j�Mq′ jh +O(�t P−1p ). (84)

Taking the difference between (84) and q̇′h :

�M q̇′h− q̇′h=
1

�t P−1p

P∑
j=1

g j (�Mq′ jh −q′ jh )+O(�t P−1p ). (85)

Substituting (85) into (83) and applying the triangle inequality gives (80). �

Lemma 5.2.4 implies a conditional convergence of the ‘CFD operator representation error’ ELrep .
The expression L(�Mq′h−q′h) in (83) converges to zero as the size of the POD basis increases to
infinity; the O(�tr ) term converges to zero as the CFD time step decreases to zero. The remaining
term in (83), �M q̇′h− q̇′h , is now required to converge. From Equation (85), one can see that this
term is bounded provided that the numerator of the first term on the right-hand side of (85) is
kept sufficiently small as the snapshot interval (the denominator) goes to zero. If this holds, the
projection of the time derivative converges as both the time increment between CFD snapshots
decreases to zero and as the representation error of the snapshots by the POD basis decreases to
zero (that is, as the size of the basis increases to infinity).

Remark 2
The ‘conditional convergence’ of the �M q̇′h− q̇′h term is of the same type of result as obtained
by Kunisch and Volkwein [20, Corollary 4.9]. One may obtain a stronger convergence result by
taking snapshots of the time derivative q̇′ in the construction of the ROM, an approach considered
in [20]. In that case, ‖�M q̇′h− q̇′h‖avg(H,�)

→0 as N ,M→∞ just like �rep→0 as N ,M→∞ as
a direct consequence of the POD approach. The ROM proposed herein does not involve taking
snapshots of the q̇′ field, and so the conditional convergence implied by (85) is inevitable given
the current formulation. We emphasize, however, that there is nothing that precludes one from
constructing the ROM by taking snapshots of the time-derivatives as well if one desires to obtain
the stronger convergence result.

The boundedness of the right-hand side of (77) implies convergence of q′→q′M in the (H,�)–
norm, with error estimate (77). This estimate is computable, provided an a posteriori estimator of
the error in the CFD solution q′h relative to the exact solution q′ is available (Section 6).

6. NUMERICAL RESULTS

The convergence estimates of the previous section are now examined using a ROM constructed
from CFD solutions of an IBVP for which an exact solution is known. The problem is the
propagation and reflection from two parallel walls of a cylindrical acoustic pulse in a uniform
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mean flow. The mean flow velocity is taken to be uniform in the x-direction with the Mach number
M∞≡ ū/c̄=0.25. The initial condition at time t=0 is

p′

�̄c̄2
=0.1M2∞ exp{−(x−x0)2−(y− y0)

2}, �′

�̄
=− p′

�̄c̄2
, u′ =v′ =w′ =0, (86)

with (x0, y0)=(10,−1). The exact solution for this IBVP can be found in [39]. The numerical
solution was computed on a 3D rectangular prism domain, with extent 0�x�20, −5�y�5,
0�z�1. The grid was composed of approximately 212 000 nodes that were interconnected to form
unstructured tetrahedral elements. Slip wall boundary conditions were applied on the constant y
and z boundaries. The AERO-F node-centered finite volume code [40] was used to generate the
time-accurate CFD solutions. The CFD simulation was run for a non-dimensional time of Ttot=6.4
using 624 time steps. Snapshots were saved every four time steps beginning at time t= t0=0.57
and ending at t=Ttot, and these were used to generate a fourteen-mode POD basis.

The ROMs were built by projecting the linearized Euler equations onto the POD basis using the
symmetry inner product (26). The CFD snapshots and the resulting POD modes were represented
using piece-wise linear tetrahedral finite elements and all projection inner products were computed
using exact quadratures of these representations. This approach, described in detail in [21], ensures
that the stability results of the present analysis are preserved by the discrete implementation. The
ROMs were integrated in time using a fourth order Runge-Kutta scheme with the same time step
that was used in the CFD computation. It was found through numerical experimentation that this
time step was small enough to ensure the time step independence of the ROM solutions.

Figure 1 shows the pressure field at time t− t0=5.0 for the CFD solution, compared with
solutions reconstructed from six- and fourteen-mode ROM solutions. For this solution time the
pulse has reflected from the bottom wall and is beginning to reflect from the top wall. The six-mode
ROM solution shows significant differences from the CFD solution, whereas the fourteen-mode
ROM solution is very nearly indistinguishable from the CFD solution.

The error terms appearing in (77) were computed using the available exact solution, the CFD
solution and the ROM solution. Terms involving integration in time were approximated using the
trapezoidal rule for numerical integration. Figure 2 shows the error estimates for the six-mode ROM
and the fourteen-mode ROM, compared with the actual ROM solution error. The ROM solution
error is well below the total error estimate for the entire time history. The conservative nature of the
total error estimate is traced primarily to the ‘operator representation error’ term. For the six-mode
ROM, the ROM solution error is well above the CFD solution error and tracks reasonably well with
the CFD representation error. As the number of basis functions increases to fourteen, the ROM
solution error drops below the CFD solution error term. The CFD representation error is reduced by
about two orders of magnitude from the six-mode case, whereas the operator representation error
drops only by about a factor of approximately three. The operator representation error evidently
does not prohibit the ROM solution error from approaching the CFD solution error, however. We
note, for clarity, that the CFD and ROM errors in Figure 2(b) are not constant as they appear;
rather, these errors increase very slightly over the time interval studied.

Figure 3 shows the average error (expressed in the ‖·‖avg
(H,�)

norm) of the ROM solution as a
function of the basis size used to construct the ROM. The ROM solution error approaches the
CFD solution error as the basis size increases, leveling out close to the CFD error. This result
confirms the intuitive argument that a ROM can only be as accurate as the CFD solutions used to
construct it. It also demonstrates that, given a sufficiently rich POD basis, the present projection
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Figure 1. Pressure field at time t−t0=5.0: (a) CFD solution; (b) six-mode ROM
solution; and (c) fourteen-mode ROM solution.
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Figure 2. Error estimates and ROM solution error (broken line): (a) Six-mode
ROM and (b) fourteen-mode ROM.

approach is capable of recovering the accuracy of the original CFD model. Interestingly, the ROM
error is slightly lower than the CFD solution error when twelve or fourteen modes are used. This
seemingly counterintuitive result is not inconsistent with the POD/Galerkin approach for model
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Figure 3. Error ‖q′M−q′‖avg(H,�) in the ROM solution as a function of basis size, compared with the error

‖q′h−q′‖avg(H,�) in the CFD solution error.

reduction. The POD basis forms an approximation for the CFD solution space, and the ROM
solution necessarily lies in this space. However, the CFD solution trajectory through this space is
not necessarily the best one. The projection can (and does for a twelve or fourteen mode ROM) give
a solution trajectory through the space that is slightly closer to the exact solution. This suggests
that a slightly more accurate ROM may result from projecting the original continuous equations
rather than projecting the discretized equations. It is not clear, however, whether this result is
general or specific to our particular test case.

7. CONCLUSIONS

A reduced order model (ROM) for the compressible, linearized Euler equations, based on the proper
orthogonal decomposition (POD)/Galerkin projection method, has been developed and tested. In
the proposed model reduction technique, the Galerkin projection step is applied to the original
continuous equations, rather than their discretized analogs. A symmetry inner product is defined
such that the application of the Galerkin projection method in this inner product is guaranteed to
produce stable ROMs for the governing fluid equations. It is shown that both the formulation of
the initial boundary value problem (IBVP) of interest and the choice of inner product used in the
Galerkin projection step are crucial to stability and convergence of the ROM. Sufficient conditions
for well-posed and stable boundary conditions on the far-field and solid wall boundaries are stated
and proven. A non-reflecting far-field and acoustically reflecting solid wall boundary treatment is
developed such that numerical stability of the entire Galerkin scheme with boundary conditions
is preserved. The specific penalty-like formulation that arises in the application of these boundary
conditions motivates a convergence estimate analysis resembling the analysis in [22] and leads
to a priori error bounds for the ROM solution. The derived error estimates are computed for the
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test case of a cylindrically propagating and reflecting acoustic pulse, for which an exact solution
is available. The ROM solution error remains bounded by the estimates, which for this test case
gives conservative estimates. The average ROM solution error converges to slightly below the
average CFD solution error as the ROM basis size is increased, indicating that for a sufficiently
rich basis the present approach is capable of giving an accurate and stable representation of the
full CFD model. The primary accomplishment of this work is the mathematically rigorous analysis
of the numerical properties of a ROM for compressible flow. This analysis leads to a much better
understanding of these properties and places issues such as stability and convergence of the ROM
on a firmer mathematical footing.

APPENDIX A

A.1. Diagonalization of An

Let An≡A1n1+A2n2+A3n3. The matrices S that diagonalize An (so that An=SKnS−1, with Kn
given in (9)) are:

S=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 n3 n2
1

2
n1 −1

2
n1

n3 0 −n1 1

2
n2 −1

2
n2

−n2 −n1 0
1

2
n3 −1

2
n3

n1 −n2 n3 − �̄

2c̄
− �̄

2c̄

0 0 0
� p̄

2c̄

� p̄

2c̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S−1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 n3 −n2 n1
�̄

� p̄
n1

n3 0 −n1 −n2 − �̄

� p̄
n2

n2 −n1 0 n3
�̄

� p̄
n3

n1 n2 n3 0
c̄

� p̄

−n1 −n2 −n3 0
c̄

� p̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

It follows that

v′ ≡ S−1q′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(n3u
′
2−n2u′3+n1�′)+

�̄

� p̄
n1 p
′

(n3u
′
1−n1u′3−n2�′)−

�̄

� p̄
n2 p
′

(n2u
′
1−n1u′2+n3�′)+

�̄

� p̄
n3 p
′

u′n+
�̄

c̄
p′

−u′n+
�̄

c̄
p′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M∑
k=1

⎡
⎣n1

⎛
⎝	4

k+
(

�̄

c̄

)2

	5
k

⎞
⎠−n2	3

k+n3	2
k

⎤
⎦ak(t)

M∑
k=1

⎡
⎣−n1	3

k−n2
⎛
⎝	4

k+
(

�̄

c̄

)2

	5
k

⎞
⎠+n3	1

k

⎤
⎦ak(t)

M∑
k=1

⎡
⎣−n1	2

k+n2	1
k+n3

⎛
⎝	4

k+
(

�̄

c̄

)2

	5
k

⎞
⎠
⎤
⎦ak(t)

M∑
k=1

[
n1	

1
k+n2	2

k+n3	3
k+

�̄

c̄
	5
k

]
ak(t)

M∑
k=1

[
−n1	1

k−n2	2
k−n3	3

k+
�̄

c̄
	5
k

]
ak(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

where /Tk ≡(	1
k 	2

k 	3
k 	4

k 	5
k)∈R5 is the ROM basis vector.

A.2. Projection operator

Let V and VM be vector spaces. By definition, a projection operator �M :V→VM has the
following properties:

1. For all u∈V, �M (�Mu)=�Mu (that is, �M is idempotent).
2. For all u,v∈V, �M (u+v)=�Mu+�Mv (that is, �M is linear).
3. ‖�M‖=1 for any norm ‖·‖ on V (a consequence 1. above).
4. For all u∈V, �(�Mu)/�t=�M (�u/�t) (that is, �M is a spatial-only operator, so time-

differentiation commutes with projection).
5. For all v∈VM , �Mv=v.
6. For all v∈(VM )⊥, �Mv=0 (here (VM )⊥ denotes the subspace orthogonal to VM ).

A.3. Well-posedness

Consider a general IBVP of the form

�u
�t
= Pu+F, t�0,

Bu = g,

u = f, t=0,
(A3)

Here, P is a differential operator in space, and B is a boundary operator acting on the solution at
the spatial boundary.

Definition 2.8 in [35]: The IBVP (A3) is well-posed if for F=0, g=0, there is a unique solution
satisfying ‖u(·, t)‖�Ke
t‖ f (·)‖, where K and 
 are constants independent of f (x).
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A.4. Stability

Consider the following semi-discrete problem:

du j

dt
= Qu j+Fj , j=1,2, . . . ,N−1,

Bhu = g(t),

u j (0) = f j , j=1,2, . . . ,N ,

(A4)

where Q is a discretizing operator, Fj and f j are the discretized version of F and f , respectively,
and Bhu denotes the complete set of discretized boundary conditions. Let ‖·‖h be a discrete norm.

Definition 2.11 in [35]: The semi-discrete IBVP (A4) is stable if there is a unique solution
satisfying ‖u(·, t)‖h�Ke
t‖ f (·)‖|h , where K and 
 are constants independent of f and g.

A.5. Proof of Theorem 4.3.1

By Definition 2.8 in [35], to show well-posedness of (13), it is sufficient to show that the energy
of the analogous homogeneous IBVP is bounded in some valid norm. Selecting the (H,�)–norm:

1

2

d

dt
‖q′‖2(H,�) =

1

2

d

dt

∫
�
q′THq′ d�

=
∫

�
q′TH�q′

�t
d�

=−
∫

�
q′TH

[
Ai

�q′

�xi
+Cq′

]
d�

=−1
2

∫
�

[
�

�xi
(q′THAiq′)−q′T �(HAi )

�xi
+2q′THC

]
q′ d�

=−1
2

∫
�

�
�xi

(q′THAiq′)d�+ 1

2

∫
�
q′T

[
�(HAi )

�xi
−HC−CTH

]
q′d�

=−1
2

∫
��

q′THAnq′ dS+ 1

2

∫
�
q′THT/2BH1/2q′ d�

�−1
2

∫
��W

q′Tw0HAnq′w0 dS−
1

2

∫
��F

q′Tf 0HAnq′f 0 dS+
1

2


∫

�
q′THq′ d�, (A5)

where B is defined in (34) and 
 is an upper bound on the eigenvalues of B. By (27),

−1
2

∫
��W

q′Tw0HAnq′w0 dS−
1

2

∫
��F

q′Tf 0HAnq′f 0 dS =−
1

2

∫
��F

v′Tf 0QKnv′f 0 dS

−1
2

∫
��W

v′Tw0QKnv
′
w0 dS, (A6)
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where v′f 0=Sq′f 0 and similarly for v′w0. It follows from the property that Q is symmetric positive
definite and QKn=KnQ that

v′TQKnv′ =QT/2[v′TKnv′]Q1/2=(Q1/2)T

[
5∑

i=1
�i (v

′
i )
2

]
Q1/2. (A7)

If the conditions (32) hold, the last line of (A5) thus reduces to

d

dt
‖q′‖2(H,�)�
‖q′‖2(H,�). (A8)

Applying Gronwall’s lemma to (A8) gives (33).
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