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1 Introduction

The present document describes an approach for deriving a model of the power spectral density (PSD) for the fluc-
tuating pressure in a turbulent flow. Ultimately, a model forcompressible, transitional and fully turbulent pressure
fluctuation loading to calculate a random vibration pressure field on an RB/RV during reentry conditions is sought.
Both a power spectral density (PSD) as well as a probability density function (PDF) of the fluctuating pressure are
required. The model summarized herein is a model for the fluctuating pressure PSD only (not a fluctuating pressure
PDF), and would be an alternative (or perhaps a supplement) to the earlier “eigenvalue problem” model [10] and the
“legacy” model [13].

The flow to be modeled (turbulent flow and laminar-to-turbulent transition in re-entry conditions) is extremely com-
plex. One approach in building a model for this problem is to select a much simpler scenario, one for which data are
available, as a starting point, and ultimately extend this simpler model. A canonical problem in this context is that of
a turbulent boundary layer over a flat plate. Much wind tunneldata are available for the turbulent boundary layer [11].
A Reynolds Averaged Navier-Stokes (RANS) code is also available for computing the mean flow.

The approach in deriving the PSD is based primarily on the work of Leeet. al [1, 2], as well as earlier works [4, 5].
The derivations take as the starting point the incompressible Navier-Stokes equations, so adjustments may be needed
in higher Mach number regimes (Ma > 5). Physical assumptions are applied to the governing equations describing
this flow scenario (turbulent incompressible boundary layer), and mathematical expressions are extracted from these
equations. The result is an analytical expression for the fluctuating pressure PSD, written in terms of integrals that
can be evaluated with ease using numerical quadrature, given closure models for unclosed terms that appear in these
expressions. The idea would be to close these terms using data obtained from the literature, and/or wind tunnel
experimental data.

2 Pressure Power Spectral Density (PSD) for Turbulent Boundary Layer

The power spectral density (PSD) of the pressure is obtainedfrom the fluctuating Poisson equation, following the
approach of [1, 2, 4, 5]. Assume the flow is an incompressible three-dimensional (3D) flow. Then, the equation for
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the fluctuating pressure arises by taking the divergence of the momentum equation, using continuity to cancel terms,
performing a Reynolds decomposition of each unknown into a mean and fluctuating term, and then subtracting the
time-averaged equation. The result is the following Poisson equation:

∆p′ =−2ρ
∂U i

∂x j

∂u′j
∂xi

−
∂ 2

∂xi∂x j
[ρ(u′iu

′
j − u′iu

′
j)], (1)

where summation over repeated indices is implied and∆ = ∇2 is the standard Laplace operator. Lower case quantities
with ′ denote fluctuations; upper case quantities with bars denotemean quantities. Overlines (bars) in general denote
time-averaging.

The source terms on the right hand side of (1) represent the mean-shear-turbulence (MT) interaction (also denoted
LST for “linear source term”):

MT ≡ LST= 2ρ
∂U i

∂x j

∂u′j
∂xi

, (2)

and turbulence-turbulence (TT) interaction (also denotedNST for “non-linear source term”):

TT ≡ NST=
∂ 2

∂xi∂x j
[ρ(u′iu

′
j − u′iu

′
j)]. (3)

In this model, LST and NST are modeled using data (experimental or DNS), and an expression for the PSD is derived
analytically from (1) given a (modeled) right-hand-side. this is accomplished by first transforming into Fourier space
(taking the Fourier transform of (1) in thex1– andx3–coordinate directions), and then using the Green’s function for
the resulting ordinary differential equation (ODE) to write an expression for the solution in Fourier space [1, 2, 4, 5].
The details of this derivation are omitted here but can be found in [5].

Consider the canonical problem of an incompressible, turbulent boundary layer over a flat plate, located in thez ≡
x3 = 0 plane. Eqn. (1) will be simplified for this problem and an analytical expression for the PSD will be derived
from this equation. The following physical assumptions aremade:

• Standard boundary layer assumptions for an incompressibleturbulent boundary layer (see Section 7.3 of [9]).

• Flow in planes parallel to the wall is homogeneous and stationary1.

• Only the mean flow gradient normal to the wall is important.

• The turbulence field is frozen and convects with a velocityUc.

From the third assumption above, it follows that (2) reducesto:

LST=−2ρ
∂U
∂y

∂v′

∂x
, (4)

whereU ≡ U1, v′ ≡ u′2, x ≡ x1 and y ≡ x2. The fourth assumption above is justified by the observationthat the
intent is to predict the frequency spectrum of wall-pressure fluctuations, which are dominantly generated by convected
turbulence activity [1, 2].

The question of the relative importance/unimportance of NST (3) must now be addressed. Some discussion on this
matter can be found in [1, 2, 8]. Near wall profiles of NST are shown in [8] by Kim, who ran a DNS to study channel
flow. Kim’s results suggest that:

• The ratio of the NST to the LST is “universal” in a region closeto the wall in turbulent mean flows.

Thus, for a turbulent boundary layer, (1) can be simplified as:

∆p′ =−2ρ
∂U
∂y

∂v′

∂x

[

1+
NST

max(LST)

]

. (5)

1This assumption is what allows taking the Fourier transformof (1) in thex1 andx3 coordinate directions.
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The terms in the brackets in (5) are to be modeled. They are a function ofy+ ≡ y/δν only [1, 2], whereδν ≡ ν
uτ

, and

uτ ≡
√

τw/ρ.

Assuming that the

• Normal pressure gradient is zero at the wall,

it can be shown following the derivation of [5] that the (analytical) expression for the pressure power spectral density
(PSD) based on (5) is:

Φpp(ω)

∫ δ

0

∫ δ

0

dU(y)
dy

dU(y′)
dy′

ρ(v′2(y))1/2(v′2(y′))1/2
[

1+
NST

max(LST)

]

F (y,y′,ω)dydy′. (6)

Here, the conventional assumption that thek1 dependence in the spectrum can be replaced by the frequencyω ,

ω = k1Uc, (7)

has been employed, whereUc is the velocity of the turbulence field, andk1 is the wave number that comes from taking
the Fourier transform of (1) in thex1 coordinate direction. The functionF that appears in (6) is given by:

F (y,y′,ω) =

∫ ∞

−∞

(

k2
c

k2
c + k2

3

)

e−
√

k2
c+k2

3(y+y′)φ22(y,y
′,k3,ω/Uc)dk3, (8)

wherekc ≡ ω/Uc is the convective wave number, andφ22 is the spectral correlation function for the vertical fluctuation
velocities between two positionsy andy′ within the boundary layer.

3 Required Inputs and Models

The following inputs (models) are required to evaluate (6):

• The gradient of the mean streamwize velocity profile as a function of y (coordinate across the boundary layer):
dU(y)

dy . This would be computed in a RANS, or estimated from classical boundary layer theory.

• A model for(v′2(y))1/2 (the root-mean-square (rms)y–velocity fluctuation inside the boundary layer as a func-
tion of y). This could be obtained from a RANS (e.g., thek equation of thek−ε model). Note that the model for
this quantity may depend on whether the turbulence is isotropic or anisotropic. Corrections for an anisotropic
turbulence field are discussed in [1, 2].

• A value/model forUc, the convection velocity. Some discussion of the convection velocity can be found in
[6], where it is shown, for example that convection velocities for a smooth wall asymptote to a constant asy
increases, and can be as high as 0.8U∞.

• A model for NST
max(LST) , if desired (i.e., if NST is thought to be nonzero).

• A model forφ22, the spectral vertical fluctuation velocity fluctuation between two positionsy andy′. Alterna-
tively, this expression can be written as [1, 2]

φ22(y,y
′,k3,ω/Uc) = EN

22(y,y
′,k3,ω/Uc)

√

φ1(ω/Uc,y)φ1(ω/Uc,y′), (9)

whereEN
22 is the interplane correlation function betweeny andy′ andφ1 is the autospectrum ofv′. Leeet. al.

model the latter quantity using Farabee’s velocity data [3]as

φ1(kc,y) =
ypp

Uc

0.18

1+
(

kcypp
1.7

)2 , (10)

3



ypp

δ ∗ =

1.5y
δ ∗

(

0.9+ 2.5y
δ ∗

)

1+
(

2.5y
δ ∗

)2 . (11)

According to Leeet. al., EN is modeled according to “Chase’s formulation [7]”. It is unclear if the expression
for EN

22 employed by Leeet. al is actually given in [7], however. The paper appears to have explicit models for
EN

11 only (p. 43, Fig. 3 in [7]). Likely, Leeet. al used data fitting procedures similar to those employed by Chase
to obtain a model forEN

22.

• The densityρ and an estimate ofδ , the boundary layer thickness. If the modelφ1 (10) is used,δ ∗ is needed
as well. Note that for any model ofφ22 (9) δ ∗ will likely be an implicit or explicit input (that is,φ22 will likely
depend onδ ∗). If y, U , etc. are to be non-dimensionalized in (6),τw andν will be required as well.

4 Discussion

As mentioned above, the derivation of the pressure PSD (6) isbased on the incompressible pressure-Poisson equation
(1). The equation forp′ that arises by starting with the compressible equations is fundamentally different: it is not a
Poisson equation but rather a convective wave equation (e.g., Eqn. (6) in [12]). The Green’s function for this equation
is substantially different and more complex than the Green’s function for (1) so an analytical derivation ofΦpp such
as the one described above may not be possible in general starting from compressible equations. However, it would be
worthwhile to study the validity of (6) in a compressible regime to see if it is a reasonable model despite having been
derived from incompressible equations.

Another assumption inherent in the derivation above is thatthe flow is of an equilibrium turbulent boundary layer
(zero streamwise pressure gradient and turbulence characteristics possessing in-plane homogeneity). Leeet. al. have
actually applied the model, with success, to non-equilibrium flows, namely a backward-facing step (BFS) flow problem
[1, 2], which contains a recirculation region and a reattachment region in which vortical structures are generated.
Success of the model on this problem suggests the model may beapplicable to more complex flow scenarios than the
one from which it was derived.

Given models for the unclosed terms (listed above), it is straightforward to evaluate (6) (e.g., using numerical inte-
gration in MATLAB), thereby generating a pressure PSD. The difficulty comes in closing these terms, in particular
the interplane correlationEN

22, which appears in (9). It is unclear from [1, 2] and the references given in these work
exactly what expression (model) was used for this function.Without this expression, one cannot expect to reproduce
the results in [1, 2] (as a first step, and for debugging purposes). An alternative would be to use alternate data for this
quantity (e.g., tunnel data), chosen to be consistent with aparticular selected flow scenario for which pressure PSD
data consistent with models for all the unclosed terms are available to compare to.

As mentioned in the Introduction, the model discussed herein does not give the probability density function (PDF) for
the pressure fluctuations, which is ultimately required forthe application of interest, in addition to the PSD .
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