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Why Develop a Reduced Order Model  

(ROM)? 

High-fidelity modeling is often 

too expensive for use in a 

design or analysis setting! 

A Reduced Order Model (ROM) is a 

surrogate model that aims to capture 

the essential dynamics of a full 

numerical model but with far fewer dofs.   

Example Applications of ROMs:  
 

• Aeroelastic flutter analysis. 
 

• System modeling for active flow control. 
 

• Design/analysis of microelectromechanical 

devices and systems (MEMS) under 

electric actuation. 
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Proper Orthogonal Decomposition (POD)/Galerkin  

Method to Model Reduction 
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Step 1: Proper Orthogonal Decomposition (POD)  

Algorithm (a.k.a., “Method of Snapshots”) 

 

1. Collect 𝐾 snapshots of a solution vector *𝒙𝑘: 𝑘 = 1,… , 𝐾+ ∈ ℝ𝑁.  Place these 

snapshots into the columns of a matrix 𝑿 defined by 
 

𝑿 = (𝒙1, …, 𝒙𝐾) ∈ ℝ𝑁𝑥𝐾 
 

2. Select an inner product to build the reduced basis in, e.g., the 𝐿2 inner product. 
 

3. Compute the SVD of the matrix 

𝒀 ≡
1

𝐾
𝑿𝑇𝑿 = 𝑼𝜮𝑼𝑇 

 

4. A reduced POD basis of size 𝑀 << 𝑁 is given by  
 

𝜱𝑀 = (𝝓1, … , 𝝓𝑀)= 𝑿𝑼 : , 1:𝑀  
 

5. Orthonormalize and return the reduced basis. 

Truncated POD basis *𝝓𝑘: 𝑘 = 1,… ,𝑀+ describes more 

energy (on average) of the snapshot set than any other 

linear basis of the same dimension 𝑀. 

𝑁 = # of dofs in high-

fidelity simulation 

𝐾 = # of snapshots 

𝑀 = # of dofs in ROM  

(𝑀 <<  𝑁, 𝑀 <<  𝐾) 
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Step 2: Galerkin Projection 

LTI Full Order Model (FOM) 
 

𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡  

           𝒚 𝑡 = 𝑪𝒙 𝑡   

1. Approximate solution as a linear combination of the POD modes obtained 

in Step 1: 

𝒙 𝑡  ≈ 𝑥𝑀,𝑖 𝑡 𝝓𝑖 = 𝜱𝑀𝒙𝑀(𝑡)

𝑀

𝑖=1

 

 

2. Project FOM system onto the modes 𝝓𝑖 in some inner product, e.g., the 𝐿2 

inner product to obtain… 

 

ROM solution 

LTI Reduced Order Model (ROM) 
 

𝒙 𝑀 𝑡 = 𝜱𝑀
𝑇𝑨𝜱𝑀𝒙𝑀 𝑡 + 𝜱𝑀

𝑇𝑩𝒖 𝑡  

    𝒚𝑀 𝑡 = 𝑪𝜱𝑀𝒙𝑀 𝑡    

~𝑂(𝑁) dofs 

~𝑂(𝑀) dofs 
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Stability Issues of POD/Galerkin ROMs 

LTI Full Order Model (FOM) 
 

𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡  

          𝒚 𝑡 = 𝑪𝒙 𝑡   

LTI Reduced Order Model (ROM) 
 

𝒙 𝑀 𝑡 = 𝑨𝑀𝒙𝑀 𝑡 + 𝑩𝑀𝒖 𝑡  

          𝒚𝑀 𝑡 = 𝑪𝑀𝒙𝑀 𝑡    

• ROM LTI system matrices given by:  
 

𝑨𝑀 = 𝜱𝑀
𝑇𝑨𝜱𝑀,       𝑩𝑀 = 𝜱𝑀

𝑇𝑩,          𝑪𝑀 = 𝑪𝜱𝑀 

Problem: 𝑨 stable ⇏  𝑨𝑀 stable! 

• There is no a priori stability guarantee for POD/Galerkin ROMs.   
 

• Stability of a ROM is commonly evaluated a posteriori – RISKY! 
 

• ROM instability of POD/Galerkin ROMs is a real problem in some 

applications (e.g., compressible flow).  
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1. ROMs which derive a priori a stability-preserving model reduction 

framework (usually specific to an equation set). 
 

• ROMs based on projection in special ‘energy-based’ (not 𝐿2) inner 

products, e.g., Rowley et al. (2004), Barone & Kalashnikova et al. 

(2009), Serre et al. (2012). 

 

2.  ROMs which stabilize an unstable ROM through an a posteriori post-

processing stabilization step applied to the algebraic ROM system.  
 

• Petrov-Galerkin ROMs that solve an optimization problem for the 

test basis given a trial POD basis, e.g., Amsallem et al. (2012), 

Bond et al. (2008). 
 

• ROMs with increased numerical stability due to inclusion of 

‘stabilizing’ terms (e.g., LES terms) in the ROM equations, e.g., 

Wang, Akhtar, Borggaard, Iliescu (2012) 

 

 

Inconsistencies 

between ROM 

and FOM physics 

Potentially 

intrusive 

implemetation 

Stability Preserving Model Reduction Approaches:  

Literature Review 

Approaches for building stability-preserving POD/Galerkin  

ROMs found in the literature fall into two categories:  
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New ROM Stabilization Approach:  

ROM Stabilization via Pole Placement 

New ROM Stabilization Idea  

(falling under second category of ROM stabilization methods):  

Make ROM system matrix 𝑨𝑀 stable through pole (eigenvalue) placement 

LTI FOM: 𝑨 stable 
 

𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡  

          𝒚 𝑡 = 𝑪𝒙 𝑡   

LTI ROM: 𝑨𝑀 unstable 
 

𝒙 𝑀 𝑡 = 𝑨𝑀𝒙𝑀 𝑡 + 𝑩𝑀𝒖 𝑡  

           𝒚𝑀 𝑡 = 𝑪𝑀𝒙𝑀 𝑡    

• Pick a control matrix 𝑩𝐶.  
 

• Modify LTI ROM by adding to it the control 𝑩𝐶𝒖𝐶(𝑡): 
 

𝒙 𝑀 𝑡 = 𝑨𝑀𝒙𝑀 𝑡 + 𝑩𝑀𝒖 𝑡 + 𝑩𝐶𝒖𝐶 𝑡  

                      𝒚𝑀 𝑡 = 𝑪𝑀𝒙𝑀 𝑡    
 

• Assume linear control of the form 𝒖𝐶(𝑡) = −𝑲𝐶𝒙𝑀(𝑡): 
𝒙 𝑀 𝑡 = (𝑨𝑀−𝑩𝐶𝑲𝐶)𝒙𝑀 𝑡 + 𝑩𝑀𝒖 𝑡  

                       𝒚𝑀 𝑡 = 𝑪𝑀𝒙𝑀 𝑡    
 

• Compute the feedback matrix 𝑲𝐶 such that  

𝑨 𝑀 ≡ 𝑨𝑀 − 𝑩𝐶𝑲𝐶 has desired (stable) poles. 

 

 

 

Open Questions: 
 

• How to pick 𝑩𝐶? 
 

• What eigenvalues should 

𝑨 𝑀 have? 
 

• Does solution 𝑲𝐶 to pole 

placement problem exist? 
 

• How does stabilization 

affect ROM accuracy? 
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Algorithm #1: ROM Stabilization via Pole Placement 

Theorem (from Aström et al. 2009): If the pair (AM,BC) is controllable, there 

exists a feedback 𝒖𝐶(𝑡) = −𝑲𝐶𝒙𝑀(𝑡) such that the eigenvalues of 𝑨 𝑀 ≡ 𝑨𝑀 −
𝑩𝐶𝑲𝐶 can be arbitrarily assigned.   

• Ensures the solution 𝑲𝐶 to the pole placement problem exists.    

Algorithm #1 Outline 
 

• Given 𝑩𝐶, use Kalman decomposition to isolate controllable and 

observable part of 𝑨𝑀 and 𝑩𝐶, call them 𝑨𝑀
𝑐𝑜 = 𝑼𝑨𝑀𝑼

𝑇, 𝑩𝐶
𝑐𝑜 = 𝑼𝑩𝐶. 

 

• Compute eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑁
𝑐𝑜 of 𝑨𝑀

𝑐𝑜. 
 

• Reassign unstable eigenvalues of 𝑨𝑀
𝑐𝑜, e.g., set  

 

𝜆𝑖 = min 𝑅𝑒 𝜆𝑖 , −𝑅𝑒 𝜆𝑖 + 𝑖 ∙ 𝐼𝑚 𝜆𝑖  
 

• Compute 𝑲𝐶 such that 𝑨𝑀
𝑐𝑜 −𝑲𝐶 𝑩𝐶

𝑐𝑜 has these eigenvalues using pole 

placement algorithms from control theory.  
 

• Set 𝑨𝑀 = 𝑼𝑇(𝑨𝑀
𝑐𝑜 −𝑲𝐶 𝑩𝐶

𝑐𝑜)𝑼. 
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Numerical Results: International Space Station (ISS) 

Benchmark Stabilized via Algorithm #1 

• FOM: structural model of component 1r (Russian service module) of the 

International Space Station (ISS).  
 

• 𝑨, 𝑪 matrices defining FOM downloaded from NICONET model reduction 

benchmark repository. 
 

• No inputs (unforced), 1 output; FOM is stable 
 9/21 
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• 𝑀 = 20 POD/Galerkin ROM constructed using 𝐾 = 2000 snapshots collected 

until time 𝑡 = 0.1, with 𝒙(0) = 𝟏𝑁. 
 

 

• 𝑀 = 20 POD/Galerkin ROM has 4 unstable eigenvalues.  
 

• 𝑩𝐶 = 𝟏𝑀 (stabilization matrix selected to be vector of all 1s). 

Numerical Results: ISS Benchmark Stabilized via Algorithm 

#1 (continued) 

 

 

ROM 

 | 𝒚𝑘 − 𝒚𝑀
𝑘 |2

𝐾
𝑘=1

2

 | 𝒚𝑘 |2
𝐾
𝑘=1

2

 

Unstabilized POD 1737.8 

 

 

  

 

  

 

 

 

ROM 

  

 

 

 

Stabilized POD #1 

𝑅𝑒(𝜆𝑖
𝑢) ← −0.1𝑅𝑒 𝜆𝑖

𝑢  

0.1151 

 

 

 

 

 

 

ROM 

 

 

 

 

 

 

Stabilized POD #2 

𝑅𝑒(𝜆𝑖
𝑢) ← −𝑅𝑒 𝜆𝑖

𝑢  

0.1116 

 

 

 

 

ROM 

 

 

 

 

 

 

 

 

Stabilized POD #3 

𝑅𝑒(𝜆𝑖
𝑢) ← −10𝑅𝑒 𝜆𝑖

𝑢  

0.2267 
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Selecting ROM Eigenvalues (Poles) 
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• If ROM is stable, ROM eigenvalues will lie on same manifold as FOM 

eigenvalues.  
 

• In fact, if 𝑀 = 𝑁 and ROM is stable, 𝑨𝑀~𝑨, so eig(𝑨𝑀)=eig(𝑨).  
 

• However: if ROM is unstable, ROM eigenvalues can be chaotic. 

 
Could try to place ROM poles to match FOM poles… 

…but this does not ensure accuracy of ROM! 



• Recall that the ROM LTI system is given by: 
 

Algorithm #2: ROM Stabilization Optimization Problem 

• Ensures stabilized ROM solution deviates minimally from FOM solution.  

Key Idea: An exact solution to the ROM LTI system can 

be derived using the matrix exponential. 
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𝒙 𝑀 𝑡 = 𝑨𝑀𝒙𝑀 𝑡 + 𝑩𝑀𝒖 𝑡  

    𝒚𝑀 𝑡 = 𝑪𝑀𝒙𝑀 𝑡    

• The solution to the ROM LTI system is:  

𝒙𝑀 𝑡 = exp 𝑡𝑨𝑀 𝒙𝑀 0 +  exp* 𝑡 − 𝜏 𝑨𝑀+𝑩𝑀𝑢 𝜏 𝑑𝜏
𝑡

0

 

⇒ 𝒚𝑀 𝑡 = 𝑪𝑀 exp 𝑡𝑨𝑀 𝒙𝑀 0 +  exp* 𝑡 − 𝜏 𝑨𝑀+𝑩𝑀𝑢 𝜏 𝑑𝜏
𝑡

0

 



Algorithm #2: ROM Stabilization Optimization Problem 

(continued) 

ROM Stabilization Optimization Problem  

(Constrained Nonlinear Least Squares):  
 

𝑚𝑖𝑛
𝜆𝑖
𝑢
 ||𝒚𝑘 − 𝒚𝑀

𝑘||2
2

𝐾

𝑘=1

 

                           𝑠. 𝑡.  𝑅𝑒 𝜆𝑖
𝑢 < 0 

• 𝜆𝑖
𝑢 = unstable eigenvalues of original ROM matrix 𝑨𝑀.   

 

• 𝒚𝑘 = 𝒚(𝑡𝑘) = snapshot output at 𝑡𝑘 
 

• 𝒚𝑀
𝑘 = 𝑪𝑀 exp 𝑡𝑘𝑨𝑀 𝒙𝑀 0 +  exp* 𝑡𝑘 − 𝜏 𝑨𝑀+𝑩𝑀𝑢 𝜏 𝑑𝜏

𝑡
𝑘

0
 = ROM output at 𝑡𝑘. 

 

• ROM stabilization optimization problem is small: < 𝑂(𝑀). 
 

• ROM stabilization optimization problem can be solved by standard optimization 

algorithms, e.g., interior point method. 
 

• We use fmincon function in MATLAB’s optimization toolbox. 
 

• We implement ROM stabilization optimization problem in characteristic 

variables 𝒛𝑀(𝑡) = 𝑺𝑀
−1𝒙𝑀(𝑡) where 𝑨𝑀 = 𝑺𝑀𝑫𝑀𝑺𝑀

−1. 
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Algorithm #2 Is Equivalent to Specific Instance of  

Algorithm #1 (Pole Placement Problem) 

Can show: Algorithm #2 is equivalent to Algorithm #1 

(Pole Placement Problem) for a specific 𝑩𝐶 and 𝑲𝐶. 

• One can show that 𝑨 𝑀 = 𝑨𝑀 − 𝑩𝐶𝑲𝐶 where (WLOG, if 2 eigenvalues 

were stabilized): 

 

𝑩𝐶 = 𝑺𝑀 : , 1: 2  
 

𝑲𝐶 =
𝜆1− 𝜆 1 0 0

0 𝜆2− 𝜆 2 0
 

• Here:  

• 𝜆𝑖 denotes the original (unstable) eigenvalue of 𝑨𝑀 

• 𝜆 𝑖 denotes the new (stable) eigenvalue of 𝑨 𝑀 computed by 

Algorithm #2.  

• 𝑺𝑀 denotes matrix of eigenvectors of 𝑨𝑀. 
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• Let 𝑨 𝑀 be the new ROM matrix following stabilization by Algorithm #2: 
 

𝑨𝑀 ← 𝑨 𝑀 = 𝑺𝑀𝑫 𝑀𝑺𝑀
−1, 𝑫 𝑀 = 𝑫𝑀 stabilized by Algorithm #2 

 



Numerical Results: ISS Benchmark Stabilized via  

Algorithm #2  

 

• 𝑀 = 20 POD/Galerkin ROM has 4 unstable eigenvalues: 2 real, 2 complex 
 

 

• Two options for ROM stabilization optimization problem:  
 

Option 1: Solve for 𝜆1, 𝜆2, 𝜆3, 𝜆4 𝜖 ℝ s.t. the constraint 𝜆1, 𝜆2, 𝜆3, 𝜆4 < 0. 
 

Option 2: Solve for 𝜆1+ 𝜆2𝑖, 𝜆1− 𝜆2𝑖, 𝜆3, 𝜆4 s.t. the constraint 𝜆1, 𝜆3, 𝜆4 < 0 
 

• Initial guess for fmincon interior point method: 𝜆1 = 𝜆2 = 𝜆3 = 𝜆 = −1. 
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ROM 

 | 𝒚𝑘 − 𝒚𝑀
𝑘 |2

𝐾
𝑘=1

2

 | 𝒚𝑘 |2
𝐾
𝑘=1

2

 

Unstabilized POD 1737.8 

Optimization Stabilized 

POD (Real Poles) 

0.0259 

Optimization Stabilized 

POD (Complex-

Conjugate Poles) 

0.0252 
 



Numerical Results: Electrostatically Actuated Beam  

Benchmark Stabilized via Algorithm #2 

• FOM = 1D model of electrostatically actuated 

beam. 
 

• Application of model: microelectromechanical 

systems (MEMS) devices such as 

electromechanical radio frequency (RF) filters. 
 

• 1 input corresponding to periodic on/off 

switching, 1 output, initial condition 𝒙(0) = 𝟎𝑁. 
 

• Second order linear semi-discrete system of the 

form:  
 

𝑴𝒙 𝑡 + 𝑬𝒙 𝑡 + 𝑲𝒙 𝑡 = 𝑩𝒖 𝑡  

                                              𝒚 𝑡 = 𝑪𝒙 𝑡  
 

• Matrices 𝑴, 𝑬, 𝑲, 𝑩, 𝑪 specifying the problem 

downloaded from the Oberwolfach model 

reduction repository.  
 

• 2nd order linear system re-written as 1st order LTI 

system for purpose of analysis/model reduction. 
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• FOM is stable. 



Numerical Results: Electrostatically Actuated Beam  

Benchmark Stabilized via Algorithm #2 (continued) 

17/21 

• 𝑀 = 17 POD/Galerkin ROM constructed from 𝐾 = 1000  snapshots up to time 𝑡 = 0.05.   
 

• 𝑀 = 17 POD/Galerkin ROM has 4 unstable eigenvalues (all real). 
 

• Two options for ROM stabilization optimization problem:  
 

Option 1: Solve for 𝜆1, 𝜆2, 𝜆3, 𝜆4 𝜖 ℝ s.t. the constraint 𝜆1, 𝜆2, 𝜆3, 𝜆4 < 0. 
 

Option 2: Solve for 𝜆1+ 𝜆2𝑖, 𝜆1− 𝜆2𝑖, 𝜆3 + 𝜆4𝑖, 𝜆3 −𝜆4𝑖 s.t. the constraint  

𝜆1, 𝜆3 < 0. 
 

• Initial guess for fmincon interior point method: 𝜆1 = 𝜆2 = 𝜆3 = 𝜆 = −1. 

 
 

 

ROM 

 | 𝒚𝑘 − 𝒚𝑀
𝑘 |2

𝐾
𝑘=1

2

 | 𝒚𝑘 |2
𝐾
𝑘=1

2

 

Unstabilized POD 𝑁𝑎𝑁 

Optimization Stabilized 

POD (Real Poles) 

0.0194 

Optimization Stabilized 

POD (Complex-

Conjugate Poles) 

0.0205 

Balanced Truncation 1.370𝑒 − 6 



Numerical Results: Electrostatically Actuated Beam  

Benchmark Stabilized via Algorithm #2  

(continued: stabilized poles) 

Unstable 

Eigenvalues 

𝜆6 = 16,053 

𝜆12 = 48.985 

𝜆14 = 12.650 

𝜆17 = 0.05202 

Stabilized Eigenvalues 

(Real) 

Stabilized Eigenvalues 

(Complex Conjugates) 

𝜆6 = −7,043,505 𝜆6 = −106,976 + 551.77𝑖 

𝜆12 = −35.364 𝜆12 = −106,976 − 551.77 

𝜆14 = −153,033 𝜆14 = −2954.1 − 1244.7𝑖 

𝜆17 = −99,175 𝜆17 = −2954.1 + 1244.7𝑖 
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Summary & Future Work 

 

• A new ROM stabilization approach that modifies a posteriori an unstable ROM LTI 

system by changing the system’s unstable eigenvalues is proposed.  
 

• It is demonstrated how an unstable ROM’s eigenvalues may be placed using ideas 

from control theory, i.e., pole placement assuming a linear control (Algorithm #1).  
 

• It is unclear how stabilization via Algorithm #1 will affect the accuracy of the ROM. 
 

• To address this, a constrained nonlinear least squares optimization problem for the 

ROM eigenvalues is formulated (Algorithm #2). 
 

• It is shown that Algorithm #2 is equivalent to Algorithm #1 for a specific linear control. 
 

• Performance of the proposed algorithms is evaluated on two benchmarks. 
 

 

Ongoing/Future work 
 

• Journal article on the ideas presented in this talk is in preparation.  
 

• Performance/robustness studies of algorithms for solving ROM optimization  

     problem (e.g., sensitivity to initial guess, etc.). 
 

• Studies of predictive capabilities of stabilized ROMs. 
 

• Extensions to nonlinear problems.  
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Thank You!  Questions? 

ikalash@sandia.gov 

http://www.sandia.gov/~ikalash 
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Appendix: ISS Benchmark Details 

• Original benchmark: 𝑁 = 270, 3 inputs, 3 outputs 
 

• Physics: 2nd order semi-discrete system for flexible structure 

𝑴𝒙 𝑡 + 𝑬𝒙 𝑡 + 𝑲𝒙 𝑡 = 𝑩𝒖 𝑡  

                                              𝒚 𝑡 = 𝑪𝒙 𝑡  
 

• All 3 inputs and 3 outputs are the same.  
 

• Inputs = outputs = velocities at all discretization points (?)  

Compone

nt 1r 



Appendix: ISS Benchmark Stabilized via  

Algorithm #2 (fmincon performance) 

Real 

Poles 

Complex-Conjugate 

Poles 

# upper bound 

constraints 

4 3 

# iterations  29 27 

# function evaluations 150 142 

max constraint violation 0 0 

Current Function Value 

Current Function Value 

First-Order Optimality 

 0.00640948 

5.50885e-07 
 0.00683859   4.00842e-07 

First-Order Optimality 



Appendix: 1D Beam Benchmark Details 

• 𝑁 = 100, 1 input, 1 output.  
 

• Dofs: flexural displacement and flexural rotation. 

  

• Beam is supported on both sides (simply  

     supported), and a node in the middle is loaded. 
 

• Damping matrix is linear combination of mass and stiffness matrices:  

𝑬 = 𝛼𝑲 + 𝛽𝑴 
 

• B (input) is an 𝑛 × 1 matrix with the only nonzero entry at the flexural dof of the 

middle node. 
 

• C (output) is a 1 × 𝑛 matrix with the only nonzero entry at the flexural dof of the 

middle node. 
 

• A typical input to this system is a step response; periodic on/off switching is also 

possible. 

 



Appendix: Electrostatically Actuated Beam  

Benchmark Stabilized via Algorithm #2  

fmincon performance) 

Real 

Poles 

Complex-Conjugate 

Poles 

# upper bound 

constraints 

4 2 

# iterations  37 29 

# function evaluations 190 150 

max constraint violation 0 0 

Current Function Value 

Current Function Value 

First-Order Optimality First-Order Optimality 

 1.23985 

5.5167e-07 
  9.02338e-06 

23/21 

 1.2717 


