Energy-Stable Galerkin Reduced Order Models for Nonlinear Compressible Flow

Irina Kalashnikova1, Matthew F. Barone2, Jeffrey A. Fike3, Srinivasan Arunajatesan2, Bart G. van Bloemen Waanders4

1Computational Mathematics Department, Sandia National Laboratories, Albuquerque, NM, USA.
2Aerosciences Department, Sandia National Laboratories, Albuquerque NM, USA.
3Component Science & Mechanics Department, Sandia National Laboratories, Albuquerque, NM, USA.
4Optimization and UQ Department, Sandia National Laboratories, Albuquerque, NM, USA.

11th World Congress on Computational Mechanics (WCCM XI)
Barcelona, Spain
Tuesday, July 22, 2014
SAND 2014-15602PE
Motivation

- Despite improved algorithms and powerful supercomputers, "high-fidelity" models are often too expensive for use in a design or analysis setting.

- **Targeted application area in which this situation arises:** compressible cavity flow problem.

 → **Large Eddy Simulations (LES)** with very fine meshes and long times are required to predict accurately dynamic pressure loads in cavity.

These simulations take **weeks** even when run in parallel on state-of-the-art supercomputers!
Proper Orthogonal Decomposition (POD)/Galerkin Method to Model Reduction

High-Fidelity Simulations:
- Snapshot 1
- Snapshot 2
- ...
- Snapshot K

Step 1:
Modal Decomposition (POD):

\[x(t) \approx \Phi_M x_M(t) \]

Step 2:
Galerkin Projection of LTI FOM:

\[\Phi_M^T [\dot{x}(t) = Ax(t) + Bu(t)] \]

- **Snapshot matrix:** $X = (x^1, \ldots, x^K) \in \mathbb{R}^{N \times K}$
- **SVD:** $X = U \Sigma V^T$
- **Truncation:** $\Phi_M = (\phi_1, \ldots, \phi_M) = U(:, 1: M)$

“Small” ROM LTI System:

\[
\begin{align*}
\dot{x}_M(t) &= \Phi_M^T A \Phi_M x_M(t) + \Phi_M^T B u(t) \\
y_M(t) &= C \Phi_M x_M(t)
\end{align*}
\]

N = # of dofs in high-fidelity simulation
K = # of snapshots
M = # of dofs in ROM ($M \ll N, M \ll K$)
Discrete vs. Continuous Galerkin Projection

Discrete Projection

- Governing PDEs
 \[\dot{q} = \mathcal{L}q \]
- CFD model
 \[\dot{q}_N = A_N q_N \]
- Discrete modal basis \(\Phi \)
- Projection of CFD model (matrix operation)
 \[\dot{a}_M = \Phi^T A_N \Phi a_M \]
- ROM
 \[\dot{a}_M = \Phi^T A_N \Phi a_M \]

Continuous Projection

- Governing PDEs
 \[\dot{q} = \mathcal{L}q \]
- CFD model
 \[\dot{q}_N = A_N q_N \]
- Continuous modal basis* \(\phi_j(x) \)
- Projection of governing PDEs (numerical integration)
 \[\dot{a}_j = (\phi_j, \mathcal{L}\phi_k) a_k \]
- ROM
 \[\dot{a}_j = (\phi_j, \mathcal{L}\phi_k) a_k \]

* Continuous functions space is defined using finite elements.

This talk focuses on

If PDEs are linear or have polynomial non-linearities, projection can be calculated in **offline stage** of MOR.
Stability Issues of POD/Galerkin ROMs

Full Order Model (FOM)
\[\dot{q}(t) = \mathcal{L}q(t) + \mathcal{N}(q(t)) \]

Reduced Order Model (ROM)
\[\dot{q}_M(t) = A_M q_M(t) + N_M(q_M(t)) \]

Problem: FOM stable \(\not\Rightarrow\) ROM stable!

- There is no *a priori* stability guarantee for POD/Galerkin ROMs.
- Stability of a ROM is commonly evaluated *a posteriori* – RISKY!
- Instability of POD/Galerkin ROMs is a real problem in some applications...

...e.g., compressible flows, high-Reynolds number flows.

Top right: FOM
Bottom right: ROM
Energy-Stability

• **Practical Definition:** Numerical solution does not “blow up” in finite time.

• **More Precise Definition:** Numerical discretization does not introduce any spurious instabilities inconsistent with natural instability modes supported by the governing continuous PDEs.

Numerical solutions must maintain proper energy balance.

• Stability of ROM is intimately tied to choice of **inner product** for the Galerkin projection.

• Stability-preserving inner product derived using the **energy method**:
 • Bounds numerical solution energy in a physical way.
 • Borrowed from spectral methods community.
 • Analysis is straightforward for ROMs constructed via **continuous projection**.

Practical implication of energy-stability analysis:
energy inner product ensures that any “bad” modes will not introduce spurious non-physical numerical instabilities into the Galerkin approximation.
Linearized Compressible Flow Equations

Energy-Stability for Linearized PDEs:
FOM linearly stable \Rightarrow ROM built in energy inner product linearly stable ($Re(\lambda) < 0$)
(WCCM X talk and paper: Kalashnikova & Arunajatesan, 2012).

Linearized compressible Euler/Navier-Stokes equations are appropriate when a compressible fluid system can be described by small-amplitude perturbations about a steady-state mean flow.

- Linearization of full compressible Euler/Navier-Stokes equations obtained as follows:
 1. Decompose fluid field as steady mean plus unsteady fluctuation
 \[q(x, t) = \bar{q}(x) + q'(x, t) \]
 2. Linearize full nonlinear compressible Navier-Stokes equations around steady mean to yield linear hyperbolic/incompletely parabolic system
 \[\dot{q}' + A_i(\bar{q}) \frac{\partial q'}{\partial x_i} + \frac{\partial}{\partial x_j} \left[K_{ij}(\bar{q}) \frac{\partial q'}{\partial x_i} \right] = 0 \]
Linearized compressible Euler/Navier-Stokes equations are symmetrizable (Barone & Kalashnikova, 2009; Kalashnikova & Arunajatesan, 2012).

- There exists a symmetric positive definite matrix $H \equiv H(\bar{q})$ (system “symmetrizer”) s.t.:
 - The convective flux matrices HA_i are symmetric
 - The following augmented viscosity matrix is symmetric positive semi-definite
 \[
 K^s = \begin{pmatrix}
 HK_{11} & HK_{12} & HK_{13} \\
 HK_{21} & HK_{22} & HK_{23} \\
 HK_{31} & HK_{32} & HK_{33}
 \end{pmatrix}
 \]

- **Symmetry Inner Product** (weighted L^2 inner product):
 \[
 (q_1, q_2)_H = \int_\Omega q_1 H q_2 d\Omega
 \]

- If ROM is built in **symmetry inner product**, Galerkin approximation will satisfy the same energy expression as continuous PDEs:
 \[
 ||q'_M(x, t)||_H \leq e^{\beta t} ||q'_M(x, 0)||_H \quad (\Rightarrow \frac{dE_M}{dt} \leq 0 \text{ for uniform base flow})
 \]
Symmetrizers for Several Hyperbolic/Incompletely Parabolic Systems

- **Wave equation**: \(\ddot{u} = a^2 \frac{\partial^2 u}{\partial x^2} \) or \(\dot{q} = A \frac{\partial q}{\partial x} \) where \(q = (\dot{u}, \frac{\partial u}{\partial x}) \) \(\Rightarrow H = \begin{pmatrix} 1 & 0 \\ 0 & a^2 \end{pmatrix} \)

- **Linearized shallow water equations**: \(\dot{q}' + A_i(q) \frac{\partial q'}{\partial x_i} = 0 \) \(\Rightarrow H = \begin{pmatrix} \phi & 0 & 0 \\ 0 & \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \)

- **Linearized compressible Euler**: \(\dot{q}' + A_i(q) \frac{\partial q'}{\partial x_i} = 0 \) \(\Rightarrow H = \begin{pmatrix} \bar{\rho} & 0 & 0 & 0 \\ 0 & \alpha^2 \gamma \bar{\rho}^2 \bar{p} & \bar{\rho} \alpha^2 & 0 \\ 0 & 0 & (1+\alpha^2) \gamma \bar{p} \end{pmatrix} \)

- **Linearized compressible Navier-Stokes**: \(\dot{q}' + A_i(q) \frac{\partial q'}{\partial x_i} + \frac{\partial}{\partial x_j} \left[K_{ij}(q) \frac{\partial q'}{\partial x_i} \right] = 0 \)

\(\Rightarrow H = \begin{pmatrix} \bar{\rho} & 0 & 0 \\ 0 & \bar{\rho} R & 0 \\ 0 & \frac{RT}{\bar{\rho}} (\gamma - 1) & 0 \\ 0 & 0 & \frac{RT}{\bar{\rho}} \end{pmatrix} \)

Continuous Projection Implementation: “Spirit” Code

“Spirit” ROM Code = 3D parallel C++ POD/Galerkin test-bed ROM code that uses data-structures and eigensolvers from Trilinos to build energy-stable ROMs for compressible flow problems → stand-alone code that can be synchronized with any high-fidelity code!

- POD modes defined using piecewise smooth finite elements.
- Gauss quadrature rules of sufficient accuracy are used to compute exactly inner products with the help of the libmesh library.
- Physics in Spirit:
 - **Linearized compressible Euler** (L^2, energy inner product).
 - **Linearized compressible Navier-Stokes** (L^2, energy inner product).
 - **Nonlinear isentropic compressible Navier-Stokes** (L^2, stagnation energy, stagnation enthalpy inner product).
 - **Nonlinear compressible Navier-Stokes** (L^2, energy inner product).

“SIGMA CFD” High-Fidelity Code = Sandia in-house finite volume flow solver derived from LESLIE3D (Genin & Menon, 2010), an LES flow solver originally developed in the Computational Combustion Laboratory at Georgia Tech.

First, testing of ROMs for these physics
Numerical Experiment: 2D Inviscid Pressure Pulse

- Inviscid pulse in a uniform base flow (linear dynamics).
- High-fidelity simulation run on mesh with 3362 nodes, up to time $t = 0.01$ seconds.
- 200 snapshots of solution used to construct $M = 20$ mode ROM in L^2 and symmetry inner products.

$x_{M,i}(t)$ vs. (q'_{CFD}, ϕ_i) for $i = 1, 2$
Numerical Experiment: 2D Inviscid Pressure Pulse (cont’d)

- Inviscid pulse in a uniform base flow (linear dynamics).
- High-fidelity simulation run on mesh with 3362 nodes, up to time $t = 0.01$ seconds.
- 200 snapshots of solution used to construct $M = 20$ mode ROM in L^2 and symmetry inner products.

p': High-fidelity

p': Symmetry ROM

p': L^2 ROM

Time of snapshot 160
Nonlinear Compressible Flow Equations

Energy-Stability for Nonlinear PDEs:
ROM built in energy inner product will preserve stability of an equilibrium point at 0 for the governing nonlinear system of PDEs (Rowley, 2004; Kalashnikova et al., 2014).

- Compressible isentropic Navier-Stokes equations (cold flows, moderate Mach #):

\[
\frac{Dh}{Dt} + (\gamma - 1)h \nabla \cdot \mathbf{u} = 0
\]
\[
\frac{Du}{Dt} + \nabla h - \frac{1}{Re} \Delta \mathbf{u} = 0
\]

- Full compressible Navier-Stokes equations:

\[
\rho \frac{Du}{Dt} + \frac{1}{\gamma M^2} \nabla (\rho T) - \frac{1}{Re} \nabla \cdot \mathbf{\tau} = 0
\]
\[
\frac{D\rho}{Dt} + \rho \nabla \cdot \mathbf{u} = 0
\]
\[
\rho \frac{DT}{Dt} + (\gamma - 1)\rho T \nabla \cdot \mathbf{u} - \frac{\gamma}{Pr Re} \nabla \cdot (\kappa \nabla T) - \left(\frac{\gamma (\gamma - 1) M^2}{Re}\right) \nabla \mathbf{u} \cdot \mathbf{\tau} = 0
\]

\(h \) = enthalpy
\(\mathbf{u} \) = velocity vector
\(\rho \) = density
\(T \) = temperature
\(\mathbf{\tau} \) = viscous stress tensor
In (Rowley, 2004), Rowley et al. showed that energy inner product for the compressible isentropic Navier-Stokes equations can be defined following a transformation of these equations.

- Transformed compressible isentropic Navier-Stokes equations:

 \[
 \frac{Dc}{Dt} + \frac{\gamma - 1}{2} c \nabla \cdot \mathbf{u} = 0
 \]

 \[
 \frac{D\mathbf{u}}{Dt} + \frac{2}{\gamma - 1} c \nabla c - \frac{1}{\text{Re}} \Delta \mathbf{u} = 0
 \]

- Family of inner products:

 \[
 (q_1, q_2)_\alpha = \int_{\Omega} \left(\mathbf{u}_1 \cdot \mathbf{u}_2 + \frac{2\alpha}{\gamma - 1} c_1 c_2 \right) d\Omega
 \]

 \[
 \alpha = \begin{cases}
 1 & \Rightarrow ||q||_\alpha = \text{stagnation enthalpy} \\
 \frac{1}{\gamma} & \Rightarrow ||q||_\alpha = \text{stagnation energy}
 \end{cases}
 \]

\[c = \text{speed of sound} \quad (c^2 = (\gamma - 1)h)\]

\[\mathbf{u} = \text{velocity}\]

If Galerkin projection step of model reduction is performed in \(\alpha\) inner product, then the Galerkin projection will preserve the stability of an equilibrium point at the origin (Rowley, 2004).
Energy-Stable ROMs for Nonlinear Compressible Flow (Full NS)

Present work extends ideas in (Rowley, 2004) to **full compressible Navier-Stokes equations.**

Requirement: transformation/inner product yields PDEs with only polynomial non-linearities.

- First, full compressible Navier-Stokes equations are **transformed** into the following variables:

 \[a = \sqrt{\rho}, \quad b = au, \quad d = ae \]

- Next, the following “**total energy**” inner product is defined:

 \[(q_1, q_2)_{TE} = \int_{\Omega} (b_1 \cdot b_2 + a_1 d_2 + a_2 d_1) \, d\Omega \]

 → Norm induced by total energy inner product is the total energy of the fluid system:

 \[||q||_{TE} = \int_{\Omega} \left(\rho e + \frac{1}{2} \rho u_i u_i \right) \, d\Omega \]

If Galerkin projection step of model reduction is performed in total energy inner product, then the Galerkin projection will preserve the stability of an equilibrium point at the origin (Kalashnikova *et al.* , 2014)

契Transformed equations have only polynomial non-linearities (projection of which can be computed in offline stage of MOR and stored).

契Transformation introduces higher order polynomial non-linearities.

契Efficiency of online stage of MOR can be recovered using interpolation (e.g., DEIM, gappy POD).
Continuous Projection Implementation: “Spirit” Code

“Spirit” ROM Code = 3D parallel C++ POD/Galerkin test-bed ROM code that uses data-structures and eigensolvers from Trilinos to build energy-stable ROMs for compressible flow problems → stand-alone code that can be synchronized with any high-fidelity code!

• POD modes defined using piecewise smooth finite elements.
• Gauss quadrature rules of sufficient accuracy are used to compute exactly inner products with the help of the libmesh library.
• Physics in spirit:
 • Linearized compressible Euler (L^2, energy inner product).
 • Linearized compressible Navier-Stokes (L^2, energy inner product).
 • Nonlinear isentropic compressible Navier-Stokes (L^2, stagnation energy, stagnation enthalpy inner product).
 • Nonlinear compressible Navier-Stokes (L^2, energy inner product).

“SIGMA CFD” High-Fidelity Code = Sandia in-house finite volume flow solver derived from LESLIE3D (Genin & Menon, 2010), a LES flow solver originally developed in the Computational Combustion Laboratory at Georgia Tech.
Numerical Experiment: Viscous Laminar Cavity

- Viscous cavity problem at $M = 0.6$, $Re = 1500$ (laminar regime).

- **High-fidelity simulation**: DNS based on full nonlinear compressible Navier-Stokes equations with 99,408 nodes (right).

- 500 snapshots collected, every $\Delta t_{snap} = 1 \times 10^{-4}$ seconds.

- Snapshots used to construct $M = 5$ mode ROM for nonlinear compressible Navier-Stokes equations in L^2 and total energy inner products.

- $M = 5$ mode POD bases capture $\approx 99\%$ of snapshot energy.

Figure above: viscous laminar cavity problem domain/mesh.
Numerical Experiment: Viscous Laminar Cavity (cont’d)

- L^2 ROM exhibited instability for $M > 5$ modes.

- In contrast, total energy ROM remained stable and agreed well with high-fidelity solution!

Figure above: u-component of velocity as a function of time t
Summary & Future Work

• A Galerkin model reduction approach in which the continuous equations are projected onto the basis modes in a continuous inner product is proposed.

• It is shown that the choice of inner product for the Galerkin projection step is crucial to stability of the ROM.
 • For linearized compressible flow, Galerkin projection in the “symmetry” inner product leads to a ROM that is energy-stable for any choice of basis.
 • For nonlinear compressible flow, an inner product that induces the total energy of the fluid system is developed. A ROM constructed in this inner product will preserve the stability of an equilibrium point at 0 for the system.

• Results are promising for a nonlinear problem involving compressible viscous laminar flow over an open cavity: a total energy ROM remains stable whereas an L^2 ROM exhibits an instability.

Ongoing/Future Work

• Improve efficiency of nonlinear total energy ROMs through interpolation (e.g., DEIM, gappy POD)

• Studies of predictive capabilities of ROMs (robustness w.r.t. parameter changes).
Acknowledgements

This work was funded by the Laboratories’ Directed Research and Development (LDRD) Program at Sandia National Laboratories.

Thank You! Questions?
ikalash@sandia.gov
http://www.sandia.gov/~ikalash

Some references on these ideas:

- I. Kalashnikova, S. Arunajatesan. A Stable Galerkin Reduced Order Model (ROM) for Compressible Flow, WCCM-2012-18407, 10th World Congress on Computational Mechanics (WCCM X), Sao Paulo, Brazil (2012).

References

