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Target Cavity Flow Control Problem
-
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Configuration/Plant: compressible non-linear fluid flow over open
cavity containing components.

Physical Control Problem: using upstream actuation, control
oscillations within cavity caused by pressure fluctuations propagating
between downstream wall and shear layer.
Mathematical Control Problem: compute optimal body-force actuation
input uopt to minimize the RMS pressure halfway up the downstream
wall.

input u : qT =
(

0, f(t), 0 0 0
)T

output y : prms =
√

1
K

∑K
i=1(p(tk)− p̄)2
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ROM-Based Cavity Flow Control
Road Map

1 Collect snapshots from non-linear
high-fidelity CFD cavity simulation

ẋ = f(x,ui), yi = h(x,ui)

for some set of inputs {ui(t)}, and
construct empirical basis (POD, BPOD)
from this snapshot set.

2 Build a ROM for the fluid system, or

3 Compute optimal controller uopt(t) using
ROM.

4 Apply ROM-based controller to non-linear
cavity problem.

{ui(t)}

Plant (Cavity)
Non-linear CFD

uopt(t)

yi(t)

+
Estimator

Linear ROM

uopt(t) xr(t)

Controller
Linear ROM
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3D Full (Non-Linear) Compressible
Navier-Stokes Equations

3D compressible Navier-Stokes equations:

ρDu1

dt = − ∂p
∂x1

+
∑3
j=1

∂
∂xj

{
µ
(
∂u1

∂xj
+

∂uj
∂x1

)
+ λδ1j∇ · u

}
,

ρDu2

dt = − ∂p
∂x2

+
∑3
j=1

∂
∂xj

{
µ
(
∂u2

∂xj
+

∂uj
∂x2

)
+ λδ2j∇ · u

}
,

ρDu3

dt = − ∂p
∂x3

+
∑3
j=1

∂
∂xj

{
µ
(
∂u3

∂xj
+

∂uj
∂x3

)
+ λδ3j∇ · u

}
,

ρCv
DT
dt = −p∇ · u +

∑3
i=1

∂
∂xi

(
κ ∂T∂xi

)
,

Dρ
∂t = −ρ∇ · u.

(1)

ROM approach is based on local linearization of full non-linear equations
(1):

I Full non-linear equations (1) are solved to generate snapshots in
high-fidelity code.

I Linearized approximation of (1) is projected onto reduced basis modes in
building the ROM.
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3D Linearized Compressible
Navier-Stokes Equations

Appropriate when a compressible fluid system can be described by viscous,
small-amplitude perturbations about a steady-state mean (or base) flow.

Linearization of full compressible Navier-Stokes equations:

qT (x, t) ≡
(
u1, u2, u3, T, ρ

)
≡ q̄T (x)︸ ︷︷ ︸

mean

+q′T (x, t)︸ ︷︷ ︸
fluctuation

∈ R5

I Simplest linearization: neglect ∇q̄ terms (uniform base flow)

q′,t + Ai(q̄)q′,i − [Kij(q̄)q′,j ],i = F

I More accurate linearization: retain ∇q̄ terms

q′,t + [Ai(q̄)−Kvw
i (∇q̄)]q′,i − [Kij(q̄)q′,j ],i + C(∇q̄)q′ = F

Ai(q̄) : convective flux matrices
Kij(q̄) : diffusive flux matrices
Kvw
i (q̄) : viscous work matrices
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Outline

This talk focuses on how to construct
a Galerkin ROM that is stable a priori

1 Stability Definitions

2 POD/Galerkin Approach to Model Reduction

3 Energy-Stable ROMs for Linearized Compressible Flow
Stability via Continuous Projection
Stability via Discrete Projection

4 Numerical Experiments
Implementation
Driven Pulse in Uniform Base Flow
Laminar Viscous Driven Cavity

5 Summary & Future Work

6 References

7 Appendix
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Energy-Stability

Practical Definition: Numerical solution does not “blow up” in finite time.

More Precise Definition: Numerical discretization does not introduce any
spurious instabilities inconsistent with natural instability modes supported by the
governing continuous PDEs.

Numerical solutions must maintain a proper energy balance

Linearized Compressible
Navier-Stokes Equations:

dE
dt
≤ 0

Non-increasing energy [5]

duality

Compressible Navier-
Stokes Equations:

d
dt

∫
Ω
ρηdΩ ≥ 0

Clausius-Duhem Inequality
Non-decreasing entropy [4]

Analyzed using the Energy Method: Uses an equation for the evolution of
numerical solution “energy” (or “entropy”) to determine stability.
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Connection to Lyapunov Stability∗

ẋN = fN (xN ), xN ∈ RN

Lyapunov Stability: If there exists a Lyapunov function V such that
I V > 0 (positive-definite), and
I dV

dt
= dV

dx
f(x) ≤ 0 (negative semi-definite along system trajectories)

in Br(xs), then xs is locally stable in the sense of Lyapunov [8].

Energy Stability: Let

EN ≡ 1
2
||xN ||2

denote the system energy. If
dEN
dt
≤ 0

the system is energy-stable.

Remark: System energy EN satisfies the definition of a Lyapunov function!

∗Manuscript in preparation.
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Model Reduction Approach

High-Fidelity
CFD Simulations:

Snapshot 1

Snapshot 2

...

Snapshot K

Fluid Modal
Decomposition

(POD):

uM =
M∑
k=1

ak(t)φk(x)

Step 1
Galerkin Projection

of Fluid PDEs:

(φj , u̇M +∇ · F(uM )) = 0

“Small”
ROM
ODE

System:

ȧk = f(a1, ..., aM )

Step 2

9 / 29



Step 1: Constructing the Modes

High-Fidelity
CFD Simulations:

Snapshot 1

Snapshot 2

...

Snapshot K

Fluid Modal
Decomposition

(POD):

uM =
M∑
k=1

ak(t)φk(x)

Step 1
Galerkin Projection

of Fluid PDEs:

(φj , u̇M +∇ · F(uM )) = 0

“Small”
ROM
ODE

System:

ȧk = f(a1, ..., aM )

Step 2

POD basis {φi}Mi=1 with M << K
maximizes the energy in the projection
of snapshots onto span{φi}.

POD SVD problem:

X = UΣVT

(φ1, · · · ,φM ) = U(:, 1 : M)
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Step 2: Galerkin Projection

High-Fidelity
CFD Simulations:

Snapshot 1

Snapshot 2

...

Snapshot K

Fluid Modal
Decomposition

(POD):

uM =
M∑
k=1

ak(t)φk(x)

Step 1
Galerkin Projection

of Fluid PDEs:

(φj , u̇M +∇ · F(uM )) = 0

“Small”
ROM
ODE

System:

ȧk = f(a1, ..., aM )

Step 2
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Discrete vs. Continuous Projection

DISCRETE APPROACH

Governing Equations
ut = Lu
↓

CFD Model
u̇N = ANuN

↓

Discrete Modal Basis Φ
↓

Projection of CFD Model
(Matrix Operation)

↓

ROM
ȧ = ΦTANΦa

CONTINUOUS APPROACH

Governing Equations
ut = Lu
↓

CFD Model
u̇N = ANuN

↓

Continuous Modal Basis∗ φj(x)

↓

Projection of Governing Equations
(Numerical Integration)

↓

ROM
ȧj = (φj ,Lφk)ak
∗Continuous functions space is

defined using finite elements.
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Energy-Stable ROM via Continuous
Projection

Energy stability of the Galerkin ROM can be proven [1] following
“symmetrization” the linearized compressible Navier-Stokes equations.

Linearized compressible Navier-Stokes system is “symmetrizable” [5].

Pre-multiply equations by symmetric positive definite matrix:

H ≡


ρ̄ 0 0 0 0
0 ρ̄ 0 0 0
0 0 ρ 0 0

0 0 0 ρ̄R
T̄ (γ−1)

0

0 0 0 0 RT̄
ρ̄

 ⇒ Hq′,t + HAi q
′
,i −H[Kijq

′
,i],j + · · · = F

H is called the “symmetrizer” of the system:
I The convective flux matrices HAi are all symmetric.
I The following augmented viscosity matrix

KS ≡

 HK11 HK12 HK13

HK21 HK22 HK23

HK31 HK32 HK33

 ,

is symmetric positive semi-definite.
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Symmetry Inner Product & A Stable
Galerkin ROM

Define the “symmetry” inner product and “symmetry” norm:

(q′(1),q′(2))(H,Ω) ≡
∫

Ω

[q′(1)]THq′(2)dΩ, ||q′||(H,Ω) ≡ (q′,q′)(H,Ω) (2)

Stability analysis reveals that the symmetry inner product (and not the L2 inner
product!) is the energy inner product for this equation set.

Uniform base flow case: non-increasing energy in Galerkin approximation
q′M =

∑M
i=1 ak(t)φk(x)

dEM
dt
≡ 1

2
d
dt
||q′M (x, t)||(H,Ω) ≤ 0

General case: Galerkin approximation satisfies same energy expression as
solutions to the continuous PDEs

||q′M (x, t)||(H,Ω) ≤ eβt||q′M (x, 0)||(H,Ω)

Practical Implication:
Symmetry inner product ensures Galerkin projection step of the
ROM is stable (provided system is in stable state) for any basis!
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Energy-Stable ROM via Discrete
Projection

Symmetry inner product has discrete analog!

Consider linear discrete (i.e., discretized in space) stable full order system

ẋ = Ax (3)

Lyapunov function for (3): V (x) = xTPx where P is the solution of the Ricatti
equation:

ATP + PA = −Q (4)

I S.p.d. solution to (4) exists if Q is s.p.d. and A is stable [8].
I Solution to (4) can be obtained using MATLAB control toolbox:

P = lyap(A’, Q, [] speye(n, n));

Discrete analog of symmetry inner-product: Lyapunov inner product

(x1,x2)P ≡ xT1 Px2

Can show: if ROM for (3) is constructed in Lyapunov inner product,
dEM
dt
≡ 1

2

d

dt
||xM ||22 ≤ 0

15 / 29



Energy-Stable ROM via Discrete
Projection

Symmetry inner product has discrete analog!

Consider linear discrete (i.e., discretized in space) stable full order system
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Energy-Stable ROM via Discrete
Projection: vs. Continuous Projection

Symmetry Inner Product
(Continuous)

(q′(1),q′(2))(H,Ω) ≡
∫

Ω

[q′(1)]THq′(2)dΩ

For linear system:

q′,t + Aiq
′
,i − [Kijq

′
,i],j + · · · = F

Defined for unstable systems, but
stability of ROM not guaranteed.
Induced by Lyapunov function for
system.
Equation-specific (⇒ embedded
algorithm).
Known analytically in closed form.

Lyapunov Inner Product
(Discrete)

(x1,x2)P ≡ xT1 Px2

For linear system:

x,t = Ax

Undefined for unstable
systems.
Induced by Lyapunov function for
system.
Black-box.
Computed numerically by solving
Ricatti equation (O(N3) ops).
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Implementation

Stability-Preserving Discrete Implementation of ROM:
I ROM is implemented in a C++ code that uses distributed vector and matrix

data structures and parallel eigensolvers from the Trilinos project [7].
I POD modes defined using piecewise smooth finite elements.
I Gauss quadrature rules of sufficient accuracy are used to compute exactly

inner products with the help of libmesh library.

ROM code is potentially compatible with any CFD code that can
output a mesh and snapshot data stored at the nodes of this mesh.

High-fidelity CFD Code: SIGMA CFD
I Sandia in-house finite volume flow solver derived from LESLIE3D [6], a LES

flow solver originally developed in the Computational Combustion
Laboratory at Georgia Tech.

I Solves the turbulent compressible flow equations using an explicit 2-4
MacCormack scheme.

I A hybrid scheme coupling the MacCormack scheme to flux
difference splitting schemes is employed to capture shocks.
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Driven Pulse in a Uniform Base Flow

Uniform base flow in Ω = (−1, 1)2:

p̄ = 10.1325 Pa
T̄ = 300 K

ρ̄ = p̄
RT

= 1.17× 10−4 kg/m3

ū1 = ū2 = ū3 = 0.0 m/s
c̄ = 347.9693 m/s.

Slip wall boundary conditions applied on all
boundaries of Ω.

Force for y–momentum equation drives the flow:

Fv(x, t) =
(
1× 10−4) cos(2000πt), x ∈ (−0.1, 0)2

High-fidelity CFD simulation run on 3362 node mesh until time T = 0.5 seconds.

2500 snapshots (saved every 2× 10−5 seconds), used to construct a
20 mode POD basis.
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Uncontrolled Symmetry ROM Results

Figure below shows:
I ◦: t vs. ai(t) (ROM coefficients).
I −: t vs. (q′CFD(x, t),φi(x))

(projection of snapshots onto
modes).

Movie on right shows u-velocity
snapshot (top) vs. 20 mode symmetry
ROM solution for u (bottom).
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LQR Control of Driven Pulse

Control problem: compute actuation that will
minimize p′ at (x, y) = (1, 0).

I Compute LQR controller feedback law
uM = −KxM to minimize quadratic cost
functional using ROM∗:

J ≡ 1

T

∫ T

0

[p′2(1, 0; t) + τu2]dt

∗ The computation of K = R−1BTX requires solution of algebraic Ricatti equation
ATX + XA− 1

τXBBTX + CTC = 0 [8].
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Laminar Viscous Driven Cavity
Problem

Mach = 0.6, Re = 1898 (laminar
regime).

Force for y–momentum equation
drives the flow:

Fv(x, t) =
1

2
cos(2000πt), x ∈ Ωc

High-fidelity CFD simulation was run on 343,408 node mesh until time
T = 0.202 seconds.

101 snapshots were saved (every 2× 10−4 seconds), to construct a 20 mode
POD basis.

Inherently non-linear problem!
High-fidelity solution obtained by solving
full non-linear Navier-Stokes equations.
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Expected ROM Performance

ROM based on Navier-Stokes equations
linearized around snapshot mean.

Non-linear dynamics of flow
are captured in

POD reduced basis modes.

Non-linear dynamics of the flow
are not fully captured in equations

projected onto POD modes.

u mode 1
(24.9% energy)

u mode 2
(23.7% energy)

u mode 3
(6.93% energy)
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ROM based on Linearized Navier-
Stokes Neglecting ∇q̄ Terms

q′,t + Ai(q̄)q′,i − [Kij(q̄)q′,j ],i = F

Figure below shows:
I ◦: t vs. ai(t) (ROM coefficients).
I −: t vs. (q′CFD(x, t),φi(x)) (projection of

snapshots onto modes).

Movie on right shows v-velocity snapshot (top)
vs. 20 mode symmetry ROM solution v (bottom).
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Summary & Future Work

A Galerkin ROM in which the continuous equations are projected onto
the basis modes in a continuous inner product is proposed.
The choice of inner product for the Galerkin projection step is crucial to
stability of the ROM.

I For linearized compressible flow, Galerkin projection in the “symmetry”
inner product leads to a ROM that is stable for any choice of basis.

I Continuous “symmetry” inner product has discrete counterpart that can be
determined in a black box fashion for any stable linear system.

Extensions to non-linear compressible flows based on a local
linearization of the governing equations prior to projection is described.
Performance of the proposed POD/Galerkin ROM is examined on a
linear as well as a non-linear test case.

I LQR controller design/performance demonstrated on linear test case
(driven inviscid pulse).

I Importance of retaining velocity gradient terms in ROM equations illustrated
on non-linear test case (driven cavity)

Future Work: Controller design for non-linear cavity problems
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Linearized ROM System Matrices

A1 =


ū1 0 0 R RT̄

ρ̄

0 ū1 0 0 0
0 0 ū1 0 0

T̄ (γ − 1) 0 0 ū1 0
ρ̄ 0 0 0 ū1

 , A2 =


ū2 0 0 0 0

0 ū2 0 R RT̄
ρ̄

0 0 ū2 0 0
0 T̄ (γ − 1) 0 ū2 0
0 ρ̄ 0 0 ū2



A3 =


ū3 0 0 0 0
0 ū3 0 0 0

0 0 ū3 R RT̄
ρ̄

0 0 T̄ (γ − 1) ū3 0
0 0 ρ̄ 0 ū3

 , K11 ≡
1

ρ̄Re


2µ+ λ 0 0 0 0

0 µ 0 0 0
0 0 µ 0 0
0 0 0 γκ

Pr 0
0 0 0 0 0

 ,

K12 ≡
1

ρ̄Re


0 λ 0 0 0
µ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , K13 ≡
1

ρ̄Re


0 0 λ 0 0
0 0 0 0 0
µ 0 0 0 0
0 0 0 0 0
0 0 0 0 0



K21 ≡
1

ρ̄Re


0 µ 0 0 0
λ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , K22 ≡
1

ρ̄Re


µ 0 0 0 0
0 2µ+ λ 0 0 0
0 0 µ 0 0
0 0 0 γκ

Pr 0
0 0 0 0 0


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Linearized ROM System Matrices
(continued)

K23 ≡
1

ρ̄Re


0 0 0 0 0
0 0 λ 0 0
0 µ 0 0 0
0 0 0 0 0
0 0 0 0 0

 , K31 ≡
1

ρ̄Re


0 0 µ 0 0
0 0 0 0 0
λ 0 0 0 0
0 0 0 0 0
0 0 0 0 0



K32 ≡
1

ρ̄Re


0 0 0 0 0
0 0 µ 0 0
0 λ 0 0 0
0 0 0 0 0
0 0 0 0 0

 , K33 ≡
1

ρ̄Re


µ 0 0 0 0
0 µ 0 0 0
0 0 2µ+ λ 0 0
0 0 0 γκ

Pr 0
0 0 0 0 0



K
vw
1 ≡


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(γ−1)
Rρ̄ τ̄11

(γ−1)
Rρ̄ τ̄12

(γ−1)
Rρ̄ τ̄13 0 0

0 0 0 0 0

 , K
vw
2 ≡


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(γ−1)
Rρ̄ τ̄21

(γ−1)
Rρ̄ τ̄22

(γ−1)
Rρ̄ τ̄23 0 0

0 0 0 0 0



K
vw
3 ≡


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(γ−1)
Rρ̄ τ̄31

(γ−1)
Rρ̄ τ̄32

(γ−1)
Rρ̄ τ̄33 0 0

0 0 0 0 0



28 / 29



Linearized ROM System Matrices
(continued)

C =



∂ū
∂x

∂ū
∂y

∂ū
∂z

R
ρ̄
∂ρ̄
∂x

1
ρ̄

(
ū · ∇ū+ R ∂T̄

∂x

)
∂v̄
∂x

∂v̄
∂y

∂v̄
∂z

R
ρ̄
∂ρ̄
∂y

1
ρ̄

(
ū · ∇v̄ + R ∂T̄

∂y

)
∂w̄
∂x

∂w̄
∂y

∂w̄
∂z

R
ρ̄
∂ρ̄
∂z

1
ρ̄

(
ū · ∇w̄ + R ∂T̄

∂z

)
∂T̄
∂x

∂T̄
∂y

∂T̄
∂z (γ − 1)∇ · ū 1

ρ̄

(
ū · ∇T̄ + (γ − 1)T̄∇ · ū

)
∂ρ̄
∂x

∂ρ̄
∂y

∂ρ̄
∂z 0 ∇ · ū


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