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1 Introduction

The present document describes an approach for derivingdelnod the power spectral density (PSD) for the fluc-

tuating pressure in a turbulent flow. Ultimately, a model dompressible, transitional and fully turbulent pressure
fluctuation loading to calculate a random vibration presdigld on an RB/RV during reentry conditions is sought.

Both a power spectral density (PSD) as well as a probabibtysity function (PDF) of the fluctuating pressure are

required. The model summarized herein is a model for theufatotg pressure PSD only (not a fluctuating pressure
PDF), and would be an alternative (or perhaps a supplemetitetearlier “eigenvalue problem” model [10] and the

“legacy” model [13].

The flow to be modeled (turbulent flow and laminar-to-turlptikeansition in re-entry conditions) is extremely com-
plex. One approach in building a model for this problem isatest a much simpler scenario, one for which data are
available, as a starting point, and ultimately extend thigter model. A canonical problem in this context is that of
a turbulent boundary layer over a flat plate. Much wind turdizdé are available for the turbulent boundary layer [11].
A Reynolds Averaged Navier-Stokes (RANS) code is also abs&lfor computing the mean flow.

The approach in deriving the PSD is based primarily on thekvadiLeeet. al [1, 2], as well as earlier works [4, 5].
The derivations take as the starting point the incompréssiavier-Stokes equations, so adjustments may be needed
in higher Mach number regimedl@ > 5). Physical assumptions are applied to the governing emstiescribing

this flow scenario (turbulent incompressible boundary tayand mathematical expressions are extracted from these
equations. The result is an analytical expression for thetfating pressure PSD, written in terms of integrals that
can be evaluated with ease using numerical quadrature) glesure models for unclosed terms that appear in these
expressions. The idea would be to close these terms usirgotidined from the literature, and/or wind tunnel
experimental data.

2 Pressure Power Spectral Density (PSD) for Turbulent Boundary L ayer

The power spectral density (PSD) of the pressure is obtdimed the fluctuating Poisson equation, following the
approach of [1, 2, 4, 5]. Assume the flow is an incompresshuleda-dimensional (3D) flow. Then, the equation for



the fluctuating pressure arises by taking the divergenckefrtomentum equation, using continuity to cancel terms,
performing a Reynolds decomposition of each unknown intoeamand fluctuating term, and then subtracting the
time-averaged equation. The result is the following Paissguation:
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where summation over repeated indices is impliedArd? is the standard Laplace operator. Lower case quantities
with ’ denote fluctuations; upper case quantities with bars denesan quantities. Overlines (bars) in general denote
time-averaging.

The source terms on the right hand side of (1) represent tranrabear-turbulence (MT) interaction (also denoted
LST for “linear source term”):
MT =LST= 2—‘7—U‘a—u/j 2)
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and turbulence-turbulence (TT) interaction (also dendi&d for “non-linear source term”):
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In this model, LST and NST are modeled using data (experiaienDNS), and an expression for the PSD is derived
analytically from (1) given a (modeled) right-hand-sidaistis accomplished by first transforming into Fourier space
(taking the Fourier transform of (1) in thg@— andxs—coordinate directions), and then using the Green'’s fondir

the resulting ordinary differential equation (ODE) to weridn expression for the solution in Fourier space [1, 2, 4, 5].
The details of this derivation are omitted here but can badaun [5].

Consider the canonical problem of an incompressible, fertitboundary layer over a flat plate, located in #the
x3 = 0 plane. Egn. (1) will be simplified for this problem and an Igttieal expression for the PSD will be derived
from this equation. The following physical assumptionsraele:

e Standard boundary layer assumptions for an incompredsitilalent boundary layer (see Section 7.3 of [9]).
e Flow in planes parallel to the wall is homogeneous and statig.

e Only the mean flow gradient normal to the wall is important.

e The turbulence field is frozen and convects with a velodity

From the third assumption above, it follows that (2) reduces
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whereU = Uy, V = U,, x=x; andy = xp. The fourth assumption above is justified by the observatian the
intent is to predict the frequency spectrum of wall-presdlurctuations, which are dominantly generated by convected
turbulence activity [1, 2].

The question of the relative importance/unimportance oT N® must now be addressed. Some discussion on this
matter can be foundin [1, 2, 8]. Near wall profiles of NST arewsh in [8] by Kim, who ran a DNS to study channel
flow. Kim’s results suggest that:

e The ratio of the NST to the LST is “universal” in a region cldsehe wall in turbulent mean flows.

Thus, for a turbulent boundary layer, (1) can be simplified as
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1This assumption is what allows taking the Fourier transfofifil) in thex; andxs coordinate directions.



The terms in the brackets in (5) are to be modeled. They aradti@n ofy™ =y/d, only [1, 2], whered, = ul and
Ur = +/Tw/P.
Assuming that the

e Normal pressure gradient is zero at the wall,

it can be shown following the derivation of [5] that the (ayigdal) expression for the pressure power spectral density
(PSD) based on (5) is:
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Here, the conventional assumption that kh@lependence in the spectrum can be replaced by the freqagncy
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has been employed, whdgg is the velocity of the turbulence field, akgis the wave number that comes from taking
the Fourier transform of (1) in the, coordinate direction. The functioff that appears in (6) is given by:
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wherek; = w/U. is the convective wave number, apgh is the spectral correlation function for the vertical fluation
velocities between two positiolysandy’ within the boundary layer.

3 Required Inputsand Models

The following inputs (models) are required to evaluate (6):

e The gradient of the mean streamwize velocity profile as atfan®f y (coordinate across the boundary layer):
dU( Y This would be computed in a RANS, or estimated from classicandary layer theory.

o A model for (V2( ))1/2 (the root-mean-square (rmg)velocity fluctuation inside the boundary layer as a func-
tion of y). This could be obtained from a RANS (e.g., thequation of thé&— &€ model). Note that the model for
this quantity may depend on whether the turbulence is ipatror anisotropic. Corrections for an anisotropic
turbulence field are discussed in [1, 2].

e A value/model forUe, the convection velocity. Some discussion of the convectiglocity can be found in
[6], where it is shown, for example that convection vel@stfor a smooth wall asymptote to a constanyas
increases, and can be as high &.Q.

e A model for%, if desired (i.e., if NST is thought to be nonzero).

e A model for gy, the spectral vertical fluctuation velocity fluctuationween two positiony andy’. Alterna-
tively, this expression can be written as [1, 2]
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whereEg‘2 is the interplane correlation function betwegandy and ¢, is the autospectrum of. Leeet. al.
model the latter quantity using Farabee’s velocity dataaf3]
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According to Leeet. al., Ey is modeled according to “Chase’s formulation [7]". It is lear if the expression
for Eyz employed by Leet. al is actually given in [7], however. The paper appears to hapdi@t models for
E{\'l only (p. 43, Fig. 3in [7]). Likely, Leet. al used data fitting procedures similar to those employed byg€ha
to obtain a model foE},.

(11)

e The densityp and an estimate a¥, the boundary layer thickness. If the modgl(10) is usedd* is needed
as well. Note that for any model @b, (9) o* will likely be an implicit or explicit input (that isgp, will likely
depend o*). If y, U, etc. are to be non-dimensionalized in (§),andv will be required as well.

4 Discussion

As mentioned above, the derivation of the pressure PSD {@#dsd on the incompressible pressure-Poisson equation
(1). The equation fop’ that arises by starting with the compressible equationsriddmentally different: it is not a
Poisson equation but rather a convective wave equation Egg. (6) in [12]). The Green’s function for this equation

is substantially different and more complex than the Greé&mction for (1) so an analytical derivation ®,p such

as the one described above may not be possible in genetaigtaom compressible equations. However, it would be
worthwhile to study the validity of (6) in a compressible irag to see if it is a reasonable model despite having been
derived from incompressible equations.

Another assumption inherent in the derivation above is thatflow is of an equilibrium turbulent boundary layer
(zero streamwise pressure gradient and turbulence cleaistitts possessing in-plane homogeneity). &eel. have
actually applied the model, with success, to non-equilitrflows, namely a backward-facing step (BFS) flow problem
[1, 2], which contains a recirculation region and a reattaeht region in which vortical structures are generated.
Success of the model on this problem suggests the model maytieable to more complex flow scenarios than the
one from which it was derived.

Given models for the unclosed terms (listed above), it igightforward to evaluate (6) (e.g., using numerical inte-
gration in MATLAB), thereby generating a pressure PSD. Thiécdlty comes in closing these terms, in particular
the interplane correlatioEQ‘z, which appears in (9). It is unclear from [1, 2] and the refees given in these work
exactly what expression (model) was used for this functifithout this expression, one cannot expect to reproduce
the results in [1, 2] (as a first step, and for debugging puppsAn alternative would be to use alternate data for this
guantity (e.g., tunnel data), chosen to be consistent wighrticular selected flow scenario for which pressure PSD
data consistent with models for all the unclosed terms aaéable to compare to.

As mentioned in the Introduction, the model discussed heteés not give the probability density function (PDF) for
the pressure fluctuations, which is ultimately requiredtfar application of interest, in addition to the PSD .
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