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Abstract

The present document summarizes some recent (June – September 2009) extensions of a model for predicting
transitional and fully turbulent pressure fluctuation loading using CFD mean flow information, proposed by L. J. De
Chant in [4, 5]. The purpose of this work is to fine tune the equations at the heart of the model, and to formulate the
most appropriate numerical method for their solution. Someshortcomings of the eigenvalue problem (EVP) proposed
earlier [4, 5] are identified and addressed. Previously unseen connections to Sturm-Liouville and Orr-Sommerfeld
theory are made. Several new eigenvalue and boundary value problems for the fluctuating quantities are proposed
and evaluated in light of well-posedness, the underlying physics, and numerical implementation. The details of some
suggested numerical solution methods (the series solutionmethod and a Laguerre-Galerkin spectral method) are
outlined. Preliminary numerical results for two EVPs formulated herein are presented. These results uncover some
issues that remain and may need to be addressed in the future.

DOE Funding Statement

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security administration, under Contract DE-AC04-94AL85000.

1 Introduction

Following the approach of [4, 5], we consider the 2D steady incompressible Euler equations. Introducing the classical
Reynolds decomposition:

u = U + u′, v = V + v′, p = P+ p′ (1)

where the capitalized quantities denote mean (temporal average) quantities and the ‘prime’ quantities denote temporal
fluctuations, and substituting (1) into the equations, we obtain

[Ux +Vy]+ [u′x + v′y] = 0 (2)

[UUx +VUy + Px +(u′u′)x +(u′v′)y]+ [Uu′x +Vu′y +Uxu′+Uyv′+ p′x] = 0 (3)

UVx +VVy + Py +(u′v′)x +(v′v′)y]+ [Uv′x +Vv′y +Vxu′+Vyv′+ p′y] = 0 (4)
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(2) is the continuity relation and (3) and (4) are thex– andy–momentum expressions respectively.

As in [4, 5], the next step in the so-called “equation-splitting” approach is to “split” the mean equations from the
fluctuating equations in (2)–(4). Doing so yields the following systems of equations:

Mean:







Ux +Vy = 0
UUx +VUy + Px +(u′u′)x +(u′v′)y = 0
UVx +VVy + Py +(u′v′)x +(v′v′)y = 0

(5)

Fluctuation:







u′x + v′y = 0
Uu′x +Vu′y +Uxu′+Uyv′+ p′x = 0
Uv′x +Vv′y +Vxu′+Vyv′+ p′y = 0

(6)

(5) will be referred to as the “mean equations” and (6) as the “fluctuating equations”. Note that we arenot applying
the averaging operator to (6) as is typically done in Reynolds-Averaged Navier-Stokes (RANS). Indeed, if we did this,
then the equations (6) would be lost (i.e., the left-hand-sides would vanish).

If we make the “standard” boundary simplifications as done in[4, 5], namely assume(u′u′)x ≈ (v′v′)y ≈ (u′v′)x ≈
VVy ≈ 0, and apply the eddy-viscosity model−(u′v′)y = νe f f Uyy, then the mean equations (5) become:

Mean:







Ux +Vy = 0
UUx +VUy + Px−νe f fUyy = 0

UVx +VVy + Py = 0
(7)

Note that with the boundary layer/modeling assumptions above, (7) has decoupled from the fluctuating equations (6).
Thus, (7) can be solved either numerically or perhaps analytically [4, 5] for the mean quantities independently of (6).

The running document [7] contains several approximate analytic solutions to (7). One model for the mean flow
velocities is the following exponential one:

U(x,y) = e−c0x(1− e−b0y) (8)

for some constantsb0,c0 (to be specified). WithU(x,y) given by (8), one can approximate, wheny << 1:

Uxy

U
=−

c0b0e−b0y

1− e−b0y ≈−
c0

y
, y << 1 (9)

Uyy

U
=−

b2
0e−b0y

1− e−b0y ≈−
b0

y
, y << 1 (10)

The approximations (9) and (10) will be employed in Sections3.2 and 4.2 for the sake of obtaining some preliminary
numerical results.

Given the equation splitting (5) and (6) our approach will beto solve these equations by decoupling the mean equations
as in (7), solving for the mean quantities, substituting them into (6) and solving for the fluctuations from (6). Of
course, as these equations stand, they are incomplete: boundary conditions are required. We will take as our domain
the following semi-infinite region:

Ω≡ (0,∞)× (0,∞)⊂ R
2 (11)

The boundary conditions on the mean velocities are

U(x,0) = V (x,0) = V (x,∞) = 0, U(x,∞) = 1 (12)

The boundary conditions on the fluctuations are

u′(x,0) = u′(x,∞) = v′(x,0) = v′(x,∞) = p′(x,0) = p′(x,∞) = 0 (13)

In two-dimensions (2D), (6) and (13) can be written as a thirdorder, scalar equation for the fluctuating streamfunction
ψ ′, defined by

u′ = ψ ′y, v′ =−ψ ′x (14)

2



The streamfunction BVP equivalent to (6) with boundary conditions (13) is:
{

Uψ ′xxx +Vψ ′yyy +Uψ ′xyy +Vψ ′xxy +(Uxy−Vxx)ψ ′y +(Vxy−Uyy)ψ ′x = 0
ψ ′x(x,0) = ψ ′x(x,∞) = ψ ′y(x,0) = ψ ′y(x,∞) = 0

(15)

Once (15) is solved for the fluctuating streamfunctionψ ′, one can obtain the fluctuating velocities by differentiating
this function per (14), and then solve the following pressure-Poisson equation for the pressure fluctuation:







p′xx + p′yy =−2(Vxu′y +Uxu′x +Vyv′y +Uyv′x)
p′(x,0) = 0
p′(x,∞) = 0

(16)

At this point, the following observation is in order: (6) with the boundary conditions (13) (or, equivalently, the stream-
function BVP (15)) is ill-posed, as it is a homogeneous steady partial differential equation (PDE) with homogeneous
boundary conditions. In particular, if (6) with (13) (or equivalently (15)) were to be solved numerically, one would
obtain the trivial, uninteresting solutionu′ = v′ = p′ = 0.

The aim of this document is to propose various ways of remedying this problem of ill-posedness of the fluctuating
equations. We propose several ways to do this:

• Given the mean flow, formulate (15) as a Sturm-Liouville eigenvalue problem (EVP) by assuming an ansatz
(solution form)ψ ′(x,y) = ψ̂(y)eαx, with α playing the role of an (unknown) eigenvalue to be solved for,much
like in classical Orr-Sommerfeld theory (Section 3).

• Given the mean flow, add fluctuating time scale termsu′t andv′t to (6) to yield aninitial boundary value problem
(IBVP)







u′x + v′y = 0
u′t +Uu′x +Vu′y +Uxu′+Uyv′+ p′x = 0
v′t +Uv′x +Vv′y +Vxu′+Vyv′+ p′y = 0

(17)

with some non-trivial initial conditionsu′(0,x,y) = u′0(x,y), v′(0,x,y) = v′0(x,y), p′(0,x,y) = p′0(x,y) (Section
4). The IBVP (17) can be formulated as an eigenvalue problem by assuming an unsteady Orr-Somerfeld-like
ansatzψ ′(t,x,y) = ψ̂(y)eλ t+αx for the streamfunction (Section 4).

• Introduce a mean-flow-dependent source into the homogeneous fluctuating equations (6) (Sections 5).

Although simplified variants of the equations can be solved analytically under some assumptions [4, 5, 7], ultimately
the fluctuations will be solved for numerically. The numerical method to be employed depends on what equations are
ultimately selected, as different formulations of the equations are amenable to different solution methods. As we show
below, the steady Sturm-Liouville eigenvalue problem (point 1 above) suggests a series solution approach (Section
3). A formulation involving unsteady fluctuations (point 2 above) can be expressed as an eigenvalue problem that is
amenable to solution by a Laguerre-Galerkin spectral method (Section 4).

As illuminated by preliminary numerical experiments (Sections 3.2 and 4.2), an important question that needs to be
addressed, once a set of equations is selected and solved, isprecisely how to interpret and validate the solutions to
these equations. Some issues that arise include in particular:

• The possibility of complex solutions (eigenvalues and eigenfunctions), and what these solutions would mean
physically.

• Whether it is appropriate to associate the fluctuating quantities that solve (6) with root-mean-square (rms) quan-
tities.

• Whetherlinear equations for the fluctuations like (6) accurately describethe physics, turbulence being an inher-
entlynonlinear phenomenon.

In what is to come, we present several well-posed variants ofthe “split” equations for the fluctuating quantities. For
simplicity, and without loss of generality, in Sections 3 and 4, we focus on the streamfunction equation (15). The
streamfunction approachis limited to two-dimensions (2D); however we emphasize that themethods presented herein
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are not limited to 2D and the scalar BVP (15), i.e., they can just as easily be applied to the equations in the primitive
variables (6), or the three-dimensional (3D) version of these equations. Care is taken to formulate the equations
such that they are well-posed and amenable to numerical solution by an easy-to-implement and appropriate numerical
method. The details of some of these implementations are laid out, and some preliminary numerical results for two
of the proposed eigenvalue problems (EVPs) are given and interpreted. We conclude with a discussion of some issues
that remain and may need to be addressed in the future.

2 The “Old” Eigenvalue Problem (EVP) [4, 5] and the Sturm-Liouville Con-
nection

The basic idea behind the approach taken in subsequent sections (Sections 3-4) rests on the observation that (15) is ill-
posed with the prescribed boundary conditions –unless it is viewed as an eigenvalue problem (EVP), like in standard
Sturm-Liouville theory. Recall that, in general, the Sturm-Liouville problem is given by:

−[p(x)u′(x)]′+ q(x)u(x) = λ w(x)u(x) (18)

whereu(x) is the unknown function (solution),p(x), q(x) andw(x) are prescribed, andλ is an (unknown scalar)
eigenvalue. The solutions to (18) define various families oforthogonal polynomials, orthogonal in theL2(Ω) inner
product with respect to the weightw(x). For example, whenp(x) = 1, q(x) = 0, w(x) = 1, the solutions to (18) define
the Fourier basis; whenp(x) = 1− x2, q(x) = 0, w(x) = 1, the solutions to (18) define the Legendre basis, etc.

Motivated by this Sturm-Liouville/eigenvalue problem connection, an attempt was made in [4, 5] to formulate (15) as
an eigenvalue problem resembling (18). Denotingε = V/U , dividing though byU and assumingVxx = Vxy = 0, (15)
becomes:

{

ψ ′xxx + εψ ′yyy + ψ ′xyy + εψ ′xxy +
Uxy
U ψ ′y−

Uyy
U ψ ′x = 0

ψ ′x(x,0) = ψ ′x(x,∞) = ψ ′y(x,0) = ψ ′y(x,∞) = 0
(19)

In order to make (19) resemble (18) and ensure well-posedness of this BVP, an ad-hoc eigenvalueλ was introduced,
based on scaling arguments. This was done by replacing

{

Uxy

U
ψ ′y−

Uyy

U
ψ ′x

}

←
{

λU ′′(x,y)[ψ ′x + ψ ′y]
}

(20)

whereU ′′(x,y) is a function describing the behavior of the mean velocity gradients, to be specified (modeled), andλ is
an unknown eigenvalue parameter, to be solved for in solving(21). Making the substitution (20) in (19), the following
EVP was obtained in [4, 5]:

{

ψ ′xxx + εψ ′yyy + ψ ′xyy + εψ ′xxy + λU ′′(x,y)[ψ ′y + ψ ′x] = 0
ψ ′x(x,0) = ψ ′x(x,∞) = ψ ′y(x,0) = ψ ′y(x,∞) = 0

(21)

We emphasize that the eigenvalueλ in (21) is added as an additional unknown degree of freedom toensure well-
posedness of (19).

Recent work has revealed that the “ad hoc” EVP (21) has some shortcomings. While the EVP itself is mathematically
well-defined in the sense that it permits a non-trivial solution, since theeigenvalue λ in (21) was introduced in an ad
hoc, artificial fashion (20), it is unclear what this eigenvalue and its corresponding eigenfunctions mean. In particular,
it is unclear what to make of complex eigenfunctions and eigenvalues. Numerical implementation using a Hermite
cubic finite element discretization (similar to the approach outlined in [3]) revealed that the eigenvalues and their
corresponding eigenfunctionswere in general complex, and indeed, as the operator governing (21) is asymmetric,
real-valued solutions to (21) cannot be guaranteed.
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3 Steady Eigenvalue Problem (EVP) for the Fluctuations withOrr-Sommerfeld-
Like Antatz

Given the difficulty in interpreting the solutions to the “old” eigenvalue problem (21), we seek a more natural EVP, in
which the meaning of the eigenvalues and eigenfunctions aremore clearly defined and tied to the equation and/or the
physics in some way. To do so, it is useful to make a connectionto Orr-Sommerfeld theory.

Recall that, for the well-known Orr-Sommerfeld equation (Section 5.2 of [12]), one obtains an eigenvalue problem by
assuming an ansatz of the form

u′(t,x,y) = û(y)eiα(x−ct)

v′(t,x,y) = v̂(y)eiα(x−ct)

p′(t,x,y) = p̂(y)eiα(x−ct)
(22)

and substituting (22) into (in the simplest case) the unsteady 2D Euler equations. Doing so yields the well-known
Orr-Sommerfeld EVP:

v̂′′−
(

Uxy
U−c + α2

)

v̂ = 0

v̂(0) = v̂(∞) = 0
(23)

The three unknown parameters in (23) are ˆv (the primal unknown), andα ∈ C andc ∈ C (a sequence of eigenvalues).
These eigenvaluesα and c are related to stability: from (22), one can see that the signof their imaginary parts
determines whether the solution grows temporally and/or spatially. Once the unknowns in (23) are computed, the
final solution can be obtained by substituting these functions and eigenvalues into (22). Hence, the eigenvalues and
eigenfunctions have a straight forward connection to the solutions of the original equations.

One may apply the Orr-Sommerfeld ansatz approach outlined above to derive an eigenvalue problem (EVP) for the
fluctuating streamfunction. Begin by assuming the streamfunction has the following functional form:

ψ ′(x,y) = ψ̂(y)eαx (24)

Here,α ∈ C is a scalar that can be thought of as a wave number of the disturbance. Substituting the ansatz (24) into
(19), gives

εψ̂ ′′′+ αψ̂ ′′+
(

εα2 +
Uxy
U

)

ψ̂ ′+ α
(

α2−
Uyy
U

)

ψ̂ = 0

ψ̂(0) = ψ̂(∞) = ψ̂ ′(0) = ψ̂ ′(∞) = 0
(25)

whereε ≡ V/U . The meanx–velocity and its gradients, namelyU , Uxy andUyy that appear in (25) are to be fed in
from the code that solves the (decoupled) mean equations (5), or modeled, as in, e.g., (9)–(10).

The “natural” EVP (25) and “artificial” EVP (21) are different, as expected. Rather than introducing an ad hoc scaling
parameter to represent the eigenvalue, we have employed Orr-Sommerfeld analysis, with the parameterα in (24)
representing the eigenvalue. Once the solutions to (25) (the eigenvaluesα and corresponding eigenfunctionsψ̂) are
obtained, the final solution is given by (24).

Note that (25) is nonlinear in the eigenvalueα. As we will show below in Sections 3.1–3.2, one may derive a series
solution to (25) that can be implemented easily, e.g., in MATLAB. A “direct” numerical solution of (25) by a standard
discretization (e.g., using a spectral method; see Section4.1) would require the application of Newton’s method to
handle the non-linearities. It is interesting to observe that under the assumption thatε ≈ 0 andU = U(y) only, (25)
simplifies to:

ψ̂ ′′− Uyy
U ψ̂ + α2ψ̂ = 0 (26)

(26) is a linear EVP very similar to (23) that can be solved numerically (or perhaps analytically for simple enough
choices ofU) with ease using a spectral method like the Laguerre-Galerkin method outlined in Section 4.1.
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3.1 Series Solution Approach to the EVP(25)

Given the connection to Sturm-Liouville exhibited above, it is natural to try classical Sturm-Liouville solution tech-
niques to try to derive analytically solutions to (25). One standard technique is the series expansion partial differential
equation (PDE) solution technique. This is, in fact, one wayof deriving the nice families of orthogonal polynomials
that solve (18), e.g., the Fourier, Legendre, Hermite, Laguerre, etc. bases. The approach is as follows: begin by
assuming a solution of the form

ψ̂(y) =
∞

∑
m=1

amyme−β y (27)

Then substitute the series (27) into the EVP (25), and derivea recursive relation for the coefficientsam. The weight1

e−y has been added to (27) so that it is possible to satisfy the homogeneous boundary condition onu′ andv′ at y = ∞.

For the purpose of generating some actual analytical and numerical results, assume that, fory << 1:

Uxy

U
=−

c0

y
,

Uyy

U
=−

b0

y
(28)

for some specified (modeled) constantsc0,b0 ∈ R (see the running document [7] and (9)–(10) above). With the mean
velocities given by (28), (25) becomes (multiplying through byy to avoid singular coefficients):

εyψ̂ ′′′+ αyψ̂ ′′+
(

εα2y− c0
)

ψ̂ ′+ α
(

α2y + b0
)

ψ̂ = 0 (29)

Differentiating (27), we obtain:

ψ̂ ′(y) =−β
∞

∑
m=1

amyme−β y +
∞

∑
m=2

mamym−1e−β y (30)

ψ̂ ′′(y) = β 2
∞

∑
m=1

amyme−β y−2β
∞

∑
m=2

mamym−1e−β y +
∞

∑
m=3

m(m−1)amym−2e−β y (31)

ψ̂ ′′′(y) =−β 3∑∞
m=1 amyme−β y +3β 2∑∞

m=2 mamym−1e−β y−3β ∑∞
m=3 m(m−1)amym−2e−β y

+∑∞
m=4 m(m−1)(m−2)amym−3e−β y (32)

Substituting (27) and (30)–(32) into (29) and re-indexing:

−∑∞
m=2 β 3εam−1ym + ∑∞

m=23β 2εmamym−∑∞
m=23β ε(m+1)mam+1ym

+∑∞
m=2 ε(m+2)(m+1)mam+2ym + ∑∞

m=2 β 2αam−1ym−∑∞
m=22β αmamym

+∑∞
m=2 α(m+1)mam+1ym−∑∞

m=2 εβ α2am−1ym + ∑∞
m=2 εα2mamym

+∑∞
m=1 c0β amym−∑∞

m=1 c0(m+1)am+1ym + ∑∞
m=2 α3am−1ym + ∑∞

m=1 αb0amym = 0

(33)

or
[(β c0 + αb0)a1−2c0a2]ye−β y + ∑∞

m=2

{[

−β 3ε + β 2α−β εα2+ α3
]

am−1

+
[

3β 2εm−2β αm+ εα2m+ β c0+ αb0
]

am +[−3β ε(m+1)m+ α(m+1)m− c0(m+1)]am+1

+ε(m+2)(m+1)mam+2}yme−β y = 0
(34)

(34) holds if each of the coefficients in the sum is zero for each m, i.e., if the am satisfy the following recursion
relations:

(β c0 + αb0)a1−2c0a2 = 0 (35)
[

−β 3ε + α3+ β α(β − εα)
]

am−1 +[β (3β εm−αm+ c0)−α(β − εα)m+ αb0]am

+[−3β εm+ αm− c0] (m+1)am+1+ ε(m+2)(m+1)mam+2 = 0, m = 2,3,4, ...
(36)

with ψ ′(x,y) given by (from (27) and (24))

ψ ′(x,y) =
∞

∑
m=1

amyme−β yeαx (37)

1Note that (27) is somewhat reminiscent of the series solution assumed for Laguerre’s differential equation, which generates the so-called
Laguerre functions; see Section 4.1 for more on the Laguerrespectral basis.
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(36) is defines a matrix with four nonzero diagonals, which reduces to a tridiagonal system whenα = ε. If additional
assumptions are made to simplify (25) it may be possible to derive a nice recursive relation for theam by simplifying
(36).

Note that (37), although based on the idea of an EVP with an unknown eigenvalue, does not require solution forα or
β , or any eigenvalue for that matter.α andβ are to be modeled (prescribed). In the implementation, one can simply
code the solutionψ ′(x,y) as in (37) with theam given by (36). The coefficientβ would be specified to ensure that the
far-field homogeneous boundary conditions are satisfied. Noting that

e−β y = 1−β y +
(β y)2

2!
−

(β y)3

3!
+ ... (38)

one would ensure satisfaction of the far-field condition ifβ is set such that:

β > max
m=1,...,M

(|am|m!)1/m (39)

One question that may arise is how to handle the case when the expressions (models) forUyy/U andUxy/U are more
complicated than (28), or if they are functions ofx. A natural remedy here would be to freezex, write a Taylor series
for these quantities, and apply the series approach using these Taylor-expanded quantities for each fixed (frozen) value
of x.

3.2 Some Numerical Results to(25)using the Series Approach

Figures 1–2 show plots of the partial sum solutions

ψ ′M(x,y)≡
M

∑
m=0

amyme−β yeαx (40)

with
ε = 0.01, α =−ε, β = 1, c0 = 0.001, b0 = 1, a1 = 0.1 (41)

plotted forx,y∈ (0,50)×(0,50) with M = 50 in the partial sum (40). Note that the constanta1 in (35) is what specifies
the magnitude of the fluctuating velocity profiles (the “normalization constant”). A question that needs to be addressed
is how to normalize the solutions, i.e., how to fix the constant a1 specifying the magnitude of the velocity fluctuations.
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Figure 1: Fluctuating quantities (40) with (41),M = 50 plotted onx,y ∈ (0,50)× (0,50)

Convergence of the series (37) is of interest, i.e., the convergence of the coefficientsam. Figure 3 is a preliminary
numerical validation that shows that for the values of the properties (41), theam→ 0 asm→∞. If the series approach is
adopted in practice, it would be worthwhile to analyze the convergence of (40) asM→∞ (the decay of the coefficients
am), analytically well as numerically.
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Figure 2:u′ andv′ (40) with (41),M = 50 plotted ony ∈ (0,50) along the cross-sectionx = 0.5
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Figure 3: Decay of the coefficientsam (M = 50)

As a final comment, as the plots above (Figures 1–2) suggest,u′ and v′ are actuallynot root-mean-square (rms)
quantities, a connection that was made in [4, 5] for purposesof model validation. Indeed, as the original equations
(6) was not derived for rms quantities, there is no reason to associate the solutions to this EVP with rms velocities
or require them to be non-negative. An appropriate interpretation of the solutions to (6) is currently lacking. Are
these solutions simply pointwise velocity fluctuations? Some kind of physical interpretation will be required both for
validation of the model/governing equations selected, andfor ultimate calculation of the desired turbulent pressure
loads.
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4 “Pseudotemporal” Eigenvalue Problem (EVP) for the Fluctuations with
Orr-Sommerfeld-Like Ansatz

There is another way to handle the ill-posedness of the fluctuating equations (6). As suggested in the introduction,
one can assume the fluctuating quantities are unsteady:u′(t,x,y),v′(t,x,y), p′(t,x,y). In this case, the fluctuating
equations are actually (17), that is, they are (6) but with a time derivative appearing in the two momentum equations.
The unsteady BVP (17), although homogeneous, isnot ill-posed, provided one specifies non-trivial initial conditions
u′(0,x,y) = u′0(x,y), v′(0,x,y) = v′0(x,y), p′(0,x,y) = p′0(x,y). Rewriting (17) in terms of the fluctuating streamfunc-
tion ψ ′(t,x,y) (14), one obtains in place of (19) the following unsteady PDE:

(ψ ′yy + ψ ′xx)t +Vψ ′yyy +Uψ ′xxx +Uψ ′xyy +Vψ ′xxy +Uxyψ ′y−Uyyψ ′x = 0 (42)

In what we will refer to as the “pseudotemporal” approach, weuse the unsteady terms in (42) to generate a well-posed
EVP using Orr-Sommerfeld theory. We call the approachpseudotemporal because in actuality, we are interested in the
steady fluctuations. Thus, time is added to (42)for the sake of well-posedness only, to be taken away once a non-trivial
solution is obtained, following the procedure outlined in the running document [7], as well as below.

Given (42), the “pseudotemporal” approach says to introduce a time-dependent ansatz for the fluctuating streamfunc-
tion of the form

ψ ′(t,x,y) = ψ̂(y)eαxeλ t (43)

Substituting (43) into (42), we obtain:

εUψ̂ ′′′+ αUψ̂ ′′+(εα2U +Uxy)ψ̂ ′+ α(α2U−Uyy)ψ̂ + λ (ψ̂ ′′+ α2ψ̂) = 0
ψ̂(0) = ψ̂(∞) = ψ̂ ′(0) = ψ̂ ′(∞) = 0

(44)

whereε ≡V/U . (44) can be viewed, and solved numerically, as an eigenvalue problem, for the unknown eigenvalues
λi and their corresponding eigenfunctionsψ̂i. Unlike the EVP (25), the EVP (45) islinear in the eigenvalue, as in
(45) the eigenvalue comes from the “pseudo”-time dependence, not from the assumed behavior in thex–direction.
This makes (44) quite amenable to numerical solution using aspectral method with basis functions defined on a
semi-infinite domain, e.g., a Laguerre-Galerkin method. The details of the numerical solution of (44) by a Laguerre-
Galerkin spectral method is outlined in Section 4.1, where we also give some numerical results for a simple choice of
the parameters.

In the “pseudotemporal” approach, once the eigenvalues andeigenfunctions are computed, the solution (in actuality a
steady function) is set to be:

ψ ′(x,y) = span{ψ̂i(y)}e
αx (45)

(45) amounts to essentially settingt ≡ const in (43). The parameterα in (43) is to be specifieda priori (modeled), as
areU , Uyy andUxy.

We end by calling to the reader’s attention the fact that whatis essentially done in the “pseudotemporal” approach
is a source is implicity introduced into the homogeneous steady equations (19). It is easiest to demonstrate this on a
simpler PDE. Suppose we wish to apply the “pseudotemporal” approach to the one-dimensional (1D) heat equation
on x ∈ (0,1):

uxx = 0
u(0) = u(1) = 0

(46)

Of course, the solution to (46) is trivial. The “pseudotemporal” approach says to add a derivative with respect to time

ut + uxx = 0
u(0) = u(1) = 0

(47)

and assume an ansatz of the formu(x,t) = û(x)eλ t . Substituting this ansatz into (47) gives the EVP:

û′′+ λ û = 0
û(0) = û(1) = 0

(48)
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The solution to (48) is the span of Fourier sine functions: ˆu(x) = span{sin(nπx) : n ∈ Z}. Substituting this into the
ansatz and settingt = 0, following the “pseudotemporal” approach, we get as our non-trivial “pseudotemporally”
computed solution:

u(x) = span{sin(nπx) : n ∈ Z} (49)

Note that (49) doesnot solve the original PDE (46); rather it solves

uxx = λ 2
n sin(λnx)

u(0) = u(1) = 0
(50)

whereλn = nπ for n∈Z. Thus, the “pseudotemporal” approach ensures well-posedness by adding “artificial” unsteady
terms that essentially generate an artificial source for theoriginal homogeneous PDE. This idea is quite novel; therefore
its appropriateness and validity in the context of the physics inherent in our model is worth investigating further in
future research. In addition, it motivates Section 5, wherea source is introduced directly into the fluctuating equations
(6).

4.1 Laguerre-Galerkin Spectral Method Solution to the EVP(44)

Since (44) (and also (25), but here we focus our attention on (44)) is posed on a semi-infinite domain, it is amenable
to numerical solution by a Laguerre-Galerkin spectral method.

Recall the Laguerre polynomials, defined by:

L0(x) = 1
L1(x) = 1− x

(n +1)Ln+1(x) = (2n +1− x)Ln(x)−nLn−1(x), n = 1,2, ...
(51)

These functions satisfy Laguerre’s equation,xL′′n +(1− x)L′n +nLn = 0, with the boundary conditionLn(0) = 1. They
are orthogonal in theL2([0,∞)) inner product with respect to the weighte−x.

To solve (44) by a Galerkin method, we are required, by definition, to have a basis that satisfies the boundary con-
ditions, in this case, a homogeneous BC onψ̂ andψ̂ ′ at 0 and∞. It is clear that the Laguerre polynomials (51) do
not satisfy these boundary conditions. It takes some work tocome up with appropriate basis functions that satisfy the
required boundary condition (see as a reference [10]). It turns out that the following basis{φ̂i}

N
i=0 does the trick:

φ̂i(x)≡ [Li(x)−Li+1(x)+2x]e−x/2 (52)

It is straight forward to check that̂φi(0) = φ̂i(∞) = φ̂ ′i (0) = φ̂ ′(∞) = 0 for all i = 0,1,2, .... We will therefore expand
our streamfunction̂ψ(y) in the basis (52), so that we will solve for the coefficientsan such that:

ψ̂(y)≈ ψ̂N(y)≡
N−1

∑
n=0

anφ̂n(y) (53)

with the φ̂n defined in (52).

Projecting (44) onto theith basis functionφ̂i and performing some integrations by parts, we obtain the following weak
formulation of the EVP:

∫ ∞
0 (Uyφ̂i +U φ̂ ′i )(εψ̂ ′′+ αψ̂ ′)dy−

∫ ∞
0 (εα2U +Uxy)ψ̂ ′φ̂idy−α

∫ ∞
0 (α2U−Uyy)ψ̂φ̂idy

= λ
[

α2∫ ∞
0 ψ̂φ̂idy−

∫ ∞
0 ψ̂ ′φ̂ ′i dy

] (54)

In matrix form, denoting the vector of unknowns byaT ≡
(

a0 · · · aN−1
)

∈ RN , (54) can be written as

Ka = λMa (55)
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with the stiffness and mass matrix entries defined respectively by:

K(i, j) ≡
∫ ∞

0
(Uyφ̂i +U φ̂ ′i )(εφ̂ ′′j + αφ̂ ′j)dy−

∫ ∞

0
(εα2U +Uxy)φ̂ ′j φ̂idy−α

∫ ∞

0
(α2U−Uyy)φ̂ j φ̂idy (56)

M(i, j) ≡ α2
∫ ∞

0
φ̂ jφ̂idy−

∫ ∞

0
φ̂ ′jφ̂

′
i dy (57)

The general solution procedure is as follows:

1. Specifyα, ε, U , Uxy andUyy.

2. SelectN, the number of basis functions you wish to use.

3. Compute the stiffness and mass matrices from (56) and (57)given the basis functions (52).

4. Solve the generalized discrete EVP (55), e.g., in MATLAB,with the command[A, L] = eig(K, M).

5. Set as the steady, pseudo-temporally computed streamfunction solution:

ψ ′N(x,y) = spanj=1,...,N

{

N

∑
i=1

A(i, j)φ̂i(y)

}

eαx (58)

4.2 Some Numerical Results to(44)using the Laguerre-Galerkin Spectral Method

As a numerical experiment, to get some idea of what the solutions to (44) may look like, let us fix:

ε = 0.01, α =−ε,
Uxy

U
=−

c0

y
,

Uyy

U
=−

b0

y
, c0 = 0.001, b0 = 1 (59)

The results are quite interesting. First, observe that the eigenvalues seem to decay to zero (Figure 4). Although most
of the eigenvalues have a non-zero imaginary part, the magnitude of the imaginary part is in general much smaller than
the magnitude of the real part. This may be grounds for omitting the imaginary parts of the eigenfunctions in practical
applications.
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Real and Imaginary parts of Eigenspectrum

 

 
|Re(λ)|
|Im(λ)|

Figure 4:|Re(λi)| and|Im(λi)| of eigenvalue solutions to (44)

Figure 5 shows plots of some of theu′ andv′ eigenfunction solutions to (44) along the cross sectionx = 0.

One can see that, like the series solutions in Figures 1–2, these arenot non-negative, which in fact they need not be,
as they are not root-mean-square (rms) quantities in the governing equation (44). These plots suggest that perhaps the
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Figure 5: Laguerre-Galerkin method computed fluctuating velocity eigenfunctions corresponding to the first 5 eigen-
values

approach to take is to compute these eigenfunctions for all the eigenvalues, and then average them. The interpretation
would be a velocity fluctuation (not an rms velocity), however, unless we average in some way thatmakes the quantities
non-negative.

The procedure/implementation presented in this section has prompted several additional questions that will need to
be addressed. First, how do we wish to define the span in (58)? Do we wish to average all the eigenfunctions, or
only use a select set of them? Moreover, what do we wish to do with the eigenfunctions that have non-zero imaginary
parts? Finally, as in the series solution approach of Section 3.1, there remains the question of how one would go about
normalizing the final solution.
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5 Steady Inhomogeneous Boundary Value Problem (BVP) for theFluctua-
tions with Mean Flow Residual-Based Source

Given the discussion above of the “pseudotemporal” approach, namely the fact that the approach handles the ill-
posedness of the original equations by implicitly introducing a source, making the equations inhomogeneous, the
natural question to ask is: is the “pseudotemporally”–generated artificial source that comes from the eigenvalueλ in
(43) the “right” source to use? It seems that perhaps one should consider introducing a source directly into the steady
fluctuating equations (6).

One idea to generate such a source is using the mean equations(5). Assuming the “standard” boundary simplifications
(u′u′)x ≈ (v′v′)y ≈ (u′v′)x ≈ VVy ≈ 0, and the eddy viscosity model:−(u′v′)y = νe f f Uyy, as done in the introduction,
we obtain Eqns. (7) for the mean quantities. These are closedby the eddy-viscosity model, i.e., they can be solved
independently of the fluctuation equations (numerically orpossibly analytically).

Since turbulence is inherently a non-linear phenomenon, one may argue that the fluctuation equations need to be
non-linear. Let us see if we can come up with a set of “split” fluctuating equations given (2)–(4) and (7). Setting
(u′u′)x ≈ (v′v′)y ≈ (u′v′)x ≈VVy ≈ 0 in (2)–(4), these equations become:

[Ux +Vy] +
[

u′x + v′y
]

= 0
[

UUx +VUy + Px−νe f fUyy
]

+
[

Uu′x +Vu′y + u′Ux + v′Uy + p′x + νe f fUyy +(u′v′)y
]

= 0
[UVx +VVy + Py] +

[

Uv′x +Vv′y + u′Vx + v′Vy + p′y
]

= 0
(60)

Now, from (60), the “natural” set of (nonlinear!) set of equations for the fluctuations is:

u′x + v′y = 0
Uu′x +Vu′y + u′Ux + v′Uy + p′x +(u′v′)y = −νe f f Uyy

Uv′x +Vv′y + u′Vx + v′Vy + p′y = 0
(61)

Note that (61) is simply an example of the sort of inhomogeneous non-linear fluctuating equations one can come up
with assuming a mean-flow-residual-based source. These equations would be different if one did not wish to make
the boundary layer simplifications(u′u′)x ≈ (v′v′)y ≈ (u′v′)x ≈VVy ≈ 0, for instance. One could also add an unsteady
term to (61), if desired.

Several things are noteworthy about the equations (61) and variants of these equations. First, the equations arenon-
linear in the fluctuations, due to the presence of the Reynolds stress term(u′v′)y in thex–momentum equation. This
is very promising, as turbulence is inherently non-linear,and hence non-linear equations are more likely to capture
appropriately the physics of turbulent flow. Moreover, the equations (61) areinhomogeneous, and so with homoge-
neous boundary conditions aty = 0,∞, will be well-posed. Thus, there is no reason to formulate the equations as an
eigenvalue problem (EVP) for well-posedness. Similarly, if we believe our flow is steady, there is no need to introduce
an “artificial” source or “pseudo-time” term for well-posedness, as done in Section 4.

Note that, in the equations (61), we have retained the intuitively appealing property of the “splitting” that [split mean
equations]+ [split fluctuating equations]= [original equations (2)–(4)]. GivenU andV , computed by solving (7)
with a model forνe f f , the equations (61) are closed, and can be solved numerically. Numerical solution of (61) has
yet to be implemented. These equations can be discretized using a Laguerre-Galerkin method like the one presented
in Section 4.1. Note, however, that a Newton step would need to be added to handle the non-linearity that has been
introduced.

6 Conclusions, Remaining Issues, Future Considerations

In the present document, we have presented several variantsof equations for the fluctuating velocities and pressure,
which we are interested in computing for the sake of calculating turbulent pressure loads on a body. At the heart of the
equations is the mean/fluctuation “splitting”, first proposed in [4, 5]: following the decomposition of the relevant field
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into the sum of a mean and a fluctuation (1) and substitution ofthis sum into the governing equations (taken at the
present time to be incompressible 2D Euler equations), one splits the fluctuating equations (6), normally lost to aver-
aging in RANS, from the mean equations (5) and solves them independently for the desired fluctuations. Given some
turbulence model to close the mean equations to yield, e.g. (7), one may solve for the mean quantities independently
from the fluctuations, either numerically or perhaps analytically, and feed the computed mean quantities into (5), from
which the fluctuations can be obtained.

A crucial observation is that, as they stand, the equations (6) areill-posed: they are homogeneous equations with
homogeneous boundary conditions. Our task herein has been to propose and analyze several approaches for making
the equations (6) well-posed. This can be done by:

• Assuming an Orr-Sommerfeld-like ansatz to derive a Sturm-Liouville eigenvalue problem for the equations (6)
(Section 3).

• Adding an unsteady term to the fluctuating equations, and formulate a “pseudotemporal” eigenvalue problem
for (42) (Section 4).

• Adding a source to the homogeneous equations (6), e.g., a source based on some residual coming from the mean
equations (Section 5).

Preliminary numerical experiments have revealed the following:

• The solutions to the “artificial” eigenvalue problem (21) with an ad hoc eigenvalue scaling factorλ , like pro-
posed in [4, 5], are difficult to interpret physically. In particular, as the eigenvalue is not tied to a particular
solution form or ansatz, it is unclear how to make sense of complex eigenvalues and eigenfunctions. Alternate,
more naturally arising EVPs are sought therefore (Sections3–4).

• Regardless of the final boundary value or eigenvalue problemselected, an amenable spatial discretization is
a Laguerre-Galerkin spectral basis (Section 4.1), as the BVP/EVP is posed on a semi-infinite domainΩ =
(0,∞)× (0,∞). We have derived in the present work a Galerkin basis comprised of weighted Laguerre poly-
nomials, namely (52), that satisfies the relevant boundary conditions, and can be employed in the ultimate
implementation.

• Given that our domain is semi-infinite and the connection to Sturm-Liouville theory/orthogonal polynomials
exhibited in Sections 2–4, it seems most appropriate to try to connect the streamfunction EVP to Laguerre’s
differential equation

(xe−xu′)′+ ne−xu = 0 (62)

posed on a semi-infinite domain(0,∞) rather than Fourier’s equation (u′′+λ u = 0), as was attempted in earlier
works [4, 5]. A direct connection between approximate analytical solutions to the streamfunction EVP and
Laguerre’s equation (62) is exhibited in [7].

• If one is satisfied with solving the problem on a large finite domain (0,L)× (0,L) for L >> 1, then a Her-
mite cubic finite element method, described in detail in [3] can also be employed. Note that finite element
shape functions that are continuous and have continuous first derivatives are required to solve EVP/BVPs for
the streamfunction (e.g., (44)). In particular,linear finite elements will be inadequate. This may have some
implications if the EVP is to be implemented in SIERRA, whichcurrently only supports linear finite elements.

• Since the operator governing the EVP will almost surely be asymmetric, there is no guarantee that the eigenval-
ues and corresponding eigenfunctions that solve the EVP will be real. It will need to be decided, therefore, how
to interpret the complex eigenvalue/eigenfunction solutions in a physical context.

• Previously [4, 5], an association was made between the solutions to the fluctuating equations (6) and root-mean-
square (rms) quantities, based on the observation that there is no explicit temporal scale in these expressions.
Based on this connection, one way of validating the equations was to require that their solutions be non-negative:
u′,v′, p′ ≥ 0. However, in fact, the equations (6) werenot derived for rms quantities; therefore there is no
reason for the solutions to (6), or EVP variants of (6) to be necessarily non-negative. One therefore needs an
interpretation of what these fluctuations mean exactly, so as to have a means of interpret as well as validate the
solutions to (6).
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• Given the point above, the eddy viscosityνe f f in the mean equations (7) may need to be adjusted, to account for
the fact that we are employing the model−(u′v′)y = νe f f Uyy, where the left-hand-side isnot the usual Reynolds
stress (i.e., it is not averaged).

• Since the equations (6) are homogeneous, any constant multiple of a computed solution to (6) will also solve
these equations. Some technique will need to be devised to somehow normalize (i.e., fix the magnitude of) the
solutions.

• It may be worthwhile to impose boundary conditions on the fluctuating quantities in the streamwise direction,
i.e., atx = 0 andx = ∞.

Overall, significant progress has been made in identifying issues involving the well-posedness, numerical solvability,
and physical correctness of the fluctuating equations (6). We end by enumerating several further extensions that it may
be desirable to consider in the future, as the model is augmented to take into account more complicated flow scenarios:

• Adding viscous terms to (5) and (6).

• Considering the compressible equations of fluid mechanics (compressible Euler or Navier-Stokes equations).

• Formulating non-linear variants of (6), such as what is proposed in Section 5. (This seems crucial from a physics
perspective, as turbulence is inherently a non-linear phenomenon.)

• Rather than employing the somewhat ad hoc “pseudotemporal”approach (Section 4), making (6) well-posed by
adding some physically-relevant source to these equations(e.g., as in Section 5).

• Performing all the analysis and formulating the problem in the primitive variablesu′, v′ and p′, rather than
working with the streamfunctionψ ′, as this latter approach is limited to two-dimensions (2D).

7 Distribution

This Internal Memorandum is to be distributed to the following recipients:

Recipient Mail Stop
Matthew F. Barone 1124
Steven J. Beresh 0825
Ryan B. Bond 0825

Lawrence J. Dechant 0825
Richard V. Field 0346

Basil Hassan 0382
Jeffrey L. Payne 0825
Jerry W. Rouse 0346

Justin Smith 0825

References

[1] J.P. Boyd. Chebyshev and Fourier Spectral Methods, 2nd Edition. New York: Dover Publications (2000).

[2] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang. Spectral Methods: Fundamentals in Single Domains. Berlin:
Springer-Verlag (2006).

[3] C.S. Chien, Y.T. Shih. A cubic Hermite finite element-continuation method for numerical solutions of the von
Karman equations.Appl. Math. Computat. 209(2009) 356–368.

15



[4] L.J. De Chant. A Semi-Infinite Domain Eigenvalue ProblemDescribing Turbulent Velocity Fluctuations: “Almost”
Self-Similar Solutions.Appl. Math. Model. (submitted).

[5] L.J. De Chant. A Semi-Infinite Eigenvalue Problem Describing Turbulent Velocity Fluctuations.Comput. and
Math. with Appl. (submitted).

[6] L.J. De Chant. Asymptotic Collocation Method: A Simple,Approximate, Analytical ODE Solution Technique on
Semi-Infinite Intervals.Appl. Math. and Computat. (submitted).

[7] L.J. De Chant. Separable and Self-similar Eigenvalue Problems for Velocity Fluctuations With Unsteady Modeling
to Introduce Eigenvalues (running document).

[8] E. Kreyszig. Advanced Engineering Mathematics, 7th Edition. Canada: John Wiley & Sons (1992).

[9] S.B. Pope. Turbulent Flows. Cambridge: Cambridge University Press (2000).

[10] J. Shen. Stable and Efficient Spectral Methods in Unbounded Domains Using Laguerre Functions.SIAM J.
Numer. Anal. 38(4) 1113–1133 (2000).

[11] L.N. Trefethen. Spectral Methods in MATLAB. Philadelphia: Society for Industrial and Applied Mathematics
(2000).

[12] F.M. White. Viscous Fluid Flow. Singapore: McGraw-Hill International Edition (2006).

16


