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Abstract

This paper describes a new parallel, scalable and robust finite-element based solver
for the first-order Stokes momentum balance equations for ice flow. The solver, known
as Albany/FELIX, is constructed using the component-based approach to building ap-
plication codes, in which mature, modular libraries developed as a part of the Trilinos5

project are combined using abstract interfaces and Template-Based Generic Program-
ming, resulting in a final code with access to dozens of algorithmic and advanced anal-
ysis capabilities. Following an overview of the relevant partial differential equations and
boundary conditions, the numerical methods chosen to discretize the ice flow equa-
tions are described, along with their implementation. The results of several verification10

studies of the model accuracy are presented using: (1) new test cases derived using
the method of manufactured solutions, and (2) canonical ice sheet modeling bench-
marks. Model accuracy and convergence with respect to mesh resolution is then stud-
ied on problems involving a realistic Greenland ice sheet geometry discretized using
structured and unstructured meshes. Also explored as a part of this study is the ef-15

fect of vertical mesh resolution on the solution accuracy and solver performance. The
robustness and scalability of our solver on these problems is demonstrated. Lastly,
we show that good scalability can be achieved by preconditioning the iterative linear
solver using a new algebraic multilevel preconditioner, constructed based on the idea
of semi-coarsening.20

1 Introduction

In its fourth assessment report (AR4), the Intergovernmental Panel on Climate Change
(IPCC) declined to include estimates of future sea-level rise from ice sheet dynamics
due to the inability of ice sheet models to mimic or explain observed dynamic behaviors,
such as the acceleration and thinning then occurring on several of Greenland’s large25

outlet glaciers (IPCC, 2007). Since the AR4, increased support from United States,
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United Kingdom, and European Union funding agencies has enabled concerted efforts
towards improving the representation of ice dynamics in ice sheet models and towards
their coupling to other components of Earth System Models (ESMs) (Little et al., 2007;
Lipscomb et al., 2008; van der Veen et al., 2010). Thanks to this support, there has re-
cently been tremendous progress in the development of “next generation” community-5

supported ice sheet models (Bueler and Brown, 2009; Rutt et al., 2009; Larour et al.,
2012; Gagliardini et al., 2013; Brinkerhoff and Johnson, 2013; Lipscomb et al., 2013)
able to perform realistic, high-resolution, continental scale simulations. These mod-
els run on high-performance, massively parallel computer (HPC) architectures using
102–104 processes and employ modern, well-supported solver libraries (e.g., PETSC,10

Balay et al., 2008 and Trilinos, Heroux et al., 2005). A primary development focus has
been on improving the representation of the momentum balance equations over the
“shallow ice” (SIA; Hutter, 1983) and “shallow-shelf” (SSA; Morland, 1987) approxima-
tions through the inclusion of membrane stresses over the entire model domain. These
approaches include “hybrid” models (a combination of SIA and SSA Bueler and Brown,15

2009; Pollard and Deconto, 2009; Goldberg and Sergienko, 2011), so-called “higher-
order” models (Pattyn, 2003), “full” Stokes models (Larour et al., 2012; Leng et al.,
2012; Gagliardini et al., 2013), and combinations of a range of approximations up to
and including full Stokes (Seroussi et al., 2012). By accounting for both vertical and
horizontal stress gradients, the aforementioned models allow for more realistic and ac-20

curate simulations of outlet glaciers, ice streams, and ice shelves, as well as modeling
of the transfer of perturbations from marginal to inland regions.

Other significant improvements in ice sheet modeling frameworks include the inte-
gration of unstructured (Larour et al., 2012; Gagliardini et al., 2013; Brinkerhoff and
Johnson, 2013) or adaptive meshes (Cornford et al., 2013), which allows the focus-25

ing of resolution and computational power in regions of dynamic complexity. Also be-
coming standard is the use of formal optimization and data assimilation techniques
for generating realistic model initial conditions. Surface observations are used to in-
fer poorly known ice properties or parameters, such as the friction coefficient at the
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ice–bedrock interface (Morlighem et al., 2010; Larour et al., 2012; Gille-Chaulet et al.,
2012; Brinkerhoff and Johnson, 2013) or the rheology of floating ice shelves (Khazen-
dar et al., 2009), allowing for a quantifiably “optimal” match between modeled and ob-
served velocities. Recently, these approaches have been extended to simultaneously
optimize both model parameter fields and uncertain initial condition fields, while also5

accounting for forcing from climate models in order to minimize transient shocks when
coupling to climate forcing (Perego et al., 2014). Other recent and noteworthy opti-
mization improvements include the assimilation of time dependent observations (e.g.,
Goldberg and Heimbach, 2013) and the estimation of formal uncertainties for optimized
parameter fields (Petra et al., 2014).10

The latter capability – the characterization of parameter uncertainties – represents
a critical first step towards formal uncertainty quantification (“UQ”) of ice sheet model
output quantities of interests, such as estimates of future sea-level rise. For this pro-
cess to be computationally tractable during both the inverse (parameter estimation and
uncertainty assignment) and forward propagation steps, it is critical to have robust, ef-15

ficient, and scalable solves on HPC computing platforms (Isaac et al., 2014). This, in
turn, requires advanced dynamical core capabilities, such as access to model deriva-
tives (e.g., the Jacobian matrix), and advanced algorithms for the solution of the non-
linear and linear equations. These same requirements of robustness, efficiency, and
scalability hold for the inclusion of ice sheet models as fully coupled components of20

large-scale, high-resolution ESMs.
In this paper, we introduce a new momentum balance solver for land ice simulations

based on the first-order approximation of the nonlinear Stokes flow model for glaciers
and ice sheets. This new solver, Albany/FELIX (Finite Elements for Land Ice eXperi-
ments, described in more detail below), either already includes many of the capabilities25

discussed above or is designed to allow for their easy implementation at later stages
of development. Here we will present algorithms and software that lead to a robust
nonlinear solution procedure (including the use of automatic differentiation (AD) tech-
nologies), scalable linear algebra, and the ability to use unstructured and highly refined
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grids. While we do not go into details on formal UQ and inclusion into ESMs in this
paper, the same investments in AD and robust and scalable algorithms lay the ground-
work for achieving these goals as well.

The remainder of this paper is organized as follows. In Sect. 2, we describe in detail
our mathematical model for glaciers and ice sheets, giving the relevant assumptions,5

partial differential equations, boundary conditions, and parameter values. Our numer-
ical methods for discretizing this model and their implementation in Albany/FELIX are
summarized in Sect. 3. In Sect. 4, which focuses on verification of the Albany/FELIX
code using the method of manufactured solutions, several new test cases are derived
and used in a convergence verification study involving several types and orders of fi-10

nite elements. In Sect. 5, further verification of the accuracy of solutions computed with
our solver is performed using canonical ice sheet modeling test cases. The results of
two mesh convergence studies on a realistic Greenland ice sheet geometry are then
discussed in Sect. 6. These studies provide insight into the effects of the parallel do-
main decomposition on solver convergence. We then describe our robust, nonlinear15

solver, which uses homotopy continuation with respect to the regularization parameter
in the calculation of the ice effective viscosity. The solver’s robustness and scalability
is demonstrated on various Greenland ice sheet geometries, discretized using both
structured and unstructured tetrahedral and hexahedral meshes. Finally, we show that
improved scalability of our code can be achieved by preconditioning the iterative linear20

solver using an algebraic multilevel preconditioner, constructed based on the idea of
semi-coarsening. A concluding summary is offered in Sect. 7.

One objective of this paper is to introduce a new parallel, scalable and robust finite
element first-order Stokes solver for ice flow, namely Albany/FELIX, to the land ice and
climate modeling communities. The article also contains several new contributions to25

the field of ice sheet modeling, which are most notably:

– The derivation of several new test cases based on the method of manufactured
solutions for the first-order Stokes equations, which can be used to verify any ice
sheet code that discretizes these equations.
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– The description of a homotopy continuation algorithm with respect to a regular-
ization parameter in the ice effective viscosity expression, which greatly improves
the robustness of a Newton nonlinear solver, especially in the absence of a good
initial guess.

– Insights into the effects of the parallel decomposition and vertical mesh spacing5

on solver performance and solution accuracy for ice sheet simulations.

– A new algebraic multilevel preconditioner, constructed based on the idea of semi-
coarsening and ideal for meshes structured in the vertical direction, that delivers
a scalable linear solve when combined with a preconditioned iterative method.

2 First-order Stokes approximation mathematical model10

We consider a power-law viscous, incompressible fluid in a low Reynolds number flow,
described by the first-order approximation to the nonlinear Stokes flow equations for
glaciers and ice sheets (Dukowicz et al., 2010; Schoof et al., 2010). The first-order (FO)
approximation, also referred to as the “Blatter–Pattyn” model (Pattyn, 2003; Blatter,
1995), follows from assumptions of a small geometric aspect ratio, δ = H/L (where15

H and L are characteristic length scales for the vertical and horizontal dimensions,
respectively, and H� L), and the assumption that the normal vectors to the ice sheet’s
upper and lower surfaces, n ∈R3, are nearly vertical:

nT ≈ (O(δ),O(δ), ±1+O(δ2)). (1)

Effectively, the FO approximation is derived by neglecting O(δ2) terms in the Stokes20

equations, which are discussed in more detail in Appendix A. Numerical discretization
of the FO Stokes equations gives rise to a much smaller discrete system than numerical
discretization of the full Stokes equations. Moreover, discretization of the FO Stokes
system gives rise to a “nice” elliptic coercive problem, in contrast to the notoriously
difficult saddle-point problem obtained when discretizing the full Stokes system.25
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Let u and v denote the x and y components of the ice velocity vector u ≡ (u,v)T ∈R2,
respectively. The FO approximation consists of the following system of partial differen-
tial equations (PDEs):{
−∇ · (2µε̇1)+ρg ∂s∂x = 0,

−∇ · (2µε̇2)+ρg ∂s∂y = 0,
(2)

where g denotes the gravitational acceleration, ρ denotes the ice density, and s ≡5

s(x,y) denotes the upper surface boundary:

Γs ≡ {(x,y ,z) ∈R3|z = s(x,y)}. (3)

In the most general, three-dimensional (3-D) case of the FO approximation,

ε̇T
1 =
(
2ε̇xx + ε̇yy , ε̇xy , ε̇xz

)
∈R3, (4)

and10

ε̇T
2 =
(
ε̇xy , ε̇xx +2ε̇yy , ε̇yz

)
∈R3, (5)

where

ε̇xx =
∂u
∂x

, ε̇yy =
∂v
∂y

, ε̇xy =
1
2

(
∂u
∂y

+
∂v
∂x

)
, ε̇xz =

1
2
∂u
∂z

, ε̇yz =
1
2
∂v
∂z

. (6)

The effective viscosity µ can be derived using Glen’s flow law (Cuffey et al., 2010; Nye,
1957) as:15

µ =
1
2
A−

1
n ε̇

1
n−1
e , (7)

where ε̇e is the effective strain rate, given by:

ε̇2
e ≡ ε̇2

xx + ε̇
2
yy + ε̇xxε̇yy + ε̇

2
xy + ε̇

2
xz + ε̇

2
yz. (8)
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In Eq. (7), A is the flow rate factor and n is the Glen’s (power) law exponent, typically
taken equal to 3 for ice sheets. Hence, µ Eq. (7) is a nonlinear expression, and the
system Eq. (2) is a nonlinear, elliptic system of PDEs. The flow law rate factor A is
strongly temperature-dependent, and can be described through the Arrhenius relation,

A(T ) = A0 exp
(
− Q
RT

)
, (9)5

where A0 denotes a constant of proportionality, Q denotes the activation energy for
ice creep, T denotes the ice temperature in Kelvin (K), and R denotes the universal
gas constant. For more details involving the relation between the flow factor and tem-
perature Eq. (9), the reader is referred to (Cuffey et al., 2010). For completeness, the
expressions for the Cauchy stress tensor σ and the pressure p in the FO approximation10

are provided:

σ = 2µ(ε̇1, ε̇2,0)T −ρg(s− z)I, p = ρg(s− z)−2µ
(
ε̇xx + ε̇yy

)
, (10)

where 0 = (0,0,0)T and I is the 3×3 identity tensor. The Eq. (2) are specified on
a bounded 3-D domain, denoted by Ω, with boundary

Γ ≡ Γs ∪Γb ∪Γl. (11)15

Here, Γs is the upper surface boundary Eq. (3), and

Γb = {(x,y ,z) ∈R3|z = b(x,y)}, (12)

Γl = {(x,y ,z) ∈R3|l (x,y) = 0}, (13)

are the lower and (vertical) lateral surface boundaries, respectively. The relevant
boundary conditions on Γ are:20

a. A stress-free (homogeneous Neumann) boundary condition on the upper surface
boundary

ε̇1 ·n = ε̇2 ·n = 0, on Γs. (14)
8086
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b. Either a no-slip or a sliding boundary condition on the lower surface:{
u = v = 0, on Γ0

2µε̇1 ·n+βu = 0, 2µε̇2 ·n+βv = 0, on Γβ,
(15)

where Γb is partitioned as Γb = Γ0 ∪Γβ with Γ0 ∩Γβ = ∅, and β ≡ β(x,y) ≥ 0 is
the basal sliding coefficient. Note that we assume the partitioning of Γb is known
a priori. In practice, this would be specified (through an energy balance model) by5

locating regions of the bed for which the temperature is at the pressure melting
point. It is often more practical to enforce a quasi-no-slip Robin boundary condition
on Γ0 by setting β to a large value and always using the equation on the second
line of Eq. (15) (e.g., β = 107 kPaam−1).

c. On the lateral boundaries, one of two boundary conditions is applied: either a kine-10

matic (Dirichlet) boundary condition

{u = ul, v = vl, on Γl, (16)

where ul and vl are prescribed values of the ice velocities on the lateral boundary,
or a dynamic (Neumann) boundary condition

{2µε̇i ·n−ρg(s− z)n = ρwgmax(z,0)n, on Γl, (17)15

for i = 1,2, where ρw denotes the density of water. In Eq. (17), it has been as-
sumed that the coordinate system has been oriented such that z is strictly ele-
vation (that is, z = 0 at sea level and values of z increase for higher elevations)
(MacAyeal et al., 1996). The boundary condition Eq. (17) is derived by assuming
that the ice shelf is in hydrostatic equilibrium with the air/water that surrounds it20

and is often referred to as an “open-ocean” boundary condition, as it takes into
account the pressure exerted on the ice shelf by neighboring ocean. For some
canonical benchmark experiments performed here (see Sect. 5.1), periodic lat-
eral boundary conditions are prescribed as well.

8087

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8079/2014/gmdd-7-8079-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8079/2014/gmdd-7-8079-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 8079–8149, 2014

A new finite element
first order Stokes ice
sheet dycore built for

advanced analysis

I. Kalashnikova et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The values of the parameters that appear in the first-order Stokes equations and
the boundary conditions described above and used herein are summarized in Table 1.
From this point forward, the new first-order Stokes approximation momentum balance
solver will be referred to “Albany/FELIX”. In this code, the numerical discretization of
Eq. (2) uses Trilinos, a suite of modular software libraries (described in detail in Heroux5

et al., 2005).

3 Numerical discretization and implementation

The model described in Sect. 2 is discretized and solved using a collection of algo-
rithms and software implementations that were selected for accuracy, flexibility, robust-
ness, and scalability. The following brief discussion of the methods presumes prior10

knowledge of Galerkin finite element approaches and Newton–Krylov based nonlinear
solvers (Strang and Fix, 1973; Pawlowski et al., 2006).

3.1 Numerical methods

The PDEs for the FO Stokes model defined by Eq. (2) and the associated boundary
conditions are discretized using the classical Galerkin finite element method (FEM)15

(Hughes, 1987).
Let V denote the Hilbert space given by:

V ≡ V(Ω) =
{
φ ∈ H1(Ω) :φ|Γ0

= 0
}

, (18)

where H1(Ω) denotes the space of square-integrable functions whose first derivatives
are also square integrable. Following classical Galerkin FEM methodology, the weak20

form of the problem is obtained by projecting each of the equations in Eq. (2) onto
a test function in V Eq. (18) in the continuous L2 inner product and integrating the
second order terms by parts. Toward this effect, the weak formulation of Eq. (2) reads:
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find u,v ∈ V such that
∫
Ω

2µε̇1(u,v) · ∇φ1dΩ+
∫
Γβ

βuφ1dΓ+
∫
Ω
ρg ∂s∂xφ1dΩ= 0,∫

Ω
2µε̇2(u,v) · ∇φ2dΩ+

∫
Γβ

βvφ2dΓ+
∫
Ω
ρg ∂s∂yφ2dΩ= 0,

(19)

for all φ1,φ2 ∈ V(Ω). The surface integral along the boundary appearing in Eq. (19)
arises from integrating the stress term in the variational form of the PDEs by parts. This
approach leads to a weak enforcement of the basal surface boundary condition Eq. (15)5

for the tangential stress, and straightforward implementation of the basal boundary
conditions as an integrated boundary condition. We believe, but have not rigorously
shown, that the Galerkin finite element approach for implementing the basal surface
boundary condition enables one to circumvent robustness issues stemming from the
discretization that were previously seen in our work with a finite difference discretization10

(Lemieux, 2011). Note that in our weak formulation Eq. (19), the source terms in Eq. (2)
have not been integrated by parts.

Letting F (u,v ;φ1,φ2) denote the operator defining the left hand side of Eq. (19), the
problem defined by Eq. (19) is equivalent to finding the roots u,v ∈ V of the following
nonlinear equation:15

F (u,v ;φ1,φ2) = 0, ∀φ1,φ2 ∈ V. (20)

Equation Eq. (20) is an infinite-dimensional problem; a finite-dimensional analog
of Eq. (20) is obtained by replacing the infinite-dimensional space V by a finite-
dimensional finite element space, Vh, where h is a length scale associated with a trian-
gulation of the domain Ω into a set of disjoint finite elements Ωe (Ω= ∪nel

e=1Ωe, where20

nel ∈N is the number of finite elements in the triangulation).
Our implementation (a detailed discussion of which is given in Sect. 3.2) allows for

tetrahedral (with either trilinear or triquadratic basis functions) or hexahedral elements
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(with bilinear or biquadratic basis functions) for 3-D problems. One reason a finite el-
ement approach was selected was for its flexibility in using unstructured grids with
non-uniform mesh density to increase the resolution in areas of large velocity gradi-
ents, such as in the vicinity of outlet glaciers, while retaining relatively coarse meshes
in the more static interior regions. In this paper, we present results on three different5

types of grids:

i. Structured uniform hexahedral grids,

ii. Structured uniform tetrahedral grids,

iii. Unstructured non-uniform tetrahedral grids.

The structured hexahedral meshes are generated by creating a uniform quadrilateral10

grid of a two-dimensional (2-D) horizonal cross-section of a geometry Ω, and extruding
it in a uniform fashion as hexahedra in the vertical direction. Similarly, the structured
tetrahedral meshes are created by meshing a 2-D horizonal cross-section of Ω using
a uniform triangular mesh, extruding it in the vertical direction as prisms, then splitting
each prism into three tetrahedra (Fig. 17). For the unstructured tetrahedral grids, an15

unstructured Delaunay triangle mesh of a 2-D cross-section of Ω is generated based
on some kind of refinement criteria (e.g., a static refinement based on the gradient of
the velocity) using a meshing software (e.g., Triangle, a Delaunay triangulation mesh,
Shewchuk et al., 1996), and extruded in the vertical direction in the same way as
a structured triangular grid. More details on these meshes are provided in Sects. 520

and 6. Note that although all the meshes employed for the ice sheet application con-
sidered here were extruded (structured) in the vertical direction, our code base allows
for completely unstructured grids.

A domain decomposition approach is used to compute the solution to the discretized
nonlinear problem on distributed memory parallel computers. As a pre-processing step,25

the elements of the mesh are partitioned into one contiguous domain per processor to
provide nearly equal work per processor.
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The result of the discretization process is a large, sparse system of nonlinear al-
gebraic equations for the two components of horizontal velocity at the nodes of the
mesh (the discrete counterpart of Eq. 20). Our approach to solving this fully-coupled,
nonlinear system is Newton’s method. An analytic Jacobian matrix is computed at each
iteration of Newton’s method using automatic differentiation (AD). The integration of AD5

into the Albany code base, both for Jacobians and for parameter derivatives for sensi-
tivity analysis and UQ, has been a significant advantage of developing a new model in
this framework. The matrix is stored in sparse form, with rows of the matrix distributed
across the processors of the machine.

The resulting linear system is solved using a preconditioned iterative method. For10

the largest problems, we use multilevel preconditioning (described in Sect. 3.1.2) to
achieve scalability, while incomplete LU (ILU) additive Schwartz preconditioners work
well for modest problem sizes and processor counts. Since the model is symmetric, the
Conjugate Gradient (CG) iterative linear solver is employed.

Because of the singularity in the viscosity formulation for stress-free solutions, such15

as when computing the nonlinear solution from a trivial initial guess, the Newton itera-
tion does not reliably converge. To achieve a robust nonlinear solution procedure, we
formulated and implemented a homotopy continuation approach that steps to the final
solution by solving a series of nonlinear problems that reliably converge. The details of
this algorithm are given in Sect. 3.1.1.20

3.1.1 Homotopy continuation algorithm

Although the stress tensor σ Eq. (10) is well-defined for any differentiable function u,
the Glen’s law effective viscosity Eq. (7) is not defined when u is a rigid movement
or exactly 0 (because n is typically taken to be greater than 1; see e.g., Schoof, 2010;
Chen et al., 2013). This can pose a problem for nonlinear solvers as the initial guess for25

u is often taken as uniform or 0. To circumvent this difficulty, a regularization parameter
γ > 0, γ� 1 is added to the sum of the strain rates in the effective strain rate term of
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the effective viscosity Eq. (7), yielding what we refer to as µγ:

µγ =
1
2
A−

1
n

(
ε̇2

e +γ
)( 1

2n−
1
2 )

, where limγ→0µγ = µ. (21)

One common practice is to define µ = µγ in Eq. (7) using some small, fixed value for

γ, e.g., γ = 10−10. Here, noting that the nonlinear solver often struggles to converge ini-
tially when using Newton’s method, we use a variable γ as the continuation parameter5

in a homotopy method (Algorithm 1). In this approach, a sequence of problems Eq. (2)
is solved for a sequence of effective viscosities {µγi } for i = 1,2, . . ., with 0 < γi+1 < γi ,
until γ reaches its target value. We use a natural continuation procedure, where the
final solution at one value of the continuation parameter α is used as the initial guess
for the subsequent nonlinear problem. The continuation algorithm has adaptive step10

size control, and will backtrack and attempt a smaller parameter step if the nonlinear
solve at some step fails to converge (Allgower et al., 2003). We have found that starting
with α0 = 0 leads to a system that will reliably converge from a trivial initial guess, and
that α∞ = 1 provides an adequate stopping value.

Algorithm 1 Homotopy continuation on regularization parameter γ in µγ

Set α = α0, u0 = u0 and i = 0.
while α ≤ α∞ do

Set γ = 10−10α and define µγ by the formula Eq. (21).
Set µ = µγ in Eq. (7).
Set i = i +1.
Solve Eq. (2) with initial guess ui−1 using Newton’s method, to obtain ui .
Increase α using a homotopy continuation method (e.g., natural continuation).

end while

In general, the homotopy continuation approach leads to many fewer nonlinear15

solves than when the regularization parameter γ in Eq. (21) is fixed to some small
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value, e.g., γ = 10−10, especially for problems where a “good” initial guess for New-
ton’s method is unavailable. Moreover, with the homotopy continuation approach, it is
found that a full step can often be employed in the Newton’s method line search algo-
rithm, without the need for backtracking (i.e., iteratively reducing the step size in the
line search algorithm).5

We note that the homotopy continuation approach is in general effective when the
initial guess is not close to the solution (in which case µγ is very small). Similarly, a good
initial guess for u may not be a good initial guess when using continuation because the
initial viscosity µγ0

for the continuation algorithm is generally far from the real viscosity
µ. When solving transient problems, it may be better to simply use a standard Newton10

method (without homotopy continuation), taking the solution at the previous time step
as the initial guess, and using homotopy continuation only if the Newton solver has
difficulties converging. A different approach, which may be used as an alternative to
homotopy continuation, is to perform a few iterations using the Picard method and
then switch to the Newton method once the nonlinear iterations starts to converge15

(e.g., Leng et al., 2014). The robustness and efficiency of the Newton solver with the
homotopy continuation approach summarized in Algorithm 1 is studied numerically in
Sect. 6.3.1.

3.1.2 Multilevel preconditioning

Multigrid preconditioners are among the most efficient and scalable linear solution tech-20

niques for resolving matrix equations associated with elliptic operators. The basic idea
is to capture errors by utilizing multiple resolutions. Oscillatory components are ef-
fectively reduced through a simple iterative procedure, while smooth components are
tackled using auxiliary lower resolution versions of the problem. Different geometric
multigrid methods have been successfully applied to the linear systems arising from25

ice sheet modeling simulations (Brown et al., 2013; Cornford et al., 2013).
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For our capability, we prefer algebraic multigrid (AMG) methods due to the poten-
tially unstructured nature of the mesh in the horizontal plane. AMG methods have the
advantage that the lower resolution versions of the multigrid hierarchy are constructed
automatically using only the matrix coefficient entries. Unfortunately, solution of the
underlying linear systems is problematic due to the strong anisotropic nature of the5

discrete equations. This is essentially a consequence of the disparate scales in the
horizontal and vertical directions and the associated large mesh aspect ratios. At the
discrete level, these aspect ratios give rise to matrices where entries representing ver-
tical coupling are generally much larger than entries representing horizontal coupling.
Anisotropic phenomena within ice sheets and fairly different types of multigrid methods10

have been considered in recent prior works (Brown et al., 2013; Isaac et al., 2014).
From a multigrid perspective, reducing oscillatory errors in the horizontal direction

is much more difficult than in the vertical direction. Further, accurately capturing hor-
izontal coupling on coarse levels can be challenging due to the relatively small size
of the corresponding matrix entries (which are effectively averaged to generate the15

low resolution versions). To avoid these difficulties, we have developed a hybrid struc-
ture/unstructured AMG multigrid capability that leverages the fact that our meshes,
though unstructured in the horizontal plane, are structured in the vertical direction.
That is, our 3-D meshes can be viewed as extrusions of unstructured 2-D meshes, al-
lowing for varying vertical mesh spacing. A paper is in preparation to further describe20

the details of this hybrid algorithm. Here, we briefly describe its essence.
The basic concept behind the hybrid structured/unstructured AMG method is to first

apply operator dependent multigrid semi-coarsening to initially coarsen the mesh and
construct the first few levels of the multigrid hierarchy. Semi-coarsening and operator
dependent multigrid both have a long history on structured grid problems (Dendy et al.,25

2010; Schaffer, 1998; Brown et al., 2000). Semi-coarsening refers to only coarsening
in some subset of coordinate directions and is often advocated to address anisotropic
problems. Essentially, one only coarsens in directions where oscillatory errors are eas-
ily reduced. Operator dependent multigrid refers to family of algorithms that intimately
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take advantage of structure. They can be viewed as idealized or “perfect” grid transfers
for one dimensional simplifications of the higher dimensional problem. In this way, sev-
eral coarse level meshes are effectively constructed, each containing the same number
of points within all horizontal planes. When it is no longer possible to further coarsen
vertically (as there is just a single horizontal layer), a standard smoothed aggrega-5

tion AMG method is applied to this horizontal problem creating additional levels in the
hierarchy. Thus, finer levels of the hierarchy are created via semi-coarsening and oper-
ator dependent multigrid (leveraging grid structure). Coarser levels are constructed via
AMG, which is applied after the anisotropic behavior is no longer present (as there is
just a single horizontal layer). To complete this brief description, we note that line Jacobi10

is used as the simple iterative scheme to damp oscillatory errors on the finer levels. It
allows for aggressive semicoarsening (i.e., reduction factors greater than three in the
linear system dimension as one proceeds to progressively coarser levels). Polynomial
smoothing is used on the levels associated with standard AMG.

The algebraic multilevel preconditioner described above has been implemented in15

and is available through the (open-source) ML package of Trilinos (Heroux et al., 2005).

3.2 Software implementation

The numerical methods described above are implemented in the Albany code base, an
open-source1, multi-physics code/analysis package developed at Sandia National Lab-
oratories. A full description of Albany can be found in a separate publication (Salinger20

et al., 2014). Briefly, Albany is a finite element code base for the solution and analysis of
models of coupled PDEs using parallel, unstructured-grid, implicit algorithms. It makes
use of numerous computational mathematics libraries from the Trilinos suite (Heroux
et al., 2005), and has been previously used in other applications domains such as

1The Albany code can be obtained from its public github repository by the interested
reader: https://github.com/gahansen/Albany.
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quantum device modeling (Gao et al., 2013) and computational mechanics (Sun et al.,
2013).

The software stack in Albany involves dozens of libraries that are delivered through
Trilinos as independent software packages developed by small teams of domain ex-
perts. The Sierra ToolKit (STK) package is used for mesh database structures and5

mesh I/O. The Epetra package is used for distributed memory, parallel data structures
for vectors and sparse matrices, which greatly simplify parallel operations such as halo
exchanges for synchronizing data between processors. The Intrepid (Bochev et al.,
2012) package provides flexible finite element discretization algorithms and general
integration kernels. The PDE equations are described by a set of evaluation kernels,10

whose evaluation is managed by the Phalanx package.
One of the main distinguishing characteristics of the Albany code base is the use of

the Template-Based Generic Programming (TBGP) approach (Pawlowski et al., 2012a,
b). With this methodology, all that is required to implement a new set of physics in Al-
bany is to code the residual of the PDE equations. Given this residual, Albany auto-15

matically computes and assembles the sparse Jacobian matrix and sensitivity vectors
without any additional code development. TBGP makes extensive use of the Sacado
package (Phipps et al., 2012) for automatic differentiation, which employs C++ ex-
pression templates with operator overloading, and has been closely integrated with the
Phalanx and Intrepid packages.20

The Newton-based nonlinear system solver and homotopy continuation algorithm
are implemented in the NOX (Pawlowski et al., 2006) and LOCA (Salinger et al., 2005)
packages, respectively. These solvers can additionally perform sensitivity analysis us-
ing the analytic sensitivity vectors computed with automatic differentiation with respect
to model parameters. Within the solvers, we have full runtime access to all the Trilinos25

preconditioners (ILU and algebraic multilevel preconditioners, from the Ifpack and ML
software packages, respectively) and linear solvers by specification in an input file. For
the bulk of the computations in this paper, the ML package was employed for algebraic
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multilevel preconditioners (Tuminaro, 2014), and the Belos package was employed for
CG-based iterative solvers (Bavier et al., 2012).

Albany is also coupled to the Dakota framework (Adams et al., 2013) of sampling-
based optimization and UQ algorithms, which will play a significant role in model ini-
tialization, calibration, and projections. Although the application of optimization and5

UQ algorithms go beyond the scope of this paper, we emphasize that the component-
based approach for building this application code leads to the rapid incorporation of
many sophisticated capabilities.

4 Verification using the method of manufactured solutions (MMS)

We first conduct formal verification of the new Albany/FELIX code described in Sect. 310

through the method of manufactured solutions (MMS), using test cases derived here
explicitly for this purpose. A survey of the literature reveals that past work has focused
on deriving MMS benchmarks for the “shallow ice” and nonlinear Stokes models (e.g.,
(Bueler et al., 2007; Leng et al., 2013), respectively) rather than the FO approximation
Eq. (2), and the derivation of MMS benchmarks for the FO approximation is one of15

the novel contributions of this paper. Here, we use the Albany/FELIX code and these
new MMS benchmarks to verify (i) that the dynamics have been implemented correctly,
and (ii) that the type of finite elements employed show convergence at their expected
theoretical rates.

Consider the FO Stokes equations Eq. (2) in 2-D on a rectangular geometry with20

domain edges aligned with the x and y axes in a Cartesian reference frame, Ω= (0,1)×
(0,1) ∈R2, and ∂s

∂x =
∂s
∂y = 0. Let fT ≡ (f1, f2) be a source term for the equations Eq. (2),

to be determined such that a given manufactured solution satisfies these equations.
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Under these assumptions, the FO Stokes system Eq. (2) has the following form:−
∂
∂x

(
4µ2-D

∂u
∂x +2µ2-D

∂v
∂y

)
− ∂
∂y

(
µ∂u∂y +µ2-D

∂v
∂x

)
+ f1 = 0,

− ∂
∂x

(
µ2-D

∂u
∂x +µ2-D

∂v
∂y

)
− ∂
∂y

(
2µ2-D

∂u
∂x +4µ2-D

∂v
∂y

)
+ f2 = 0,

(22)

where the viscosity µ2-D is given by the 2-D version of Eq. (7):

µ2-D =
1
2
A−

1
n

(
ε̇2
xx + ε̇

2
yy + ε̇xxε̇yy + ε̇

2
xy

)( 1
2n−

1
2 )

. (23)

For the MMS test cases considered here, the values of the flow rate factor and Glen’s5

flow law exponent were taken to be A = 1 and n = 3, respectively.
We consider four different finite element types in our numerical convergence study:

three node triangles (denoted by “Tri 3”), four node quadrilaterals (denoted by “Quad
4”), six node triangles (denoted by “Tri 6”), and nine node quadrilaterals (denoted by
“Quad 9”) (Fig. 1). Convergence is evaluated in the discrete l2 norm. In particular, the10

relative error in a computed solution, denoted by Edisc
rel , is calculated from

Edisc
rel =

‖un −u‖2
‖u‖2

, (24)

where ‖ · ‖2 denotes the discrete l2 norm, uT ≡ (u,v) is the exact solution to Eq. (22),
and un is the numerically computed solution to Eq. (22). It is well-known from classical
finite element theory (Hughes, 1987) that the theoretical convergence rate in the norm15

considered is two for the Tri 3 and Quad 4 elements, and three for the Quad 6 and Quad
9 elements. Hence, the first two elements are referred to as first-order finite elements
and the second two elements are referred to as second-order finite elements. Note that
the quadrilateral elements are expected to deliver a more accurate solution than their
triangular counterparts of the same order.20
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4.1 Dirichlet/Neumann boundary condition test case (“sin-cos” test case)

The first MMS test case considered is referred to as the “sin-cos” test case, as the
solution to this problem is a product of the sine and cosine functions. The source term
in Eq. (22) is derived such that the exact solution to this system is given by the following
trigonometric expression:5

u = sin(2πx+φ)cos(2πy +ψ)+3πx,

v = −cos(2πx+φ)sin(2πy +ψ)−3πy .
(25)

The parameters φ,ψ ∈ [0,2π) in Eq. (25) are phase shifts that can be used to generate
a family of solutions (e.g., Fig. 2). The solution Eq. (25) satisfies a combination of
Dirichlet and Neumann boundary conditions on the boundary of Ω, denoted by Γ. For
φ = ψ = 0, the boundary conditions are as follows:10

u = 0, ε̇2 ·n = 0, at x = 0,
u = 3π, ε̇2 ·n = 0, at x = 1,
ε̇1 ·n = 0, v = 0, at y = 0,
ε̇1 ·n = 0, v = −3π, at y = 1,

(26)

where n denotes the outward unit normal vector to a given boundary.
Substituting Eq. (25) into Eq. (22), the following expressions for the source terms f1

and f2 are obtained:

f1 =−8µ2-Dπ
2 sin(2πx+φ)cos(2πy +ψ)

+A−
1
n

(
1
n
−1
)
ε̇

1
n−2

e,2-D

(∂ε̇e,2-D

∂x
(2εxx +εyy )+

∂ε̇e,2-D

∂y
εxy

)
,

(27)15

f2 =8µ2-Dπ
2 cos(2πx+φ)sin(2πy +ψ)

+A−
1
n

(
1
n
−1
)
ε̇

1
n−2

e,2-D

(∂ε̇e,2-D

∂x
εxy +

∂ε̇e,2-D

∂y
(εxx +2εyy )

)
,

(28)
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where

ε̇e,2-D = 2πcos(2πx+φ)cos(2πy +ψ)+3πx, (29)

is the effective strain rate in 2-D (i.e., the 2-D analog of Eq. 8) and

µ2-D =
1
2
A−

1
n ε̇

1
n−1

e,2-D. (30)

Figure 3 plots the relative error (computed according to formula Eq. 24) in the solu-5

tion to the “sin-cos” test case as a function of the mesh spacing h on a log-log plot for
φ = ψ = 0. The reader can observe that the two lowest-order (Tri 3 and Quad 4) finite
elements converge at their theoretical convergence rates; a slight superconvergence is
observed for the two higher order elements (Tri 6 and Quad 9). Moreover, the quadri-
lateral elements deliver a solution that is more accurate than that from their triangular10

counterparts, as expected.

4.2 Robin boundary condition test case (“sin-cos-exp” test case)

We refer to the second MMS test case as the “sin-cos-exp” test case, as the solution
to this problem is a product of the sine or cosine function and the exponential function.
This test case is posed on the same geometry as the “sin-cos” test case, namely Ω=15

(0,1)× (0,1), but differs in that it has a different source term and different boundary
conditions, which are of the Robin type on some boundaries of Ω. The source term in
Eq. (22) is derived such that the exact solution to this system is given by the following
expression:

u = ex sin(2πy),

v = ex cos(2πy).
(31)20
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(Fig. 4). Substituting Eq. (31) into Eq. (22), the source terms f1 and f2 are obtained:

f1 =2µ2-De
x sin(2πy)

[
2−3π−2π2

]
+A−

1
n

(
1
n
−1
)
ε̇

1
n−2

e,2-D

(∂ε̇e,2-D

∂x
(2εxx +εyy )+

∂ε̇e,2-D

∂y
εxy

)
,

(32)

f2 =2µ2-De
x cos(2πy)

[
3π+

1
2
−8π2

]
+A−

1
n

(
1
n
−1
)
ε̇

1
n−2

e,2-D

(∂ε̇e,2-D

∂x
εxy +

∂ε̇e,2-D

∂y
(εxx +2εyy )

)
,

(33)

where

ε̇e,2-D = ex
√

(1+4π2 −2π)sin2(2πy)+
1
4

(2π+1)2cos2(2πy), (34)5

is the effective strain rate in 2-D, and µ2-D is given by Eq. (30). The solution Eq. (31)
implies the following boundary conditions on the boundary of Ω:

ε̇1 ·n = 2(π−1)u, ε̇2 ·n = −
(
π+ 1

2

)
v , at x = 0,

ε̇1 ·n = −2(π−1)u, ε̇2 ·n =
(
π+ 1

2

)
v , at x = 1,

u = 0, ε̇2 ·n = 0, at y = 0 and y = 1,
v = 0, at (x,y) = (0,0),

(35)

where n denotes the outward unit normal vector to a given boundary. The last condition
on Eq. (35) is imposed to guarantee uniqueness of the v component of the velocity10

vector.
The relative errors Eq. (24) as a function of the mesh size h for the sin-cos-exp test

case are plotted on a log-log plot in Fig. 5. The two lowest-order finite elements (Tri 3
and Quad 4) converge at their theoretical rates of two, whereas the higher-order finite
elements (Tri 6 and Quad 9) exhibit a slight superconvergece over their theoretical con-15

vergence rate of three. As expected, the quadrilateral elements deliver a more accurate
solution than their triangular counterparts.
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5 Intercomparison with other codes and benchmarks

In this section we discuss further (informal) verification of results for Albany/FELIX
using some canonical ice sheet benchmarks, namely ISMIP-HOM tests A and C
(Sect. 5.1), and the confined shelf test case (Sect. 5.2) (Pattyn et al., 2008). For
these problems, the exact solution is not known in closed analytic form and our quasi-5

verification consists of code-to-code comparisons between the solution computed in
Albany/FELIX, the results from other models participating in the original benchmark
experiments, and the FO approximation, finite element code of (Perego et al., 2012).

The values of the physical parameters used in the two test cases considered are
summarized in Table 1. We note that the units employed in our implementation are10

ma−1 for the ice velocities u and v (where “a” denotes years) and km for the length
scale (e.g., the mesh dimensions). Our units are the same as in (Perego et al., 2012)
but differ from other implementations, which often use a length scale of meters (m).
Our units give rise to matrices with smaller differences in scale (which may be better
scaled), as there is in general a smaller difference in scale in the relevant parameter15

values (e.g., A = 10−4k−(n+1) Pa−n a−1 when the mesh is in km vs. A = 10−16 Pa−n a−1

when the mesh is in m, where k = kmm−1 = 103).

5.1 ISMIP-HOM benchmarks

The ISMIP-HOM test cases (Pattyn et al., 2008) are a canonical set of benchmark ex-
periments for so-called “higher-order” ice sheet models. Here, we consider tests A and20

C, both of which are specified on a horizontal, periodic domain with a unit length of L
km. The bedrock surface, Γb, is given by a continuous function z = b(x,y) ∈R2 and the
upper surface, Γs, is given by a continuous function z = s(x,y) ∈R2. The geometries
are generated from a uniform hexahedral mesh of the unit cube (0,1)3 ∈R3 via the
following transformation:25

x = LX , y = LY , z = s(x,y)Z +b(x,y)(1−Z), (36)
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where X ,Y ,Z are the coordinates of the unit cube (in km), and L ∈N is given. That is,
a uniform mesh of nx ×ny ×nz elements is first generated of (0,1)3, to yield the nodal
coordinates X , Y , and Z , then the transformation Eq. (36) is applied. The following do-
main sizes are considered: L = 5,10,20,40,80 and 160 km. Each domain is discretized
using an 80×80×20 mesh of hexahedral elements. As a part of the quasi-verification,5

the Albany/FELIX solution is compared with the solution computed in the finite element
code of (Perego et al., 2012) at the upper surface along the line y = L/4. Table 2 shows
the relative difference between the Albany/FELIX and (Perego et al., 2012) solutions
in the l2 norm along this line, calculated from the formula Eq. (24) with the (Perego
et al., 2012) solution taken as the reference solution. Differences in the solutions are10

likely due to the different finite elements used: trilinear finite elements on hexahedra
are used in Albany/FELIX, whereas linear finite elements on tetrahedra are used in the
code of (Perego et al., 2012).

5.1.1 ISMIP-HOM test A

The first ISMIP-HOM benchmark considered is test A. For this problem, the upper ice15

surface boundary (Γs) is given by the following linear function

s(x,y) = −x tanα, (37)

and the bedrock boundary (Γb) is given by the following trigonometric function

b(x,y) = s(x,y)−1+
1
2

sin
(

2π
L
x
)

sin
(

2π
L
y
)

, (38)

with α = 0.5◦. The geometry is thus that of a uniformly sloping slab along the x co-20

ordinate direction with a doubly periodic, “egg crate” shaped bed. A no-slip boundary
condition is prescribed on Γb (with Γ0 ≡ Γb and Γβ = ∅), stress-free boundary condi-
tions are prescribed on the upper surface Γs, and periodic boundary conditions are
prescribed on the lateral boundaries Γl.
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Figure 6 compares the solution computed within the Albany/FELIX code for ISMIP-
HOM test A with the solution computed by the code of (Perego et al., 2012) (denoted
by MP12 in this figure). The agreement between the two is excellent. The second
column of Table 2 reports the relative difference between these two solutions in the l2

norm Eq. (24). The relative difference is at most 0.1% for L = 180 and on the order of5

0.001% for L = 5, 10, 20, 40.
Figure 6 also includes the mean and standard deviation (SD) of solutions computed

by other models participating in the original set of benchmark experiments. For a de-
tailed description of these models the reader is referred to (Pattyn et al., 2008). For all
values of L considered, the Albany/FELIX solution is within one SD of the mean of the10

other FO models considered in the original set of experiments. In Fig. 6, the solutions
labeled “Full Stokes” were calculated using the (more expensive but more physically
realistic) full Stokes model for ice sheet flow (detailed in Appendix A). Comparing a FO
Stokes solution to the full Stokes solution reveals how well the FO Stokes physics
approximate the full Stokes model. The reader can observe by examining Fig. 6 that15

agreement between the FO Stokes and the full Stokes solutions improves with increas-
ing L.

5.1.2 ISMIP-HOM test C

For ISMIP-HOM test C, the upper and bedrock surfaces (Γs and Γb, respectively) are
given by the following linear functions:20

s(x,y) = −x tanα, b(x,y) = s(x,y)−1, (39)

with α = 0.1◦. In addition to having a different geometry than test A, test C also differs
in the boundary conditions. Unlike test A, sliding boundary conditions are prescribed
on the bedrock (Γβ ≡ Γb and Γ0 ≡ ∅), with the basal sliding coefficient given by

β(x,y) = 1+ sin
(

2π
L
x
)

sin
(

2π
L
y
)

. (40)25
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The boundary conditions at the upper and lateral boundaries (Γs and Γl respectively)
are the same as for test A, namely stress-free and periodic, respectively. The geometry
is thus that of a constant thickness, uniformly sloping slab along the x coordinate direc-
tion with a doubly periodic, “egg crate” spatial pattern for the basal friction parameter
β.5

The test case solution computed in Albany/FELIX is shown in Fig. 7, along with the
solution computed using the solver of (Perego et al., 2012). For every L considered,
the relative difference between Albany/FELIX and the solver of (Perego et al., 2012)
(denoted, as before, by MP12 in Fig. 7) is less than 1% (Table 2). Moreover, as for
ISMIP-HOM test A, the Albany/FELIX solution is within one SD of the model means10

for each value of L. As for ISMIP-HOM test A, Fig. 7 illustrates also how well the FO
Stokes model compares to the (more expensive but more accurate) full Stokes model.
As for test A, the two models agree better for larger L.

5.2 Confined shelf benchmark

We next consider an idealized ice shelf test case, referred to here as the “confined15

shelf” test case, which is a slightly modified version of test 3 from the Ice Shelf Model
Intercomparison exercise (Rommelaere, 1996). The geometry is that of a 500 m thick
slab of ice with equal extents of 200 km along the x and y dimensions, floating in hydro-
static equilibrium (Fig. 8). A stress-free boundary condition is applied at the upper and
basal boundaries (z = s and z = b respectively) and homogeneous Dirichlet bound-20

ary conditions (u = v = 0) are applied on three of the four lateral boundaries (the east
x = 200, west x = 0 and north y = 200 boundaries). The south (y = 0) lateral boundary
is open to the ocean and subject to the open ocean Neumann boundary condition de-
scribed in Sect. 2 (boundary condition (c)). The values of the parameters that appear
in Eq. (17) can be found in Table 1. The domain and boundary faces for the confined25

shelf problem are illustrated in Fig. 8.
The confined shelf geometry is discretized using a structured tetrahedral mesh

of 41×41 nodes in the x–y plane with 10 vertical levels. As with the ISMIP-HOM
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test cases, the solution for the confined shelf test case computed in our code, Al-
bany/FELIX, is compared to the solution computed by the solver of (Perego et al.,
2012) on the same mesh. Figure 9a shows the solution calculated in Albany/FELIX,
which is visually identical to the solution computed by the solver of (Perego et al.,
2012). Figure 9b shows the difference between the Albany/FELIX and (Perego et al.,5

2012) solutions, which are on the order of O(10−10).

6 Convergence study using realistic geometry

The final results presented herein are the results of a numerical convergence and per-
formance study using a realistic, 1 km spatial resolution Greenland Ice Sheet (GIS)
geometry (i.e., surface and bed topography from Bamber et al., 2013).10

6.1 Full 3-D convergence study

First, we present results from a 3-D mesh convergence study in which a set of horizon-
tal uniform quadrilateral meshes of different resolutions were considered. We began by
generating a quadrilateral mesh having an 8 km horizonal resolution. We then refined
this coarse mesh uniformly in the horizontal direction (by splitting each quadrilateral fi-15

nite element into four smaller quadrilaterals) four times to yield meshes with resolutions
of 4, 2, 1 km and 500 m. The horizontal meshes were then extruded into 3-D hexahedral
meshes having uniform layers. The number of layers considered in this study ranges
from 5 to 80. Realistic basal friction coefficient (β) fields and bed topographies were
calculated by solving a deterministic inversion problem that minimizes simultaneously20

the discrepancy between modeled and observed surface velocities, modeled and ob-
served bed topography, and between a specified surface mass balance field and the
modeled flux divergence (see Perego et al., 2014, for more details). A realistic, 3-D
temperature field, originally calculated using the Community Ice Sheet Model (CISM)
for the study in (Shannon et al., 2013), was included as an initial condition in order25
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to provide realistic values for the flow-law rate factor Eq. (9). Prior to being interpo-
lated onto the meshes at hand, the original topography, surface height, basal friction
and temperature data were smoothed by convolution with a 2-D Gaussian filter (having
a SD of 5 km). This smoothing filter reduces the small-scale variations of the original
fields, so that it is reasonable to consider meshes from 8 km to 500 m for our conver-5

gence study. Using directly the non-smoothed data, we would have needed to consider
much finer meshes in order to obtain asymptotic convergence. Table 3 summarizes the
meshes considered and the related degrees of freedom (dofs)

For the convergence study undertaken here, the objective is to show a theoreti-
cal convergence rate for the finite elements evaluated. From finite element theory,10

theoretical convergence rates are expected for a problem in which the data is fixed
on all meshes considered, so better-resolved data are intentionally not introduced on
the coarser meshes that were part of our convergence study in this section. A high-
resolution GIS problem, with real, high-resolution data is considered in Sect. 6.3.3.

The FO equations Eq. (2) with basal sliding at the bedrock Eq. (15) and stress-free15

boundary conditions Eq. (14) on the remaining boundaries were solved on the base
8 km resolution mesh and the four successively refined meshes. Model runs were per-
formed in parallel on Titan2, a Cray XK6 operated by the Oak Ridge Leadership Com-
puting Facility (OLCF). The fourth column of Table 3 reports the number of CPU cores
used for each mesh resolution. Note that the parallel decompositions employed in the20

runs were 2-D only; all elements with the same x and y coordinates were on the same
processor (convergence difficulties were encountered when splitting vertical columns
in the mesh across processors). A parallel decomposition for 16 cores is illustrated in
Fig. 11.

The last column of Table 3 reports the relative errors in the computed solution for25

each mesh resolution considered. The convergence metric employed was the con-
tinuous L2 norm. The relative error in each solution was calculated according to the

2More information on Titan can be found at www.olcf.ornl.gov/titan.
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following formula:

Econt
rel ≡

√√√√√√√
∫
Ω
‖un −uref‖

2
2dΩ∫

Ω
‖uref‖22dΩ

. (41)

In Eq. (41), ‖ · ‖2 denotes the L2 norm, un denotes the computed solution and uref
denotes the reference solution, which here we take as the solution computed for the
finest resolution mesh (for this quasi-realistic problem, there is no exact solution avail-5

able in closed analytic form). The integrals in Eq. (41) were calculated exactly using
a sufficiently accurate numerical quadrature rule.

Figure 12 plots the relative error Eq. (41) as a function of the horizontal mesh spacing
(8, 4, 2, 1 km) on a log-log plot (blue line). The numerical values of the relative error
Erel are reported in the right-most column of Table 3. The asymptotic convergence rate10

(the slope of the blue line in Fig. 12 disregarding the coarsest mesh data point, as it is
not in the region of asymptotic convergence) is 1.96. This compares very well with the
theoretical convergence rate of two, for the bilinear hexahedral elements considered in
this norm (black-dashed line in Fig. 12).

6.2 Convergence study with z-refinement15

Next, we perform a convergence study with respect to the number of vertical layers,
that is, a convergence study with refinement in the z direction only. To the authors’
knowledge, the answer to the question of how many vertical layers should be used in
large-scale ice sheet simulations (e.g., of Greenland or Antarctica) remains open. Many
researchers employ a fixed number (usually on the order of 10, e.g., Lemieux, 2011)20

regardless of the horizontal resolution of the mesh. Sometimes this choice is motivated
by solver convergence difficulties encountered when a larger number of vertical layers
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are used (e.g., Larour et al., 2012). The purpose of our mesh convergence study with
respect to the number of vertical layers is two-fold:

i. To determine in a rigorous fashion for a GIS problem with a fixed horizontal mesh
resolution how many vertical layers are required to achieve a solution having a de-
sired accuracy,5

ii. To investigate whether the performance of our linear and nonlinear solvers
changes with the number of vertical layers.

For our convergence study with respect to z refinement, we consider the full, 1 km
resolution (in the x–y plane) data from (Bamber et al., 2013) along with realistic, 2-D
basal friction coefficient (β) and 3-D internal temperature fields, as discussed above.10

Two vertical mesh spacings are considered:

a. Uniform spacing in z.

b. Graded spacing in z.

In the latter case, a transformation is performed such that a mesh having nz vertical
layers is finer near the bedrock boundary Γb and becomes progressively coarser mov-15

ing up, towards the surface boundary Γs. The formulas for the coordinate of the i th
vertical layer, zi (for i = 0, . . .,nz, where nz is the number of vertical layers), for each
of these two spacings is given in Table 4. Figures 13a and (b) show the uniform vs.
graded z spacing, respectively3.

Twelve instances of the 1 km GIS problem are considered, each with a different num-20

ber of vertical layers (resolution in z): 5, 10, 20, 40, 80 and 160 vertical layers, with both
uniform and graded spacing in z (Table 5).

As for the full 3-D convergence study, 2-D decompositions of the domain were gen-
erated (Fig. 11). For the error analysis as a function of mesh spacing, we take the 160

3The formula for the graded z–spacing is available in the CISM documentation, available at
http://oceans11.lanl.gov/cism.
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vertical layer mesh with graded spacing as the reference solution in Eq. (41). The last
two columns of Table 5 report the relative errors as a function of the z-resolution for the
uniform and graded mesh spacings. These errors are plotted in Fig. 14 as a function
of the z-resolution (denoted by hz, taken to be the reciprocal of the number of vertical
layers, i.e., hz =

1
5 , 1

10 , 1
20 , . . .). Convergence rates can be obtained by calculating the5

slopes of the red and blue lines in Fig. 14. Omitting the data points for the finest mesh
resolution4, the observed convergence rates are calculated to be 2.0096 for the uniform
mesh spacing (slope of blue line in Fig. 14) and 2.0041 for the graded mesh spacing
(slope of red line in Fig. 14), in excellent agreement with the expected convergence
rate of 2.10

The results summarized above led to some practical recommendations that may be
of interest to the glaciological modeling community. First, if a relative error of less than
O(10−3) is desired for a GIS problem discretized by a mesh of linear (or trilinear) finite
elements5 with a 1 km spatial mesh resolution, more than 10 vertical layers should be
used in the full 3-D mesh for this geometry. Moreover, as noted in the discussion of the15

full 3-D mesh convergence study described in Sect. 6.1, our study revealed that 2-D
parallel decompositions of the meshes (i.e., decompositions in which all elements with
the same x and y coordinates were on the same processor, as shown in Fig. 11) led
to out-of-the-box convergence of our linear and nonlinear solves. In contrast, conver-
gence difficulties were encountered when splitting vertical columns in the mesh across20

processors. The 2-D parallel decomposition is therefore recommended over a full 3-
D parallel decomposition, especially for problems on meshes having a finer vertical
resolution.

4Including this data point will result in an over-estimation of the convergence rate since
a reference solution is used in place of the exact solution in the error calculation.

5Note that if higher-order elements are considered, as in the work of (Leng et al., 2014;
Isaac et al., 2014), the recommended number of layers would likely be smaller.
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6.3 Code performance and scalability

Having demonstrated the numerical convergence of our code on a realistic, large-scale
ice sheet problem we now study the code’s robustness, performance and scalability.

6.3.1 Robustness

In Sect. 3.1.1, we described our approach for improving the robustness of the non-5

linear solver using a homotopy continuation of the regularization parameter (denoted
by γ) appearing in the effective viscosity law expression Eq. (21). Here, we perform
a numerical study of the relative robustness of Newton’s method with and without the
use of this continuation procedure on a realistic, 5 km resolution Greenland ice sheet
problem. Three approaches are considered:10

a. Full Newton with no homotopy continuation.

b. Newton with backtracking but no homotopy continuation.

c. Full Newton with homotopy continuation.

For all three methods, a uniform velocity field is specified as the initial guess for
Newton’s method. To prevent the effective viscosity Eq. (7) from evaluating to “not-15

a-number” for this initial guess, we replace µ by µγ in Eq. (2), where µγ is given by

Eq. (21) and γ = 10−10 for the first two approaches. The third approach implements Al-
gorithm 1, in which we use a natural continuation algorithm to reach γ = 10−10 starting
with α0 = 0.1.

Figure 15 illustrates the performance of Newton’s method for the three approaches20

considered by plotting the norm of the residual as a function of the total number of New-
ton iterations. The reader can observe that full Newton with no homotopy continuation
diverges. If backtracking is employed, the algorithm converges to a tolerance of 10−4

in 43 nonlinear iterations. With the use of homotopy continuation, the number of non-
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linear iterations is cut almost in half, to 24 nonlinear iterations. The natural continuation
method leads to four homotopy steps.

It is well-known that for Newton’s method to converge to the root of a nonlinear func-
tion (i.e., the solution to the discrete counterpart of Eq. 20), it must start with an initial
guess which is reasonably close to the sought-after solution. The proposed homotopy5

continuation method is particularly useful in the case when no “good” initial guess is
available for Newton’s method, in which case the nonlinear solver may fail to converge
(see Sect. 3.1.1 and Algorithm 1). Homotopy continuation may not be needed for robust
convergence in the case that a “good” initial guess is available (e.g., from observations
or from a previously converged model time step).10

6.3.2 Controlled weak scalability study on successively refined meshes with
coarse mesh data

First, we report results for a controlled weak scalability study. For this experiment, the
8 km GIS mesh with 5 vertical layers described in Sect. 6.1 was scaled up to a 500 m
GIS mesh with 80 vertical layers using the uniform 3-D mesh refinement discussed15

earlier. A total of five meshes were generated, as summarized in Table 3. The term
“controlled” refers to the fact that the lateral boundary of the ice-sheet is kept constant
for all the grids considered and equal to the polygonal boundary determined by the
coarsest 8 km mesh. Moreover, topography, surface height, basal friction and temper-
ature data have been smoothed and then interpolated as described in Sect. 6.1. Each20

resolution problem was run in parallel on the Hopper6 Cray XE6 supercomputer at the
National Energy Research Scientific Computing (NERSC) Center. The number of cores
for each run (third column of Table 3) was calculated so that for each size problem, each
core had approximately the same number of dofs (≈ 70–80 K dofs/core). For a detailed
discussion of the numerical methods employed, the reader is referred to Sect. 3. In25

6More information on the Hopper machine can be found here: http://www.nersc.gov/users/
computational-systems/hopper.
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particular, recall that the linear solver employed is based on the preconditioned CG it-
erative method. The preconditioner employed is the algebraic multilevel preconditioner
based on the idea of semi-coarsening that was described in Sect. 3.1.2. This precon-
ditioner is available through the ML package of Trilinos (Heroux et al., 2005).

Figure 16a reports the total linear solver time, the finite element (FE) assembly time5

and the total time (in seconds) for each resolution problem considered, as a function of
the number of cores. Figure 16b shows more detailed timing information, namely:

– The normalized preconditioner generation time (“Prec Gen Time”).

– The normalized Jacobian fill time, not including the Jacobian export time7 (“Jac
Fill – Jac Export Time”).10

– The normalized number of nonlinear solves (“# Nonlin Solves”).

– The normalized average number of linear iterations (“Avg # Lin Iter”).

– The normalized total time not including I/O (“Total Time – IO”).

The run times and iteration counts have been normalized by the run time and iteration
count (respectively) for the smallest run (8 km GIS with 5 vertical layers, run on 4 cores).15

Figure 16 reveals that the run times and iteration times scale well, albeit not perfectly,
in a weak sense.

6.3.3 Strong scalability for realistic Greenland initial conditions on a variable-
resolution mesh

For the performance study described in the previous paragraph, the data has been20

smoothed and the lateral boundary was determined by the coarsest (8 km resolution)

7“Jacobian export time” refers to the time required to transfer (“export”) data from an
element-based decomposition, which can be formed with no communication, to a node-based
decomposition, where rows of the matrix are uniquely owned by a single processor.
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mesh. We now perform a scalability study for the GIS interpolating directly original
datasets into the mesh considered. This results in better resolved topography, basal
friction and temperature fields. As before, the surface topography and temperature
fields are from (Bamber et al., 2013) and were generated as a part of the Ice2Sea
project (Ice2sea, 2014); the basal friction coefficient (β) field and the bed topography5

were calculated in (Perego et al., 2014).
We consider a tetrahedral mesh with a variable resolution of between 1 and 7 km and

having approximately 14.4 million elements, leading to approximately 5.5 million dofs
(Fig. 17a). The mesh was created by first meshing the base of the GIS using the 2-D
meshing software Triangle (Shewchuk et al., 1996). The 2-D mesh generated using10

Triangle was a nonuniform Delaunay triangulation in which the areas of the triangles
were constrained to be roughly proportional to the norm of the gradient of the surface
velocity data. This yields meshes with better resolutions in places where the solution
has larger variations. The 2-D mesh is then extruded in the z–direction as prisms and
each prism is divided into three tetrahedra (Fig. 17b).15

First, we verify that the solution computed on the 1–7 km variable resolution tetrahe-
dral mesh – the modeled surface velocity field – agrees well with that from observations
(Joughin et al., 2010). The solution computed on this mesh is shown in Fig. 18a. The
reader can observe that this solution is in excellent agreement with the target velocity
field from observations, shown in Fig. 18b.20

Next, a strong scaling study on the 1–7 km variable resolution GIS problem is per-
formed. The problem is run on different numbers of cores on Hopper, from 64 to 512.
The total solve, linear solve and finite element assembly times for each of the runs
are reported (in seconds) in Table 6. The speed-up relative to the smallest (64 core)
run is plotted as a function of the number of cores in Fig. 19. Good strong scalability25

is obtained: a 3.75 times speed-up is observed with 4 times the number of cores (up
to and including 256 cores), and a 6.64 times speed-up is observed with 8 times the
number of cores (up to and including 512 cores). In these results, the linear solver em-
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ployed was the preconditioned CG iterative method, with the aforementioned algebraic
multilevel preconditioner based on the idea of semi-coarsening (see Sect. 3.1.2).

7 Conclusions

In this paper, we have presented a new, parallel, finite element solver for the first-
order accurate, nonlinear Stokes ice sheet model. This solver, Albany/FELIX, has been5

written using a component-based approach to building application codes. The compo-
nents comprising the code are modular Trilinos libraries, which are put together using
abstract interfaces and Template-Based Generic Programming. Several verifications of
the code’s accuracy and convergence are carried out. First, a mesh convergence study
is performed on several new method of manufactured solutions test cases derived for10

the first-order Stokes equations. All finite elements tested exhibit their theoretical rate
of convergence. Next, code-to-code comparisons are made on several canonical ice
sheet benchmarks between the Albany/FELIX code and the finite element solver of
(Perego et al., 2012). The solutions are shown to agree to within machine precision.
As a final verification, a mesh convergence study on a realistic Greenland geometry15

is performed. The purpose of this test is two-fold: (1) to demonstrate that the solution
converges at the theoretical rate with mesh refinement, and (2) to determine how many
vertical layers are required to accurately resolve the solution with a fixed x–y resolu-
tion, when using (low-order) trilinear finite elements. It is found that the parallel decom-
position of a mesh has some effect on the linear and nonlinear solver convergence:20

better performance is observed on the finer meshes if a horizontal decomposition (i.e.,
a decomposition in which all nodes having the same x and y coordinates are on the
same processor) is employed for parallel runs. Further performance studies reveal that
a robust nonlinear solver is obtained through the use of homotopy continuation with re-
spect to a regularization parameter in the effective viscosity in the governing equations,25

and that good weak scalability can be achieved by preconditioning the iterative linear
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solver using an algebraic multilevel preconditioner constructed based on the idea of
semi-coarsening.

Appendix A: Nonlinear Stokes model for glaciers and ice sheets

The model considered here, referred to as the first-order (FO) Stokes approximation, or
the “Blatter–Pattyn” model (Blatter, 1995; Pattyn, 2003), is an approximation of the non-5

linear Stokes model for glacier and ice sheet flow. In general, glaciers and ice sheets
are modeled as an incompressible fluid in a low Reynolds number flow with a power-law
viscous rheology, as described by the Stokes flow equations. The equations are quasi-
static, as the inertial and advective terms can be neglected due to the slow movement
of the ice.10

Let σ denote the Cauchy stress tensor, given by

σ = 2µε̇−pI ∈R3×3, (A1)

where µ denotes the “effective” ice viscosity, p the ice pressure, I the identity tensor,
and ε̇ the strain-rate tensor:

ε̇i j =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (A2)15

for i , j ∈ {1,2,3}. The effective viscosity is given by Glen’s law (Nye, 1957; Cuffey et al.,
2010):

µ =
1
2
A−

1
n ε̇

( 1
n−1)

e , (A3)

where

ε̇e =

√√√√1
2

∑
i j

ε̇2
i j , (A4)20
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denotes the effective strain rate, given by the second invariant of the strain-rate tensor.
A denotes the flow rate factor (which is strongly dependent on the ice temperature),
and n denotes the power law exponent (generally taken equal to 3). The nonlinear
Stokes equations for glacier and ice sheet flow can then be written as follows:{
−∇ ·σ = ρg

∇ ·u = 0.
(A5)5

Here, ρ denotes the ice density, and g the gravitational acceleration vector, i.e., gT =
(0,0,−g), with g denoting the gravitational acceleration. The values of the parameters
that appear in the expressions above are given in Table 1. A stress-free boundary
condition is prescribed on the upper surface:

σn = 0,on Γs. (A6)10

On the lower surface, the relevant boundary condition is the no-slip or basal sliding
boundary condition:{
u = 0, on Γ0,

u ·n = 0 and (σn+βu)‖ = 0, on Γβ,
(A7)

assuming Γb = Γ0 ∪Γβ with Γ0 ∩Γβ = ∅, where β ≡ β(x,y) ≥ 0. The operator (·)‖ in
Eq. (A7) performs the tangential projection onto a given surface.15
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Table 1. Physical parameter values for first-order Stokes equations and boundary conditions∗.

Name Value Units Description

A 10−4 k−(n+1) Pa−na−1 Flow rate factor
n 3 − Glen’s flow law exponent
g 9.8 m s−2 Gravitational constant
ρ 910 kg m−3 Ice density
ρw 1025 kg m−3 Ocean water density
R 8.314 J K−1 mol−1 Universal gas constant

A0

{
1.30×107, if T < 263K,
6.22×1022, if T ≥ 263K

k−(n+1) Pa−n s−1 Arrhenius constant of proportionality

Q
{

6.00×104, if T < 263K,
1.39×105, if T ≥ 263K,

Jmol−1 Activation energy for ice creep

∗ The symbol k in the table denotes km m−1, i.e., k = km m−1 = 103.
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Table 2. Relative differences between Albany/FELIX and (Perego et al., 2012) solutions for
ISMIP-HOM tests A and C.

L (km) Test A Test C

5 0.00735% 0.386%
10 0.00629% 0.248%
20 0.00132% 0.176%
40 0.00408% 0.213%
80 0.0407% 0.277%

160 0.127% 0.320%
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Table 3. Meshes used in the GIS full, 3-D convergence study.

horizontal resolution # vertical layers # dofs # cores Econt
rel

8 km 5 3.34 K 4 3.22×10−1

4 km 10 2.43 M 32 1.28×10−1

2 km 20 18.4 M 256 3.70×10−2

1 km 40 143 M 2048 8.49×10−3

500 m 80 1.12B 16 384 −
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Table 4. Formulas for different vertical mesh-spacing strategies (uniform vs. graded), for i =
0, . . .,nz.

z-spacing zi

Uniform i
nz

Graded 1− 4
3

[
1−
(

nz
2nz−i

)2
]
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Table 5. Meshes considered for 1 km resolution, z-refinement (refinement in # vertical layers)
convergence study.

# vertical layers # dofs # cores Econt
rel : uniform spacing Econt

rel : graded spacing

5 21.0 M 128 3.17×10−2 2.54×10−2

10 38.5 M 256 8.04×10−3 6.56×10−3

20 73.5 M 512 2.01×10−3 1.64×10−3

40 143 M 1024 4.96×10−4 3.93×10−4

80 283 M 2048 1.20×10−4 8.03×10−5

160 563 M 16 384 2.76×10−5 −
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Table 6. Total, linear solve and finite element assembly times (sec) for variable resolution
1–7 km resolution GIS problems as a function of # cores of Hopper.

# cores Total Solve Time Linear Solve Time Finite Element Assembly Time

64 268.1 119.9 148.3
128 139.9 63.12 76.78
256 78.41 37.92 40.49
512 56.83 33.81 23.02
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(a) (b) (c) (d)

Fig. 1. 2D finite elements evaluated in the manufactured solution test cases. (a) Tri 3, (b) Quad 4, (c) Tri 6, (d)

Quad 9

conditions on the boundary of Ω, denoted by Γ. For φ= ψ = 0, the boundary conditions are as

follows:

u = 0, ε̇2 ·n = 0, at x= 0,

u = 3π, ε̇2 ·n = 0, at x= 1,

ε̇1 ·n = 0, v = 0, at y = 0,

ε̇1 ·n = 0, v =−3π, at y = 1,

(26)

where n denotes the outward unit normal vector to a given boundary.430

(a) (b)

Fig. 2. Plots of exact solutions to the “sin-cos” test case for φ= ψ = 0: (a) u, (b) v

Substituting (25) into (22), the following expressions for the source terms f1 and f2 are obtained:

f1 =−8µ2Dπ
2 sin(2πx+φ)cos(2πy+ψ)+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

(2εxx + εyy) +
∂ε̇e,2D
∂y

εxy

)
,

(27)

f2 = 8µ2Dπ
2 cos(2πx+φ)sin(2πy+ψ)+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

εxy +
∂ε̇e,2D
∂y

(εxx + 2εyy)
)
,

15

Figure 1. 2-D finite elements evaluated in the manufactured solution test cases. (a) Tri 3, (b)
Quad 4, (c) Tri 6, (d) Quad 9.
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(a) (b) (c) (d)

Fig. 1. 2D finite elements evaluated in the manufactured solution test cases. (a) Tri 3, (b) Quad 4, (c) Tri 6, (d)

Quad 9

conditions on the boundary of Ω, denoted by Γ. For φ= ψ = 0, the boundary conditions are as

follows:

u = 0, ε̇2 ·n = 0, at x= 0,

u = 3π, ε̇2 ·n = 0, at x= 1,

ε̇1 ·n = 0, v = 0, at y = 0,

ε̇1 ·n = 0, v =−3π, at y = 1,

(26)

where n denotes the outward unit normal vector to a given boundary.430

(a) (b)

Fig. 2. Plots of exact solutions to the “sin-cos” test case for φ= ψ = 0: (a) u, (b) v

Substituting (25) into (22), the following expressions for the source terms f1 and f2 are obtained:

f1 =−8µ2Dπ
2 sin(2πx+φ)cos(2πy+ψ)+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

(2εxx + εyy) +
∂ε̇e,2D
∂y

εxy

)
,

(27)

f2 = 8µ2Dπ
2 cos(2πx+φ)sin(2πy+ψ)+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

εxy +
∂ε̇e,2D
∂y

(εxx + 2εyy)
)
,

15

Figure 2. Plots of exact solutions to the “sin-cos” test case for φ = ψ = 0: (a) u, (b) v .
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(28)

where435

ε̇e,2D = 2π cos(2πx+φ)cos(2πy+ψ) + 3πx, (29)

is the effective strain rate in 2D (i.e., the 2D analog of (8)) and

µ2D =
1
2
A−

1
n ε̇

1
n−1

e,2D . (30)

Figure 3 plots the relative error (computed according to formula (24)) in the solution to the “sin-

cos” test case as a function of the mesh spacing h on a log-log plot for φ= ψ = 0. The reader can440

observe that the two lowest-order (Tri 3 and Quad 4) finite elements converge at their theoretical

convergence rates; a slight superconvergence is observed for the two higher order elements (Tri 6

and Quad 9). Moreover, the quadrilateral elements deliver a solution that is more accurate than that

from their triangular counterparts, as expected.

Fig. 3. Convergence rates for “sin-cos” MMS test case in the discrete l2 norm (24)

4.2 Robin boundary condition test case (“sin-cos-exp” test case)445

We refer to the second MMS test case as the “sin-cos-exp” test case, as the solution to this problem

is a product of the sine or cosine function and the exponential function. This test case is posed on

the same geometry as the “sin-cos” test case, namely Ω = (0,1)× (0,1), but differs in that it has

a different source term and different boundary conditions, which are of the Robin type on some

boundaries of Ω. The source term in (22) is derived such that the exact solution to this system is450

given by the following expression:

u = ex sin(2πy),

v = ex cos(2πy).
(31)

16

Figure 3. Convergence rates for “sin-cos” MMS test case in the discrete l2 norm Eq. (24).
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(Figure 4). Substituting (31) into (22), the source terms f1 and f2 are obtained:

f1 = 2µ2De
x sin(2πy)

[
2− 3π− 2π2

]
+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

(2εxx + εyy) +
∂ε̇e,2D
∂y

εxy

)
,

(32)
455

f2 = 2µ2De
x cos(2πy)

[
3π+

1
2
− 8π2

]
+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

εxy +
∂ε̇e,2D
∂y

(εxx + 2εyy)
)
,

(33)

where

ε̇e,2D = ex
√

(1 + 4π2− 2π)sin2(2πy) +
1
4

(2π+ 1)2 cos2(2πy), (34)

is the effective strain rate in 2D, and µ2D is given by (30). The solution (31) implies the following

boundary conditions on the boundary of Ω:460

ε̇1 ·n = 2(π− 1)u, ε̇2 ·n =−
(
π+ 1

2

)
v, at x= 0,

ε̇1 ·n =−2(π− 1)u, ε̇2 ·n =
(
π+ 1

2

)
v, at x= 1,

u = 0, ε̇2 ·n = 0, at y = 0 and y = 1,

v = 0, at (x,y) = (0,0),

(35)

where n denotes the outward unit normal vector to a given boundary. The last condition on (35) is

imposed to guarantee uniqueness of the v component of the velocity vector.

(a) (b)

Fig. 4. Plots of exact solutions to the “sin-cos-exp” test case: (a) u, (b) v

The relative errors (24) as a function of the mesh size h for the sin-cos-exp test case are plotted on

a log-log plot in Figure 5. The two lowest-order finite elements (Tri 3 and Quad 4) converge at their465

theoretical rates of two, whereas the higher-order finite elements (Tri 6 and Quad 9) exhibit a slight

superconvergece over their theoretical convergence rate of three. As expected, the quadrilateral

elements deliver a more accurate solution than their triangular counterparts.

17

Figure 4. Plots of exact solutions to the “sin-cos-exp” test case: (a) u, (b) v .
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Fig. 5. Convergence rates for “sin-cos-exp” MMS test case in the discrete l2 norm (24)

5 Intercomparison with other codes and benchmarks

In this section we discuss further (informal) verification of results for Albany/FELIX using some470

canonical ice sheet benchmarks, namely ISMIP-HOM tests A and C (Section 5.1), and the confined

shelf test case (Section 5.2) (Pattyn et al., 2008). For these problems, the exact solution is not known

in closed analytic form and our quasi-verification consists of code-to-code comparisons between

the solution computed in Albany/FELIX, the results from other models participating in the original

benchmark experiments, and the FO approximation, finite element code of (Perego et al., 2012).475

The values of the physical parameters used in the two test cases considered are summarized in

Table 1. We note that the units employed in our implementation are m a−1 for the ice velocities u

and v (where “a” denotes years) and km for the length scale (e.g., the mesh dimensions). Our units

are the same as in (Perego et al., 2012) but differ from other implementations, which often use a

length scale of meters (m). Our units give rise to matrices with smaller differences in scale (which480

may be better scaled), as there is in general a smaller difference in scale in the relevant parameter

values (e.g., A= 10−4 k−(n+1) Pa−n a−1 when the mesh is in km versus A= 10−16 Pa−n a−1

when the mesh is in m, where k=km/m=103).

5.1 ISMIP-HOM benchmarks

The ISMIP-HOM test cases (Pattyn et al., 2008) are a canonical set of benchmark experiments for485

so-called “higher-order” ice sheet models. Here, we consider tests A and C, both of which are

specified on a horizontal, periodic domain with a unit length of L km. The bedrock surface, Γb, is

given by a continuous function z = b(x,y) ∈ R2 and the upper surface, Γs, is given by a continuous

function z = s(x,y) ∈ R2. The geometries are generated from a uniform hexahedral mesh of the

18

Figure 5. Convergence rates for “sin-cos-exp” MMS test case in the discrete l2 norm Eq. (24).
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the (more expensive but more physically realistic) full Stokes model for ice sheet flow (detailed in

Appendix A). Comparing a FO Stokes solution to the full Stokes solution reveals how well the FO

Stokes physics approximate the full Stokes model. The reader can observe by examining Figure 6525

that agreement between the FO Stokes and the full Stokes solutions improves with increasing L.

Fig. 6. ISMIP-HOM test A: surface velocity component u as a function of x at y = L/4 for each L consid-

ered. The blue solid line (MP12) represents results from (Perego et al., 2012) and the red-dashed line (labeled

FelixFO) represents results from the current solver.

5.1.2 ISMIP-HOM test C

For ISMIP-HOM test C, the upper and bedrock surfaces (Γs and Γb, respectively) are given by the

following linear functions:

s(x,y) =−xtanα, b(x,y) = s(x,y)− 1, (39)530

20

Figure 6. ISMIP-HOM test A: surface velocity component u as a function of x at y = L/4 for
each L considered. The blue solid line (MP12) represents results from (Perego et al., 2012)
and the red-dashed line (labeled FelixFO) represents results from the current solver.
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Fig. 7. ISMIP-HOM test C: surface velocity component u as a function of x at y = L/4 for each L consid-

ered. The blue solid line (MP12) represents results from (Perego et al., 2012) and the red-dashed line (labeled

FelixFO) represents results from the current solver. Note that for the 5 km test, the MP12 and FelixFO results

directly overly the results for the full Stokes models participating in the original intercomparison.

boundary is open to the ocean and subject to the open ocean Neumann boundary condition described

in Section 2 (boundary condition (c)). The values of the parameters that appear in (17) can be found555

in Table 1. The domain and boundary faces for the confined shelf problem are illustrated in Figure

8.

The confined shelf geometry is discretized using a structured tetrahedral mesh of 41× 41 nodes

in the x− y plane with 10 vertical levels. As with the ISMIP-HOM test cases, the solution for the

confined shelf test case computed in our code, Albany/FELIX, is compared to the solution computed560

by the solver of (Perego et al., 2012) on the same mesh. Figure 9(a) shows the solution calculated

in Albany/FELIX, which is visually identical to the solution computed by the solver of (Perego et

22

Figure 7. ISMIP-HOM test C: surface velocity component u as a function of x at y = L/4 for
each L considered. The blue solid line (MP12) represents results from (Perego et al., 2012)
and the red-dashed line (labeled FelixFO) represents results from the current solver. Note that
for the 5 km test, the MP12 and FelixFO results directly overly the results for the full Stokes
models participating in the original intercomparison.
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x

y

z

z =−440 m

z = 0 m
z = 60 m

Fig. 8. Illustration of domain and boundaries for confined shelf problem: stress-free boundaries (yellow),

Dirichlet lateral boundaries (white), open-ocean lateral boundary (blue) [Note: Figure not drawn to scale.]

al., 2012). Figure 9(b) shows the difference between the Albany/FELIX and (Perego et al., 2012)

solutions, which are on the order of O(10−10).

(a) (b)

Fig. 9. Solution to confined-shelf test case: (a) Albany/FELIX, (b) Difference between Albany/FELIX and the

solver of (Perego et al., 2012).

6 Convergence study using realistic geometry565

The final results presented herein are the results of a numerical convergence and performance study

using a realistic, 1 km spatial resolution Greenland Ice Sheet (GIS) geometry (i.e., surface and bed

topography from (Bamber et al., 2013)).

23

Figure 8. Illustration of domain and boundaries for confined shelf problem: stress-free bound-
aries (yellow), Dirichlet lateral boundaries (white), open-ocean lateral boundary (blue) [Note:
Figure not drawn to scale.].
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Fig. 8. Illustration of domain and boundaries for confined shelf problem: stress-free boundaries (yellow),

Dirichlet lateral boundaries (white), open-ocean lateral boundary (blue) [Note: Figure not drawn to scale.]

al., 2012). Figure 9(b) shows the difference between the Albany/FELIX and (Perego et al., 2012)

solutions, which are on the order of O(10−10).

(a) (b)

Fig. 9. Solution to confined-shelf test case: (a) Albany/FELIX, (b) Difference between Albany/FELIX and the

solver of (Perego et al., 2012).

6 Convergence study using realistic geometry565

The final results presented herein are the results of a numerical convergence and performance study

using a realistic, 1 km spatial resolution Greenland Ice Sheet (GIS) geometry (i.e., surface and bed

topography from (Bamber et al., 2013)).

23

Figure 9. Solution to confined-shelf test case: (a) Albany/FELIX, (b) Difference between Al-
bany/FELIX and the solver of (Perego et al., 2012).
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The FO equations (2) with basal sliding at the bedrock (15) and stress-free boundary conditions

(14) on the remaining boundaries were solved on the base 8 km resolution mesh and the four suc-

cessively refined meshes. Model runs were performed in parallel on Titan2, a Cray XK6 operated

by the Oak Ridge Leadership Computing Facility (OLCF). The fourth column of Table 3 reports

the number of CPU cores used for each mesh resolution. Note that the parallel decompositions em-600

ployed in the runs were 2D only; all elements with the same x and y coordinates were on the same

processor (convergence difficulties were encountered when splitting vertical columns in the mesh

across processors). A parallel decomposition for 16 cores is illustrated in Figure 11.

(a) (b)

Fig. 10. Examples of uniform mesh refinement: (a) No refinement (8 km GIS), (b) 1 level of refinement (4 km

GIS)

The last column of Table 3 reports the relative errors in the computed solution for each mesh

resolution considered. The convergence metric employed was the continuous L2 norm. The relative605

error in each solution was calculated according to the following formula:

Econtrel ≡
√∫

Ω
||un−uref ||22dΩ∫
Ω
||uref ||22dΩ

. (41)

In (41), ||·||2 denotes the L2 norm, un denotes the computed solution and uref denotes the reference

solution, which here we take as the solution computed for the finest resolution mesh (for this quasi-

2More information on Titan can be found at www.olcf.ornl.gov/titan.

25

Figure 10. Examples of uniform mesh refinement: (a) No refinement (8 km GIS), (b) 1 level of
refinement (4 km GIS).
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Figure 11. GIS domain decomposition for 16 core, parallel run, with different colors represent-
ing portions of the domain owned by different cores.
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Fig. 12. Convergence in the continuous L2 norm (41) for the realistic GIS problem with full 3D refinement.

GradedUniform

Fig. 13. Uniform (left) versus graded (right) spacing in the vertical layers.

For our convergence study with respect to z–refinement, we consider the full, 1 km resolution (in

the x−y plane) data from (Bamber et al., 2013) along with realistic, 2D basal friction coefficient (β)

27

Figure 12. Convergence in the continuous L2 norm Eq. (41) for the realistic GIS problem with
full 3-D refinement.
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GradedUniform

Figure 13. Uniform (left) vs. graded (right) spacing in the vertical layers.
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of the number of vertical layers, i.e., hz = 1
5 ,

1
10 ,

1
20 , ...

)
. Convergence rates can be obtained by

calculating the slopes of the red and blue lines in Figure 14. Omitting the data points for the finest

mesh resolution4, the observed convergence rates are calculated to be 2.0096 for the uniform mesh650

spacing (slope of blue line in Figure 14) and 2.0041 for the graded mesh spacing (slope of red line

in Figure 14), in excellent agreement with the expected convergence rate of 2.

Fig. 14. Convergence in continuous L2 norm (41): z–refinement (number of vertical layers)

The results summarized above led to some practical recommendations that may be of interest to

the glaciological modeling community. First, if a relative error of less than O(10−3) is desired for

a GIS problem discretized by a mesh of linear (or trilinear) finite elements5 with a 1 km spatial655

mesh resolution, more than 10 vertical layers should be used in the full 3D mesh for this geometry.

Moreover, as noted in the discussion of the full 3D mesh convergence study described in Section

6.1, our study revealed that 2D parallel decompositions of the meshes (i.e., decompositions in which

all elements with the same x and y coordinates were on the same processor, as shown in Figure

11) led to out-of-the-box convergence of our linear and nonlinear solves. In contrast, convergence660

difficulties were encountered when splitting vertical columns in the mesh across processors. The 2D

parallel decomposition is therefore recommended over a full 3D parallel decomposition, especially

for problems on meshes having a finer vertical resolution.

4Including this data point will result in an over-estimation of the convergence rate since a reference solution is used in

place of the exact solution in the error calculation.
5Note that if higher-order elements are considered, as in the work of (Leng et al., 2014; Isaac et al., 2014), the recom-

mended number of layers would likely be smaller.

29

Figure 14. Convergence in continuous L2 norm Eq. (41): z-refinement (number of vertical
layers).
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Fig. 15. Robustness of Newton’s method nonlinear solves with homotopy continuation

vertical layers using the uniform 3D mesh refinement discussed earlier. A total of five meshes

were generated, as summarized in Table 3. The term “controlled” refers to the fact that the lateral

boundary of the ice-sheet is kept constant for all the grids considered and equal to the polygonal

boundary determined by the coarsest 8km mesh. Moreover, topography, surface height, basal friction700

and temperature data have been smoothed and then interpolated as described in Section 6.1. Each

resolution problem was run in parallel on the Hopper6 Cray XE6 supercomputer at the National

Energy Research Scientific Computing (NERSC) Center. The number of cores for each run (third

column of Table 3) was calculated so that for each size problem, each core had approximately the

same number of dofs (≈ 70− 80K dofs/core). For a detailed discussion of the numerical methods705

employed, the reader is referred to Section 3. In particular, recall that the linear solver employed

is based on the preconditioned CG iterative method. The preconditioner employed is the algebraic

multilevel preconditioner based on the idea of semi-coarsening that was described in Section 3.1.2.

This preconditioner is available through the ML package of Trilinos (Heroux et al., 2005).

Figure 16(a) reports the total linear solver time, the finite element (FE) assembly time and the710

total time (in seconds) for each resolution problem considered, as a function of the number of cores.

Figure 16(b) shows more detailed timing information, namely:

• The normalized preconditioner generation time (“Prec Gen Time”).

6More information on the Hopper machine can be found here: http://www.nersc.gov/users/computational-systems/

hopper.

31

Figure 15. Robustness of Newton’s method nonlinear solves with homotopy continuation.
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• The normalized Jacobian fill time, not including the Jacobian export time7 (“Jac Fill - Jac

Export Time”).715

• The normalized number of nonlinear solves (“# Nonlin Solves”).

• The normalized average number of linear iterations (“Avg # Lin Iter”).

• The normalized total time not including I/O (“Total Time - IO”).

The run times and iteration counts have been normalized by the run time and iteration count (respec-

tively) for the smallest run (8 km GIS with 5 vertical layers, run on 4 cores). Figure 16 reveals that720

the run times and iteration times scale well, albeit not perfectly, in a weak sense.

(a) (b)

Fig. 16. Controlled, weak scalability study on Hopper: (a) Total linear solve, finite element assembly, and total

run times in seconds , (b) Additional timing information (X = time or # iterations).

6.3.3 Strong scalability for realistic Greenland initial conditions on a variable-resolution

mesh

For the performance study described in the previous paragraph, the data has been smoothed and

the lateral boundary was determined by the coarsest (8 km resolution) mesh. We now perform a725

scalability study for the GIS interpolating directly original datasets into the mesh considered. This

results in better resolved topography, basal friction and temperature fields. As before, the surface

topography and temperature fields are from (Bamber et al., 2013) and were generated as a part of the

7“Jacobian export time” refers to the time required to transfer (“export”) data from an element-based decomposition,

which can be formed with no communication, to a node-based decomposition, where rows of the matrix are uniquely owned

by a single processor.

32

Figure 16. Controlled, weak scalability study on Hopper: (a) Total linear solve, finite element
assembly, and total run times in s, (b) Additional timing information (X = time or # iterations).
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Ice2Sea project (Ice2sea, 2014); the basal friction coefficient (β) field and the bed topography were

calculated in (Perego et al., 2014).730

We consider a tetrahedral mesh with a variable resolution of between 1 km and 7 km and hav-

ing approximately 14.4 million elements, leading to approximately 5.5 million dofs (Figure 17(a)).

The mesh was created by first meshing the base of the GIS using the 2D meshing software Trian-

gle (Shewchuk et al., 1996). The 2D mesh generated using Triangle was a nonuniform Delaunay

triangulation in which the areas of the triangles were constrained to be roughly proportional to the735

norm of the gradient of the surface velocity data. This yields meshes with better resolutions in places

where the solution has larger variations. The 2D mesh is then extruded in the z–direction as prisms

and each prism is divided into three tetrahedra (Figure 17(b)).

(a) (b)

Fig. 17. (a) Close-up of variable-resolution 1–7 km GIS mesh, (b) Subdivision of hexahedral finite element into

three tetrahedra.

First, we verify that the solution computed on the 1–7 km variable resolution tetrahedral mesh –

the modeled surface velocity field – agrees well with that from observations (Joughin et al., 2010).740

The solution computed on this mesh is shown in Figure 18(a). The reader can observe that this

solution is in excellent agreement with the target velocity field from observations, shown in Figure

18(b).

Next, a strong scaling study on the 1–7 km variable resolution GIS problem is performed. The

problem is run on different numbers of cores on Hopper, from 64 to 512. The total solve, linear745

solve and finite element assembly times for each of the runs are reported (in seconds) in Table 6.

The speed-up relative to the smallest (64 core) run is plotted as a function of the number of cores in

Figure 19. Good strong scalability is obtained: a 3.75 times speed-up is observed with 4 times the

33

Figure 17. (a) Close-up of variable-resolution 1–7 km GIS mesh, (b) Subdivision of hexahedral
finite element into three tetrahedra.

8147

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8079/2014/gmdd-7-8079-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8079/2014/gmdd-7-8079-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 8079–8149, 2014

A new finite element
first order Stokes ice
sheet dycore built for

advanced analysis

I. Kalashnikova et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(a) (b)

Fig. 18. Solution magnitude |u| in meters per year: (a) Albany/FELIX solution (surface speed) on the variable

resolution (1–7 km) tetrahedral mesh, (b) observed surface speeds (from (Joughin et al., 2010)).

number of cores (up to and including 256 cores), and a 6.64 times speed-up is observed with 8 times

the number of cores (up to and including 512 cores). In these results, the linear solver employed was750

the preconditioned CG iterative method, with the aforementioned algebraic multilevel preconditioner

based on the idea of semi-coarsening (see Section 3.1.2).

Table 6. Total, linear solve and finite element assembly times (sec) for variable resolution 1–7 km resolution

GIS problems as a function of # cores of Hopper

# cores Total Solve Time Linear Solve Time Finite Element Assembly Time

64 268.1 119.9 148.3

128 139.9 63.12 76.78

256 78.41 37.92 40.49

512 56.83 33.81 23.02

7 Conclusions

In this paper, we have presented a new, parallel, finite element solver for the first-order accurate,

nonlinear Stokes ice sheet model. This solver, Albany/FELIX, has been written using a component-755

34

Figure 18. Solution magnitude |u| in meters per year: (a) Albany/FELIX solution (surface
speed) on the variable resolution (1–7 km) tetrahedral mesh, (b) observed surface speeds (from
Joughin et al., 2010).
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Fig. 19. Strong scalability for 1–7km resolution GIS problem: speed-up relative to 64 core run.

based approach to building application codes. The components comprising the code are modular

Trilinos libraries, which are put together using abstract interfaces and Template-Based Generic Pro-

gramming. Several verifications of the code’s accuracy and convergence are carried out. First, a

mesh convergence study is performed on several new method of manufactured solutions test cases

derived for the first-order Stokes equations. All finite elements tested exhibit their theoretical rate of760

convergence. Next, code-to-code comparisons are made on several canonical ice sheet benchmarks

between the Albany/FELIX code and the finite element solver of (Perego et al., 2012). The solutions

are shown to agree to within machine precision. As a final verification, a mesh convergence study on

a realistic Greenland geometry is performed. The purpose of this test is two-fold: (1) to demonstrate

that the solution converges at the theoretical rate with mesh refinement, and (2) to determine how765

many vertical layers are required to accurately resolve the solution with a fixed x–y resolution, when

using (low-order) trilinear finite elements. It is found that the parallel decomposition of a mesh has

some effect on the linear and nonlinear solver convergence: better performance is observed on the

finer meshes if a horizontal decomposition (i.e., a decomposition in which all nodes having the same

x and y coordinates are on the same processor) is employed for parallel runs. Further performance770

studies reveal that a robust nonlinear solver is obtained through the use of homotopy continuation

with respect to a regularization parameter in the effective viscosity in the governing equations, and

that good weak scalability can be achieved by preconditioning the iterative linear solver using an

35

Figure 19. Strong scalability for 1–7 km resolution GIS problem: speed-up relative to 64 core
run.
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