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Abstract. This paper describes a new parallel, scalable and robust finite-element based solver for the

first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX,

is constructed using the component-based approach to building application codes, in which mature,

modular libraries developed as a part of the Trilinos project are combined using abstract interfaces

and Template-Based Generic Programming, resulting in a final code with access to dozens of algo-5

rithmic and advanced analysis capabilities. Following an overview of the relevant partial differential

equations and boundary conditions, the numerical methods chosen to discretize the ice flow equa-

tions are described, along with their implementation. The results of several verification studies of

the model accuracy are presented using: (1) new test cases derived using the method of manufac-

tured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence10

with respect to mesh resolution is then studied on problems involving a realistic Greenland ice sheet

geometry discretized using structured and unstructured meshes. Also explored as a part of this

study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The

robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that

good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic15

multilevel preconditioner, constructed based on the idea of semi-coarsening.

1 Introduction

In its fourth assessment report (AR4), the Intergovernmental Panel on Climate Change (IPCC) de-

clined to include estimates of future sea-level rise from ice sheet dynamics due to the inability of
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ice sheet models to mimic or explain observed dynamic behaviors, such as the acceleration and thin-20

ning then occurring on several of Greenland’s large outlet glaciers (IPCC, 2007). Since the AR4,

increased support from United States, United Kingdom, and European Union funding agencies has

enabled concerted efforts towards improving the representation of ice dynamics in ice sheet mod-

els and towards their coupling to other components of Earth System Models (ESMs) (Little et al.,

2007; Lipscomb et al., 2008; van der Veen et al., 2010). Thanks to this support, there has recently25

been tremendous progress in the development of “next generation” community-supported ice sheet

models (Bueler and Brown, 2009; Rutt et al., 2009; Larour et al., 2012b; Gagliardini et al., 2013;

Brinkerhoff and Johnson, 2013; Lipscomb et al., 2013) able to perform realistic, high-resolution,

continental scale simulations. These models run on high-performance, massively parallel computer

(HPC) architectures using 102-104 processes and employ modern, well-supported solver libraries30

(e.g., PETSC (Balay et al., 2008) and Trilinos (Heroux et al., 2005)). A primary development focus

has been on improving the representation of the momentum balance equations over the “shallow

ice” (SIA; (Hutter, 1983)) and “shallow-shelf” (SSA; (Morland, 1987)) approximations through the

inclusion of membrane stresses over the entire model domain. These approaches include “hybrid”

models (a combination of SIA and SSA (Bueler and Brown, 2009; Pollard and Deconto, 2009; Gold-35

berg and Sergienko, 2011)), so-called “higher-order” models (Pattyn, 2003), “full” Stokes models

(Larour et al., 2012b; Leng et al., 2012a; Gagliardini et al., 2013)), and combinations of a range of

approximations up to and including full Stokes (Seroussi et al., 2012). By accounting for both verti-

cal and horizontal stress gradients, the aforementioned models allow for more realistic and accurate

simulations of outlet glaciers, ice streams, and ice shelves, as well as modeling of the transfer of40

perturbations from marginal to inland regions.

Other significant improvements in ice sheet modeling frameworks include the integration of un-

structured (Larour et al., 2012b; Gagliardini et al., 2013; Brinkerhoff and Johnson, 2013) or adaptive

meshes (Cornford et al., 2013), which allows the focusing of resolution and computational power in

regions of dynamic complexity. Also becoming standard is the use of formal optimization and data45

assimilation techniques for generating realistic model initial conditions. Surface observations are

used to infer poorly known ice properties or parameters, such as the friction coefficient at the ice-

bedrock interface (Morlighem et al., 2010; Larour et al., 2012b; Gille-Chaulet et al., 2012; Brinker-

hoff and Johnson, 2013) or the rheology of floating ice shelves (Khazendar et al., 2009), allowing

for a quantifiably “optimal” match between modeled and observed velocities. Recently, these ap-50

proaches have been extended to simultaneously optimize both model parameter fields and uncertain

initial condition fields, while also accounting for forcing from climate models in order to minimize

transient shocks when coupling to climate forcing (Perego et al., 2014). Other recent and noteworthy

optimization improvements include the assimilation of time dependent observations (e.g., (Goldberg

and Heimbach, 2013)) and the estimation of formal uncertainties for optimized parameter fields55

(Petra et al., 2014).
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The latter capability – the characterization of parameter uncertainties – represents a critical first

step towards formal uncertainty quantification (“UQ”) of ice sheet model output quantities of in-

terests, such as estimates of future sea-level rise. For this process to be computationally tractable

during both the inverse (parameter estimation and uncertainty assignment) and forward propagation60

steps, it is critical to have robust, efficient, and scalable solves on HPC computing platforms (Isaac

et al., 2014). This, in turn, requires advanced dynamical core capabilities, such as access to model

derivatives (e.g., the Jacobian matrix), and advanced algorithms for the solution of the nonlinear

and linear equations. These same requirements of robustness, efficiency, and scalability hold for the

inclusion of ice sheet models as fully coupled components of large-scale, high-resolution ESMs.65

In this paper, we introduce a new momentum balance solver for land ice simulations based on the

first-order approximation of the nonlinear Stokes flow model for glaciers and ice sheets. This new

solver, Albany/FELIX (Finite Elements for Land Ice eXperiments, described in more detail below),

either already includes many of the capabilities discussed above or is designed to allow for their easy

implementation at later stages of development. Here we will present algorithms and software that70

lead to a robust nonlinear solution procedure (including the use of automatic differentiation (AD)

technologies), scalable linear algebra, and the ability to use unstructured and highly refined grids.

While we do not go into details on formal UQ and inclusion into ESMs in this paper, the same

investments in AD and robust and scalable algorithms lay the groundwork for achieving these goals

as well.75

The remainder of this paper is organized as follows. In Section 2, we describe in detail our

mathematical model for glaciers and ice sheets, giving the relevant assumptions, partial differential

equations, boundary conditions, and parameter values. Our numerical methods for discretizing this

model and their implementation in Albany/FELIX are summarized in Section 3. In Section 4, which

focuses on verification of the Albany/FELIX code using the method of manufactured solutions, sev-80

eral new test cases are derived and used in a convergence verification study involving several types

and orders of finite elements. In Section 5, further verification of the accuracy of solutions computed

with our solver is performed using canonical ice sheet modeling test cases. The results of two mesh

convergence studies on a realistic Greenland ice sheet geometry are then discussed in Section 6.

These studies provide insight into the effects of the parallel domain decomposition on solver con-85

vergence. We then describe our robust, nonlinear solver, which uses homotopy continuation with

respect to the regularization parameter in the calculation of the ice effective viscosity. The solver’s

robustness and scalability is demonstrated on various Greenland ice sheet geometries, discretized

using both structured and unstructured tetrahedral and hexahedral meshes. Finally, we show that im-

proved scalability of our code can be achieved by preconditioning the iterative linear solver using an90

algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening. A concluding

summary is offered in Section 7.

One objective of this paper is to introduce a new parallel, scalable and robust finite element first-
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order Stokes solver for ice flow, namely Albany/FELIX, to the land ice and climate modeling com-

munities. The article also contains several new contributions to the field of ice sheet modeling, which95

are most notably:

• The derivation of several new test cases based on the method of manufactured solutions for

the first-order Stokes equations, which can be used to verify any ice sheet code that discretizes

these equations.

• The description of a homotopy continuation algorithm with respect to a regularization pa-100

rameter in the ice effective viscosity expression, which greatly improves the robustness of a

Newton nonlinear solver, especially in the absence of a good initial guess.

• Insights into the effects of the parallel decomposition and vertical mesh spacing on solver

performance and solution accuracy for ice sheet simulations.

• A new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening105

and ideal for meshes structured in the vertical direction, that delivers a scalable linear solve

when combined with a preconditioned iterative method.

2 First-order Stokes approximation mathematical model

We consider a power-law viscous, incompressible fluid in a low Reynolds number flow, described

by the first-order approximation to the nonlinear Stokes flow equations for glaciers and ice sheets110

(Dukowicz et al., 2010; Schoof et al., 2010). The first-order (FO) approximation, also referred to

as the “Blatter-Pattyn” model (Pattyn, 2003; Blatter, 1995), follows from assumptions of a small

geometric aspect ratio, δ =H/L (where H and L are characteristic length scales for the vertical and

horizontal dimensions, respectively, and H � L), and the assumption that the normal vectors to the

ice sheet’s upper and lower surfaces, n ∈ R3, are nearly vertical:115

nT ≈
(
O(δ), O(δ),±1 +O(δ2)

)
. (1)

Effectively, the FO approximation is derived by neglecting O(δ2) terms in the Stokes equations,

which are discussed in more detail in Appendix A. Numerical discretization of the FO Stokes equa-

tions gives rise to a much smaller discrete system than numerical discretization of the full Stokes

equations. Moreover, discretization of the FO Stokes system gives rise to a “nice” elliptic coercive120

problem, in contrast to the notoriously difficult saddle-point problem obtained when discretizing the

full Stokes system.

Let u and v denote the x and y components of the ice velocity vector u≡
(
u, v

)T
∈ R2, re-

spectively. The FO approximation consists of the following system of partial differential equations
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(PDEs):125 −∇ · (2µε̇1) + ρg ∂s∂x = 0,

−∇ · (2µε̇2) + ρg ∂s∂y = 0,
(2)

where g denotes the gravitational acceleration, ρ denotes the ice density, and s≡ s(x,y) denotes the

upper surface boundary:

Γs ≡ {(x,y,z) ∈ R3|z = s(x,y)}. (3)

In the most general, three-dimensional (3D) case of the FO approximation,130

ε̇T1 =
(

2ε̇xx + ε̇yy, ε̇xy, ε̇xz

)
∈ R3, (4)

and

ε̇T2 =
(
ε̇xy, ε̇xx + 2ε̇yy, ε̇yz

)
∈ R3, (5)

where

ε̇xx =
∂u

∂x
, ε̇yy =

∂v

∂y
, ε̇xy =

1
2

(
∂u

∂y
+
∂v

∂x

)
, ε̇xz =

1
2
∂u

∂z
, ε̇yz =

1
2
∂v

∂z
. (6)135

The effective viscosity µ can be derived using Glen’s flow law (Cuffey et al., 2010; Nye, 1957) as:

µ=
1
2
A−

1
n ε̇

1
n−1
e , (7)

where ε̇e is the effective strain rate, given by:

ε̇2e ≡ ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy + ε̇2xz + ε̇2yz. (8)

In (7), A is the flow rate factor and n is the Glen’s (power) law exponent, typically taken equal to140

3 for ice sheets. Hence, µ (7) is a nonlinear expression, and the system (2) is a nonlinear, elliptic

system of PDEs. The flow law rate factorA is strongly temperature-dependent, and can be described

through the Arrhenius relation,

A(T ) =A0 exp
(
− Q

RT

)
, (9)

where A0 denotes a constant of proportionality, Q denotes the activation energy for ice creep, T145

denotes the ice temperature in Kelvin (K), and R denotes the universal gas constant. For more

details involving the relation between the flow factor and temperature (9), the reader is referred to

(Cuffey et al., 2010). For completeness, the expressions for the Cauchy stress tensor σ and the

pressure p in the FO approximation are provided:

σ = 2µ
(
ε̇1, ε̇2, 0

)T
− ρg(s− z)I, p= ρg(s− z)− 2µ(ε̇xx + ε̇yy), (10)150
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where 0 =
(

0, 0, 0
)T

and I is the 3×3 identity tensor. The equations (2) are specified on a bounded

3D domain, denoted by Ω, with boundary

Γ≡ Γs ∪Γb ∪Γl. (11)

Here, Γs is the upper surface boundary (3), and

Γb = {(x,y,z) ∈ R3|z = b(x,y)}, (12)155

Γl = {(x,y,z) ∈ R3|l(x,y) = 0}, (13)

are the lower and (vertical) lateral surface boundaries, respectively. The relevant boundary condi-

tions on Γ are:

(a) A stress-free (homogeneous Neumann) boundary condition on the upper surface boundary160

ε̇1 ·n = ε̇2 ·n = 0, on Γs. (14)

(b) Either a no-slip or a sliding boundary condition on the lower surface:u= v = 0, on Γ0

2µε̇1 ·n +βu= 0, 2µε̇2 ·n +βv = 0, on Γβ ,
(15)

where Γb is partitioned as Γb = Γ0 ∪Γβ with Γ0 ∩Γβ = ∅, and β ≡ β(x,y)≥ 0 is the basal

sliding coefficient. Note that we assume the partitioning of Γb is known a priori. In practice,165

this would be specified (through an energy balance model) by locating regions of the bed for

which the temperature is at the pressure melting point. It is often more practical to enforce a

quasi-no-slip Robin boundary condition on Γ0 by setting β to a large value and always using

the equation on the second line of (15) (e.g., β = 107 kPa a m−1).

(c) On the lateral boundaries, one of two boundary conditions is applied: either a kinematic170

(Dirichlet) boundary condition{
u= ul, v = vl, on Γl, (16)

where ul and vl are prescribed values of the ice velocities on the lateral boundary, or a dynamic

(Neumann) boundary condition{
2µε̇i ·n− ρg(s− z)n = ρwgmax(z,0)n, on Γl, (17)175

for i= 1,2, where ρw denotes the density of water. In (17), it has been assumed that the

coordinate system has been oriented such that z is strictly elevation (that is, z = 0 at sea

level and values of z increase for higher elevations) (MacAyeal et al., 1996). The boundary

condition (17) is derived by assuming that the ice shelf is in hydrostatic equilibrium with the
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air/water that surrounds it and is often referred to as an “open-ocean” boundary condition, as180

it takes into account the pressure exerted on the ice shelf by neighboring ocean. For some

canonical benchmark experiments performed here (see Section 5.1), periodic lateral boundary

conditions are prescribed as well.

The values of the parameters that appear in the first-order Stokes equations and the boundary

conditions described above and used herein are summarized in Table 1. From this point forward, the185

new first-order Stokes approximation momentum balance solver will be referred to “Albany/FELIX”.

In this code, the numerical discretization of (2) uses Trilinos, a suite of modular software libraries

(described in detail in (Heroux et al., 2005)).

Table 1. Physical parameter values for first-order Stokes equations and boundary conditions∗

Name Value Units Description

A 10−4 k−(n+1) Pa−n a−1 Flow rate factor

n 3 − Glen’s flow law exponent

g 9.8 m s−2 Gravitational constant

ρ 910 kg m−3 Ice density

ρw 1025 kg m−3 Ocean water density

R 8.314 J K−1 mol−1 Universal gas constant

A0

8<: 1.30× 107, if T < 263 K,

6.22× 1022, if T ≥ 263 K
k−(n+1) Pa−n s−1 Arrhenius constant of proportionality

Q

8<: 6.00× 104, if T < 263 K,

1.39× 105, if T ≥ 263 K,
J mol−1 Activation energy for ice creep

∗The symbol k in the table denotes km/m, i.e., k=km/m= 103.

3 Numerical discretization and implementation

The model described in Section 2 is discretized and solved using a collection of algorithms and190

software implementations that were selected for accuracy, flexibility, robustness, and scalability.

The following brief discussion of the methods presumes prior knowledge of Galerkin finite element

approaches and Newton-Krylov based nonlinear solvers (Strang and Fix, 1973; Pawlowski et al.,

2006).

3.1 Numerical methods195

The PDEs for the FO Stokes model defined by (2) and the associated boundary conditions are dis-

cretized using the classical Galerkin finite element method (FEM) (Hughes, 2000).
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Let V denote the Hilbert space given by:

V ≡ V(Ω) =
{
φ ∈H1(Ω) : φ|Γ0 = 0

}
, (18)

whereH1(Ω) denotes the space of square-integrable functions whose first derivatives are also square200

integrable. Following classical Galerkin FEM methodology, the weak form of the problem is ob-

tained by projecting each of the equations in (2) onto a test function in V (18) in the continuous

L2 inner product and integrating the second order terms by parts. Toward this effect, the weak

formulation of (2) reads: find u,v ∈ V such that
∫

Ω
2µε̇1(u,v) · ∇φ1dΩ +

∫
Γβ
βuφ1dΓ +

∫
Ω
ρg ∂s∂xφ1dΩ = 0,∫

Ω
2µε̇2(u,v) · ∇φ2dΩ +

∫
Γβ
βvφ2dΓ +

∫
Ω
ρg ∂s∂yφ2dΩ = 0,

(19)205

for all φ1,φ2 ∈ V(Ω). The surface integral along the boundary appearing in (19) arises from inte-

grating the stress term in the variational form of the PDEs by parts. This approach leads to a weak

enforcement of the basal surface boundary condition (15) for the tangential stress, and straightfor-

ward implementation of the basal boundary conditions as an integrated boundary condition. (We

believe, but have not rigorously shown, that the Gelerkin finite element approach for implementing210

the basal surface boundary condition enables one to circumvent robustness issues stemming from the

discretization that were previously seen in our work with a finite difference discretization (Lemieux,

2011).) Note that in our weak formulation (19), the source terms in (2) have not been integrated by

parts.

Letting F(u,v;φ1,φ2) denote the operator defining the left hand side of (19), the problem defined215

by (19) is equivalent to finding the roots u,v ∈ V of the following nonlinear equation:

F(u,v;φ1,φ2) = 0, ∀φ1,φ2 ∈ V. (20)

Equation (20) is an infinite-dimensional problem; a finite-dimensional analog of (20) is obtained by

replacing the infinite-dimensional space V by a finite-dimensional finite element space, Vh, where h

is a length scale associated with a triangulation of the domain Ω into a set of disjoint finite elements220

Ωe (Ω = ∪nele=1Ωe, where nel ∈ N is the number of finite elements in the triangulation).

Our implementation (a detailed discussion of which is given in Section 3.2) allows for tetrahe-

dral (with either trilinear or triquadratic basis functions) or hexahedral elements (with bilinear or

biquadratic basis functions) for 3D problems. One reason a finite element approach was selected

was for its flexibility in using unstructured grids with non-uniform mesh density to increase the res-225

olution in areas of large velocity gradients, such as in the vicinity of outlet glaciers, while retaining

relatively coarse meshes in the more static interior regions. In this paper, we present results on three

different types of grids:

(i) Structured uniform hexahedral grids,

(ii) Structured uniform tetrahedral grids,230
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(iii) Unstructured non-uniform tetrahedral grids.

The structured hexahedral meshes are generated by creating a uniform quadrilateral grid of a two-

dimensional (2D) horizonal cross-section of a geometry Ω, and extruding it in a uniform fashion

as hexahedra in the vertical direction. Similarly, the structured tetrahedral meshes are created by

meshing a 2D horizonal cross-section of Ω using a uniform triangular mesh, extruding it in the235

vertical direction as prisms, then splitting each prism into three tetrahedra (Figure 17). For the

unstructured tetrahedral grids, an unstructured Delaunay triangle mesh of a 2D cross-section of Ω is

generated based on some kind of refinement criteria (e.g., a static refinement based on the gradient

of the velocity) using a meshing software (e.g., Triangle, a Delaunay triangulation mesh (Shewchuk

et al., 1996)), and extruded in the vertical direction in the same way as a structured triangular grid.240

More details on these meshes are provided in Sections 5 and 6. Note that although all the meshes

employed for the ice sheet application considered here were extruded (structured) in the vertical

direction, our code base allows for completely unstructured grids.

A domain decomposition approach is used to compute the solution to the discretized nonlinear

problem on distributed memory parallel computers. As a pre-processing step, the elements of the245

mesh are partitioned into one contiguous domain per processor to provide nearly equal work per

processor.

The result of the discretization process is a large, sparse system of nonlinear algebraic equations

for the two components of horizontal velocity at the nodes of the mesh (the discrete counterpart of

(20)). Our approach to solving this fully-coupled, nonlinear system is Newton’s method. An analytic250

Jacobian matrix is computed at each iteration of Newton’s method using automatic differentiation

(AD). The integration of AD into the Albany code base, both for Jacobians and for parameter deriva-

tives for sensitivity analysis and UQ, has been a significant advantage of developing a new model in

this framework. The matrix is stored in sparse form, with rows of the matrix distributed across the

processors of the machine.255

The resulting linear system is solved using a preconditioned iterative method. For the largest

problems, we use multilevel preconditioning (described in Section 3.1.2) to achieve scalability, while

incomplete LU (ILU) additive Schwartz preconditioners work well for modest problem sizes and

processor counts. Since the model is symmetric, the Conjugate Gradient (CG) iterative linear solver

is employed.260

Because of the singularity in the viscosity formulation for stress-free solutions, such as when

computing the nonlinear solution from a trivial initial guess, the Newton iteration does not reliably

converge. To achieve a robust nonlinear solution procedure, we formulated and implemented a

homotopy continuation approach that steps to the final solution by solving a series of nonlinear

problems that reliably converge. The details of this algorithm are given in Section 3.1.1.265
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3.1.1 Homotopy continuation algorithm

Although the stress tensor σ (10) is well-defined for any differentiable function u, the Glen’s law

effective viscosity (7) is not defined when u is a rigid movement or exactly 0 (because n is typically

taken to be greater than 1; see e.g., (Schoof, 2010; Chen et al., 2013)). This can pose a problem

for nonlinear solvers as the initial guess for u is often taken as uniform or 0. To circumvent this270

difficulty, a regularization parameter γ > 0, γ� 1 is added to the sum of the strain rates in the

effective strain rate term of the effective viscosity (7), yielding what we refer to as µγ :

µγ =
1
2
A−

1
n

(
ε̇2e + γ

)( 1
2n−

1
2 )
, where lim

γ→0
µγ = µ. (21)

One common practice is to define µ= µγ in (7) using some small, fixed value for γ, e.g., γ =

10−10. Here, noting that the nonlinear solver often struggles to converge initially when using New-275

ton’s method, we use a variable γ as the continuation parameter in a homotopy method (Algorithm

1). In this approach, a sequence of problems (2) is solved for a sequence of effective viscosities

{µγi} for i= 1,2, ..., with 0< γi+1 < γi, until γ reaches its target value. We use a natural contin-

uation procedure, where the final solution at one value of the continuation parameter α is used as

the initial guess for the subsequent nonlinear problem. The continuation algorithm has adaptive step280

size control, and will backtrack and attempt a smaller parameter step if the nonlinear solve at some

step fails to converge (Allgower et al., 2003). We have found that starting with α0 = 0 leads to a

system that will reliably converge from a trivial initial guess, and that α∞ = 1 provides an adequate

stopping value.

Algorithm 1 Homotopy continuation on regularization parameter γ in µγ

Set α= α0, u0 = u0 and i= 0 .

while α≤ α∞ do

Set γ = 10−10α and define µγ by the formula (21).

Set µ= µγ in (7).

Set i= i+1.

Solve (2) with initial guess ui−1 using Newton’s method, to obtain ui.

Increase α using a homotopy continuation method (e.g., natural continuation).

end while

In general, the homotopy continuation approach leads to many fewer nonlinear solves than when285

the regularization parameter γ in (21) is fixed to some small value, e.g., γ = 10−10, especially for

problems where a “good” initial guess for Newton’s method is unavailable. Moreover, with the

homotopy continuation approach, it is found that a full step can often be employed in the Newton’s

method line search algorithm, without the need for backtracking (i.e., iteratively reducing the step

size in the line search algorithm).290

We note that the homotopy continuation approach is in general effective when the initial guess
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is not close to the solution (in which case µγ is very small). Similarly, a good initial guess for u

may not be a good initial guess when using continuation because the initial viscosity µγ0 for the

continuation algorithm is generally far from the real viscosity µ. When solving transient problems,

it may be better to simply use a standard Newton method (without homotopy continuation), taking295

the solution at the previous time step as the initial guess, and using homotopy continuation only

if the Newton solver has difficulties converging. A different approach, which may be used as an

alternative to homotopy continuation, is to perform a few iterations using the Picard method and

then switch to the Newton method once the nonlinear iterations starts to converge (e.g., (Leng et

al., 2014)). The robustness and efficiency of the Newton solver with the homotopy continuation300

approach summarized in Algorithm 1 is studied numerically in Section 6.3.1.

3.1.2 Multilevel preconditioning

Multigrid preconditioners are among the most efficient and scalable linear solution techniques for

resolving matrix equations associated with elliptic operators. The basic idea is to capture errors

by utilizing multiple resolutions. Oscillatory components are effectively reduced through a simple305

iterative procedure, while smooth components are tackled using auxiliary lower resolution versions

of the problem. Different geometric multigrid methods have been successfully applied to the linear

systems arising from ice sheet modeling simulations (Brown et al., 2013; Cornford et al., 2013).

For our capability, we prefer algebraic multigrid (AMG) methods due to the potentially unstruc-

tured nature of the mesh in the horizontal plane. AMG methods have the advantage that the lower310

resolution versions of the multigrid hierarchy are constructed automatically using only the matrix

coefficient entries. Unfortunately, solution of the underlying linear systems is problematic due to the

strong anisotropic nature of the discrete equations. This is essentially a consequence of the disparate

scales in the horizontal and vertical directions and the associated large mesh aspect ratios. At the

discrete level, these aspect ratios give rise to matrices where entries representing vertical coupling315

are generally much larger than entries representing horizontal coupling. Anisotropic phenomena

within ice sheets and fairly different types of multigrid methods have been considered in recent prior

works (Brown et al., 2013; Isaac et al., 2014).

From a multigrid perspective, reducing oscillatory errors in the horizontal direction is much more

difficult than in the vertical direction. Further, accurately capturing horizontal coupling on coarse320

levels can be challenging due to the relatively small size of the corresponding matrix entries (which

are effectively averaged to generate the low resolution versions). To avoid these difficulties, we have

developed a hybrid structure/unstructured AMG multigrid capability that leverages the fact that our

meshes, though unstructured in the horizontal plane, are structured in the vertical direction. That is,

our 3D meshes can be viewed as extrusions of unstructured 2D meshes, allowing for varying vertical325

mesh spacing. A paper is in preparation to further describe the details of this hybrid algorithm. Here,

we briefly describe its essence.
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The basic concept behind the hybrid structured/unstructured AMG method is to first apply op-

erator dependent multigrid semi-coarsening to initially coarsen the mesh and construct the first few

levels of the multigrid hierarchy. Semi-coarsening and operator dependent multigrid both have a long330

history on structured grid problems (Dendy et al., 2010; Schaffer, 1998; Brown et al., 2000). Semi-

coarsening refers to only coarsening in some subset of coordinate directions and is often advocated

to address anisotropic problems. Essentially, one only coarsens in directions where oscillatory errors

are easily reduced. Operator dependent multigrid refers to family of algorithms that intimately take

advantage of structure. They can be viewed as idealized or “perfect” grid transfers for one dimen-335

sional simplifications of the higher dimensional problem. In this way, several coarse level meshes

are effectively constructed, each containing the same number of points within all horizontal planes.

When it is no longer possible to further coarsen vertically (as there is just a single horizontal layer),

a standard smoothed aggregation AMG method is applied to this horizontal problem creating addi-

tional levels in the hierarchy. Thus, finer levels of the hierarchy are created via semi-coarsening and340

operator dependent multigrid (leveraging grid structure). Coarser levels are constructed via AMG,

which is applied after the anisotropic behavior is no longer present (as there is just a single horizon-

tal layer). To complete this brief description, we note that line Jacobi is used as the simple iterative

scheme to damp oscillatory errors on the finer levels. It allows for aggressive semicoarsening (i.e.,

reduction factors greater than three in the linear system dimension as one proceeds to progressively345

coarser levels). Polynomial smoothing is used on the levels associated with standard AMG.

The algebraic multilevel preconditioner described above has been implemented in and is available

through the (open-source) ML package of Trilinos (Heroux et al., 2005).

3.2 Software implementation

The numerical methods described above are implemented in the Albany code base, an open-source1,350

multi-physics code/analysis package developed at Sandia National Laboratories. A full description

of Albany can be found in a separate publication (Salinger et al., 2014). Briefly, Albany is a finite ele-

ment code base for the solution and analysis of models of coupled PDEs using parallel, unstructured-

grid, implicit algorithms. It makes use of numerous computational mathematics libraries from the

Trilinos suite (Heroux et al., 2005), and has been previously used in other applications domains such355

as quantum device modeling (Gao et al., 2013) and computational mechanics (Sun et al., 2013).

The software stack in Albany involves dozens of libraries that are delivered through Trilinos as

independent software packages developed by small teams of domain experts. The Sierra ToolKit

(STK) package is used for mesh database structures and mesh I/O. The Epetra package is used for

distributed memory, parallel data structures for vectors and sparse matrices, which greatly simplify360

parallel operations such as halo exchanges for synchronizing data between processors. The Intrepid

1The Albany code can be obtained from its public github repository by the interested reader: https://github.com/

gahansen/Albany.
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(Bochev et al., 2012) package provides flexible finite element discretization algorithms and general

integration kernels. The PDE equations are described by a set of evaluation kernels, whose evalua-

tion is managed by the Phalanx package.

One of the main distinguishing characteristics of the Albany code base is the use of the Template-365

Based Generic Programming (TBGP) approach (Pawlowski et al., 2012a,b). With this methodology,

all that is required to implement a new set of physics in Albany is to code the residual of the PDE

equations. Given this residual, Albany automatically computes and assembles the sparse Jacobian

matrix and sensitivity vectors without any additional code development. TBGP makes extensive

use of the Sacado package (Phipps et al., 2012) for automatic differentiation, which employs C++370

expression templates with operator overloading, and has been closely integrated with the Phalanx

and Intrepid packages.

The Newton-based nonlinear system solver and homotopy continuation algorithm are imple-

mented in the NOX (Pawlowski et al., 2006) and LOCA (Salinger et al., 2005) packages, respectively.

These solvers can additionally perform sensitivity analysis using the analytic sensitivity vectors com-375

puted with automatic differentiation with respect to model parameters. Within the solvers, we have

full runtime access to all the Trilinos preconditioners (ILU and algebraic multilevel preconditioners,

from the Ifpack and ML software packages, respectively) and linear solvers by specification in an in-

put file. For the bulk of the computations in this paper, the ML package was employed for algebraic

multilevel preconditioners (Tuminaro, 2014), and the Belos package was employed for CG-based380

iterative solvers (Bavier et al., 2012).

Albany is also coupled to the Dakota framework (Adams et al., 2013) of sampling-based opti-

mization and UQ algorithms, which will play a significant role in model initialization, calibration,

and projections. Although the application of optimization and UQ algorithms go beyond the scope

of this paper, we emphasize that the component-based approach for building this application code385

leads to the rapid incorporation of many sophisticated capabilities.

4 Verification using the method of manufactured solutions (MMS)

We first conduct formal verification of the new Albany/FELIX code described in Section 3 through

the method of manufactured solutions (MMS), using test cases derived here explicitly for this pur-

pose. A survey of the literature reveals that past work has focused on deriving MMS benchmarks for390

the “shallow ice” and nonlinear Stokes models (e.g., (Bueler et al., 2007), (Leng et al., 2012b), re-

spectively) rather than the FO approximation (2), and the derivation of MMS benchmarks for the FO

approximation is one of the novel contributions of this paper. Here, we use the Albany/FELIX code

and these new MMS benchmarks to verify (i) that the dynamics have been implemented correctly,

and (ii) that the type of finite elements employed show convergence at their expected theoretical395

rates.
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Consider the FO Stokes equations (2) in 2D on a rectangular geometry with domain edges aligned

with the x– and y– axes in a Cartesian reference frame, Ω = (0,1)× (0,1) ∈ R2, and ∂s
∂x = ∂s

∂y =

0. Let fT ≡
(
f1, f2

)
be a source term for the equations (2), to be determined such that a given

manufactured solution satisfies these equations. Under these assumptions, the FO Stokes system (2)400

has the following form: − ∂
∂x

(
4µ2D

∂u
∂x + 2µ2D

∂v
∂y

)
− ∂

∂y

(
µ∂u∂y +µ2D

∂v
∂x

)
+ f1 = 0,

− ∂
∂x

(
µ2D

∂u
∂x +µ2D

∂v
∂y

)
− ∂

∂y

(
2µ2D

∂u
∂x + 4µ2D

∂v
∂y

)
+ f2 = 0,

(22)

where the viscosity µ2D is given by the 2D version of (7):

µ2D =
1
2
A−

1
n

(
ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy

)( 1
2n−

1
2 )
. (23)

For the MMS test cases considered here, the values of the flow rate factor and Glen’s flow law405

exponent were taken to be A= 1 and n= 3, respectively.

We consider four different finite element types in our numerical convergence study: three node

triangles (denoted by “Tri 3”), four node quadrilaterals (denoted by “Quad 4”), six node triangles

(denoted by “Tri 6”), and nine node quadrilaterals (denoted by “Quad 9”) (Figure 1). Convergence

is evaluated in the discrete l2 norm. In particular, the relative error in a computed solution, denoted410

by Ediscrel , is calculated from

Ediscrel =
||un−u||2
||u||2

, (24)

where || · ||2 denotes the discrete l2 norm, uT ≡
(
u, v

)
is the exact solution to (22), and un is

the numerically computed solution to (22). It is well-known from classical finite element theory

(Hughes, 2000) that the theoretical convergence rate in the norm considered is two for the Tri 3 and415

Quad 4 elements, and three for the Quad 6 and Quad 9 elements. Hence, the first two elements are

referred to as first-order finite elements and the second two elements are referred to as second-order

finite elements. Note that the quadrilateral elements are expected to deliver a more accurate solution

than their triangular counterparts of the same order.

4.1 Dirichlet/Neumann boundary condition test case (“sin-cos” test case)420

The first MMS test case considered is referred to as the “sin-cos” test case, as the solution to this

problem is a product of the sine and cosine functions. The source term in (22) is derived such that

the exact solution to this system is given by the following trigonometric expression:

u = sin(2πx+φ)cos(2πy+ψ) + 3πx,

v = −cos(2πx+φ)sin(2πy+ψ)− 3πy.
(25)

The parameters φ,ψ ∈ [0,2π) in (25) are phase shifts that can be used to generate a family of solu-425

tions (e.g., Figure 2). The solution (25) satisfies a combination of Dirichlet and Neumann boundary
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(a) (b) (c) (d)

Fig. 1. 2D finite elements evaluated in the manufactured solution test cases. (a) Tri 3, (b) Quad 4, (c) Tri 6, (d)

Quad 9

conditions on the boundary of Ω, denoted by Γ. For φ= ψ = 0, the boundary conditions are as

follows:

u = 0, ε̇2 ·n = 0, at x= 0,

u = 3π, ε̇2 ·n = 0, at x= 1,

ε̇1 ·n = 0, v = 0, at y = 0,

ε̇1 ·n = 0, v =−3π, at y = 1,

(26)

where n denotes the outward unit normal vector to a given boundary.430

(a) (b)

Fig. 2. Plots of exact solutions to the “sin-cos” test case for φ= ψ = 0: (a) u, (b) v

Substituting (25) into (22), the following expressions for the source terms f1 and f2 are obtained:

f1 =−8µ2Dπ
2 sin(2πx+φ)cos(2πy+ψ)+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

(2εxx + εyy) +
∂ε̇e,2D
∂y

εxy

)
,

(27)

f2 = 8µ2Dπ
2 cos(2πx+φ)sin(2πy+ψ)+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

εxy +
∂ε̇e,2D
∂y

(εxx + 2εyy)
)
,
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(28)

where435

ε̇e,2D = 2π cos(2πx+φ)cos(2πy+ψ) + 3πx, (29)

is the effective strain rate in 2D (i.e., the 2D analog of (8)) and

µ2D =
1
2
A−

1
n ε̇

1
n−1

e,2D . (30)

Figure 3 plots the relative error (computed according to formula (24)) in the solution to the “sin-

cos” test case as a function of the mesh spacing h on a log-log plot for φ= ψ = 0. The reader can440

observe that the two lowest-order (Tri 3 and Quad 4) finite elements converge at their theoretical

convergence rates; a slight superconvergence is observed for the two higher order elements (Tri 6

and Quad 9). Moreover, the quadrilateral elements deliver a solution that is more accurate than that

from their triangular counterparts, as expected.

Fig. 3. Convergence rates for “sin-cos” MMS test case in the discrete l2 norm (24)

4.2 Robin boundary condition test case (“sin-cos-exp” test case)445

We refer to the second MMS test case as the “sin-cos-exp” test case, as the solution to this problem

is a product of the sine or cosine function and the exponential function. This test case is posed on

the same geometry as the “sin-cos” test case, namely Ω = (0,1)× (0,1), but differs in that it has

a different source term and different boundary conditions, which are of the Robin type on some

boundaries of Ω. The source term in (22) is derived such that the exact solution to this system is450

given by the following expression:

u = ex sin(2πy),

v = ex cos(2πy).
(31)

16



(Figure 4). Substituting (31) into (22), the source terms f1 and f2 are obtained:

f1 = 2µ2De
x sin(2πy)

[
2− 3π− 2π2

]
+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

(2εxx + εyy) +
∂ε̇e,2D
∂y

εxy

)
,

(32)
455

f2 = 2µ2De
x cos(2πy)

[
3π+

1
2
− 8π2

]
+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

εxy +
∂ε̇e,2D
∂y

(εxx + 2εyy)
)
,

(33)

where

ε̇e,2D = ex
√

(1 + 4π2− 2π)sin2(2πy) +
1
4

(2π+ 1)2 cos2(2πy), (34)

is the effective strain rate in 2D, and µ2D is given by (30). The solution (31) implies the following

boundary conditions on the boundary of Ω:460

ε̇1 ·n = 2(π− 1)u, ε̇2 ·n =−
(
π+ 1

2

)
v, at x= 0,

ε̇1 ·n =−2(π− 1)u, ε̇2 ·n =
(
π+ 1

2

)
v, at x= 1,

u = 0, ε̇2 ·n = 0, at y = 0 and y = 1,

v = 0, at (x,y) = (0,0),

(35)

where n denotes the outward unit normal vector to a given boundary. The last condition on (35) is

imposed to guarantee uniqueness of the v component of the velocity vector.

(a) (b)

Fig. 4. Plots of exact solutions to the “sin-cos-exp” test case: (a) u, (b) v

The relative errors (24) as a function of the mesh size h for the sin-cos-exp test case are plotted on

a log-log plot in Figure 5. The two lowest-order finite elements (Tri 3 and Quad 4) converge at their465

theoretical rates of two, whereas the higher-order finite elements (Tri 6 and Quad 9) exhibit a slight

superconvergece over their theoretical convergence rate of three. As expected, the quadrilateral

elements deliver a more accurate solution than their triangular counterparts.
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Fig. 5. Convergence rates for “sin-cos-exp” MMS test case in the discrete l2 norm (24)

5 Intercomparison with other codes and benchmarks

In this section we discuss further (informal) verification of results for Albany/FELIX using some470

canonical ice sheet benchmarks, namely ISMIP-HOM tests A and C (Section 5.1), and the confined

shelf test case (Section 5.2) (Pattyn et al., 2008). For these problems, the exact solution is not known

in closed analytic form and our quasi-verification consists of code-to-code comparisons between

the solution computed in Albany/FELIX, the results from other models participating in the original

benchmark experiments, and the FO approximation, finite element code of (Perego et al., 2012).475

The values of the physical parameters used in the two test cases considered are summarized in

Table 1. We note that the units employed in our implementation are m a−1 for the ice velocities u

and v (where “a” denotes years) and km for the length scale (e.g., the mesh dimensions). Our units

are the same as in (Perego et al., 2012) but differ from other implementations, which often use a

length scale of meters (m). Our units give rise to matrices with smaller differences in scale (which480

may be better scaled), as there is in general a smaller difference in scale in the relevant parameter

values (e.g., A= 10−4 k−(n+1) Pa−n a−1 when the mesh is in km versus A= 10−16 Pa−n a−1

when the mesh is in m, where k=km/m=103).

5.1 ISMIP-HOM benchmarks

The ISMIP-HOM test cases (Pattyn et al., 2008) are a canonical set of benchmark experiments for485

so-called “higher-order” ice sheet models. Here, we consider tests A and C, both of which are

specified on a horizontal, periodic domain with a unit length of L km. The bedrock surface, Γb, is

given by a continuous function z = b(x,y) ∈ R2 and the upper surface, Γs, is given by a continuous

function z = s(x,y) ∈ R2. The geometries are generated from a uniform hexahedral mesh of the
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unit cube (0,1)3 ∈ R3 via the following transformation:490

x= LX, y = LY, z = s(x,y)Z + b(x,y)(1−Z), (36)

where X,Y,Z are the coordinates of the unit cube (in km), and L ∈ N is given. That is, a uni-

form mesh of nx×ny ×nz elements is first generated of (0,1)3, to yield the nodal coordinates

X , Y , and Z, then the transformation (36) is applied. The following domain sizes are considered:

L= 5,10,20,40,80 and 160 km. Each domain is discretized using an 80× 80× 20 mesh of hex-495

ahedral elements. As a part of the quasi-verification, the Albany/FELIX solution is compared with

the solution computed in the finite element code of (Perego et al., 2012) at the upper surface along

the line y = L/4. Table 2 shows the relative difference between the Albany/FELIX and (Perego et

al., 2012) solutions in the l2 norm along this line, calculated from the formula (24) with the (Perego

et al., 2012) solution taken as the reference solution. Differences in the solutions are likely due to500

the different finite elements used: trilinear finite elements on hexahedra are used in Albany/FELIX,

whereas linear finite elements on tetrahedra are used in the code of (Perego et al., 2012).

5.1.1 ISMIP-HOM test A

The first ISMIP-HOM benchmark considered is test A. For this problem, the upper ice surface

boundary (Γs) is given by the following linear function505

s(x,y) =−xtanα, (37)

and the bedrock boundary (Γb) is given by the following trigonometric function

b(x,y) = s(x,y)− 1 +
1
2

sin
(

2π
L
x

)
sin
(

2π
L
y

)
, (38)

with α= 0.5◦. The geometry is thus that of a uniformly sloping slab along the x coordinate direction

with a doubly periodic, “egg crate” shaped bed. A no-slip boundary condition is prescribed on Γb510

(with Γ0 ≡ Γb and Γβ = ∅), stress-free boundary conditions are prescribed on the upper surface Γs,

and periodic boundary conditions are prescribed on the lateral boundaries Γl.

Figure 6 compares the solution computed within the Albany/FELIX code for ISMIP-HOM test A

with the solution computed by the code of (Perego et al., 2012) (denoted by MP12 in this figure).

The agreement between the two is excellent. The second column of Table 2 reports the relative515

difference between these two solutions in the l2 norm (24). The relative difference is at most 0.1%

for L= 180 and on the order of 0.001% for L= 5,10,20,40.

Figure 6 also includes the mean and standard deviation of solutions computed by other models

participating in the original set of benchmark experiments. For a detailed description of these models

the reader is referred to (Pattyn et al., 2008). For all values of L considered, the Albany/FELIX520

solution is within one standard deviation of the mean of the other FO models considered in the

original set of experiments. In Figure 6, the solutions labeled “Full Stokes” were calculated using
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the (more expensive but more physically realistic) full Stokes model for ice sheet flow (detailed in

Appendix A). Comparing a FO Stokes solution to the full Stokes solution reveals how well the FO

Stokes physics approximate the full Stokes model. The reader can observe by examining Figure 6525

that agreement between the FO Stokes and the full Stokes solutions improves with increasing L.

Fig. 6. ISMIP-HOM test A: surface velocity component u as a function of x at y = L/4 for each L consid-

ered. The blue solid line (MP12) represents results from (Perego et al., 2012) and the red-dashed line (labeled

FelixFO) represents results from the current solver.

5.1.2 ISMIP-HOM test C

For ISMIP-HOM test C, the upper and bedrock surfaces (Γs and Γb, respectively) are given by the

following linear functions:

s(x,y) =−xtanα, b(x,y) = s(x,y)− 1, (39)530
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with α= 0.1◦. In addition to having a different geometry than test A, test C also differs in the

boundary conditions. Unlike test A, sliding boundary conditions are prescribed on the bedrock

(Γβ ≡ Γb and Γ0 ≡ ∅), with the basal sliding coefficient given by

β(x,y) = 1 + sin
(

2π
L
x

)
sin
(

2π
L
y

)
. (40)

The boundary conditions at the upper and lateral boundaries (Γs and Γl respectively) are the same535

as for test A, namely stress-free and periodic, respectively. The geometry is thus that of a constant

thickness, uniformly sloping slab along the x coordinate direction with a doubly periodic, “egg

crate” spatial pattern for the basal friction parameter β.

The test case solution computed in Albany/FELIX is shown in Figure 7, along with the solution

computed using the solver of (Perego et al., 2012). For every L considered, the relative difference540

between Albany/FELIX and the solver of (Perego et al., 2012) (denoted, as before, by MP12 in Figure

7) is less than 1% (Table 2). Moreover, as for ISMIP-HOM test A, the Albany/FELIX solution is

within one standard deviation of the model means for each value of L. As for ISMIP-HOM test A,

Figure 7 illustrates also how well the FO Stokes model compares to the (more expensive but more

accurate) full Stokes model. As for test A, the two models agree better for larger L.545

Table 2. Relative differences between Albany/FELIX and (Perego et al., 2012) solutions for ISMIP-HOM tests

A and C

L (km) Test A Test C

5 0.00735% 0.386%

10 0.00629% 0.248%

20 0.00132% 0.176%

40 0.00408% 0.213%

80 0.0407% 0.277%

160 0.127% 0.320%

5.2 Confined shelf benchmark

We next consider an idealized ice shelf test case, referred to here as the “confined shelf” test case,

which is a slightly modified version of test 3 from the Ice Shelf Model Intercomparison exercise

(Rommelaere, 1996). The geometry is that of a 500 m thick slab of ice with equal extents of 200

km along the x– and y–dimensions, floating in hydrostatic equilibrium (Figure 8). A stress-free550

boundary condition is applied at the upper and basal boundaries (z = s and z = b respectively) and

homogeneous Dirichlet boundary conditions (u= v = 0) are applied on three of the four lateral

boundaries (the east x= 200, west x= 0 and north y = 200 boundaries). The south (y = 0) lateral
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Fig. 7. ISMIP-HOM test C: surface velocity component u as a function of x at y = L/4 for each L consid-

ered. The blue solid line (MP12) represents results from (Perego et al., 2012) and the red-dashed line (labeled

FelixFO) represents results from the current solver. Note that for the 5 km test, the MP12 and FelixFO results

directly overly the results for the full Stokes models participating in the original intercomparison.

boundary is open to the ocean and subject to the open ocean Neumann boundary condition described

in Section 2 (boundary condition (c)). The values of the parameters that appear in (17) can be found555

in Table 1. The domain and boundary faces for the confined shelf problem are illustrated in Figure

8.

The confined shelf geometry is discretized using a structured tetrahedral mesh of 41× 41 nodes

in the x− y plane with 10 vertical levels. As with the ISMIP-HOM test cases, the solution for the

confined shelf test case computed in our code, Albany/FELIX, is compared to the solution computed560

by the solver of (Perego et al., 2012) on the same mesh. Figure 9(a) shows the solution calculated

in Albany/FELIX, which is visually identical to the solution computed by the solver of (Perego et
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x

y

z

z =−440 m

z = 0 m
z = 60 m

Fig. 8. Illustration of domain and boundaries for confined shelf problem: stress-free boundaries (yellow),

Dirichlet lateral boundaries (white), open-ocean lateral boundary (blue) [Note: Figure not drawn to scale.]

al., 2012). Figure 9(b) shows the difference between the Albany/FELIX and (Perego et al., 2012)

solutions, which are on the order of O(10−10).

(a) (b)

Fig. 9. Solution to confined-shelf test case: (a) Albany/FELIX, (b) Difference between Albany/FELIX and the

solver of (Perego et al., 2012).

6 Convergence study using realistic geometry565

The final results presented herein are the results of a numerical convergence and performance study

using a realistic, 1 km spatial resolution Greenland Ice Sheet (GIS) geometry (i.e., surface and bed

topography from (Bamber et al., 2013)).
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6.1 Full 3D convergence study

First, we present results from a 3D mesh convergence study in which a set of horizontal uniform570

quadrilateral meshes of different resolutions were considered. We began by generating a quadri-

lateral mesh having an 8 km horizonal resolution. We then refined this coarse mesh uniformly in

the horizontal direction (by splitting each quadrilateral finite element into four smaller quadrilater-

als) four times to yield meshes with resolutions of 4 km, 2 km, 1 km and 500 m. The horizontal

meshes were then extruded into 3D hexahedral meshes having uniform layers. The number of layers575

considered in this study ranges from 5 to 80. Realistic basal friction coefficient (β) fields and bed

topographies were calculated by solving a deterministic inversion problem that minimizes simulta-

neously the discrepancy between modeled and observed surface velocities, modeled and observed

bed topography, and between a specified surface mass balance field and the modeled flux divergence

(see (Perego et al., 2014) for more details). A realistic, 3D temperature field, originally calculated580

using the Community Ice Sheet Model (CISM) for the study in (Shannon et al., 2013), was included

as an initial condition in order to provide realistic values for the flow-law rate factor (9). Prior to

being interpolated onto the meshes at hand, the original topography, surface height, basal friction

and temperature data were smoothed by convolution with a 2D Gaussian filter (having a standard

deviation of 5 km). This smoothing filter reduces the small-scale variations of the original fields,585

so that it is reasonable to consider meshes from 8 km to 500 m for our convergence study. Using

directly the non-smoothed data, we would have needed to consider much finer meshes in order to

obtain asymptotic convergence. Table 3 summarizes the meshes considered and the related degrees

of freedom (dofs)

Table 3. Meshes used in the GIS full, 3D convergence study.

horizontal resolution # vertical layers # dofs # cores Econtrel

8 km 5 3.34K 4 3.22× 10−1

4 km 10 2.43M 32 1.28× 10−1

2 km 20 18.4M 256 3.70× 10−2

1 km 40 143M 2048 8.49× 10−3

500 m 80 1.12B 16,384 −

For the convergence study undertaken here, the objective is to show a theoretical convergence590

rate for the finite elements evaluated. From finite element theory, theoretical convergence rates are

expected for a problem in which the data is fixed on all meshes considered, so better-resolved data

are intentionally not introduced on the coarser meshes that were part of our convergence study in

this section. A high-resolution GIS problem, with real, high-resolution data is considered in Section

6.3.3.595
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The FO equations (2) with basal sliding at the bedrock (15) and stress-free boundary conditions

(14) on the remaining boundaries were solved on the base 8 km resolution mesh and the four suc-

cessively refined meshes. Model runs were performed in parallel on Titan2, a Cray XK6 operated

by the Oak Ridge Leadership Computing Facility (OLCF). The fourth column of Table 3 reports

the number of CPU cores used for each mesh resolution. Note that the parallel decompositions em-600

ployed in the runs were 2D only; all elements with the same x and y coordinates were on the same

processor (convergence difficulties were encountered when splitting vertical columns in the mesh

across processors). A parallel decomposition for 16 cores is illustrated in Figure 11.

(a) (b)

Fig. 10. Examples of uniform mesh refinement: (a) No refinement (8 km GIS), (b) 1 level of refinement (4 km

GIS)

The last column of Table 3 reports the relative errors in the computed solution for each mesh

resolution considered. The convergence metric employed was the continuous L2 norm. The relative605

error in each solution was calculated according to the following formula:

Econtrel ≡

√∫
Ω
||un−uref ||22dΩ∫
Ω
||uref ||22dΩ

. (41)

In (41), ||·||2 denotes the L2 norm, un denotes the computed solution and uref denotes the reference

solution, which here we take as the solution computed for the finest resolution mesh (for this quasi-

2More information on Titan can be found at www.olcf.ornl.gov/titan.
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Fig. 11. GIS domain decomposition for 16 core, parallel run, with different colors representing portions of the

domain owned by different cores.

realistic problem, there is no exact solution available in closed analytic form). The integrals in (41)610

were calculated exactly using a sufficiently accurate numerical quadrature rule.

Figure 12 plots the relative error (41) as a function of the horizontal mesh spacing (8 km, 4

km, 2 km, 1 km) on a log-log plot (blue line). The numerical values of the relative error Erel are

reported in the right-most column of Table 3. The asymptotic convergence rate (the slope of the blue

line in Figure 12 disregarding the coarsest mesh data point, as it is not in the region of asymptotic615

convergence) is 1.96. This compares very well with the theoretical convergence rate of two, for the

bilinear hexahedral elements considered in this norm (black-dashed line in Figure 12).

6.2 Convergence study with z–refinement

Next, we perform a convergence study with respect to the number of vertical layers, that is, a con-

vergence study with refinement in the z direction only. To the authors’ knowledge, the answer to620

the question of how many vertical layers should be used in large-scale ice sheet simulations (e.g., of

Greenland or Antarctica) remains open. Many researchers employ a fixed number (usually on the

order of 10, e.g., (Lemieux, 2011)) regardless of the horizontal resolution of the mesh. Sometimes

this choice is motivated by solver convergence difficulties encountered when a larger number of ver-

tical layers are used (e.g., (Larour et al., 2012b)). The purpose of our mesh convergence study with625

respect to the number of vertical layers is two-fold:

(i) To determine in a rigorous fashion for a GIS problem with a fixed horizontal mesh resolution

how many vertical layers are required to achieve a solution having a desired accuracy,

(ii) To investigate whether the performance of our linear and nonlinear solvers changes with the

number of vertical layers.630
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Fig. 12. Convergence in the continuous L2 norm (41) for the realistic GIS problem with full 3D refinement.

GradedUniform

Fig. 13. Uniform (left) versus graded (right) spacing in the vertical layers.

For our convergence study with respect to z–refinement, we consider the full, 1 km resolution (in

the x−y plane) data from (Bamber et al., 2013) along with realistic, 2D basal friction coefficient (β)
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and 3D internal temperature fields, as discussed above. Two vertical mesh spacings are considered:

(a) Uniform spacing in z.

(b) Graded spacing in z.635

In the latter case, a transformation is performed such that a mesh having nz vertical layers is finer

near the bedrock boundary Γb and becomes progressively coarser moving up, towards the surface

boundary Γs. The formulas for the coordinate of the ith vertical layer, zi (for i= 0, ...,nz , where nz

is the number of vertical layers), for each of these two spacings is given in Table 4. Figures 13(a)

and (b) show the uniform vs. graded z–spacing, respectively3. Twelve instances of the 1 km GIS

Table 4. Formulas for different vertical mesh-spacing strategies (uniform vs. graded), for i= 0, ...,nz .

z–spacing zi

Uniform i
nz

Graded 1− 4
3

»
1−

“
nz

2nz−i

”2
–

640

problem are considered, each with a different number of vertical layers (resolution in z): 5, 10, 20,

40, 80 and 160 vertical layers, with both uniform and graded spacing in z (Table 5).

Table 5. Meshes considered for 1 km resolution, z–refinement (refinement in # vertical layers) convergence

study.

# vertical layers # dofs # cores Econtrel : uniform spacing Econtrel : graded spacing

5 21.0M 128 3.17× 10−2 2.54× 10−2

10 38.5M 256 8.04× 10−3 6.56× 10−3

20 73.5M 512 2.01× 10−3 1.64× 10−3

40 143M 1024 4.96× 10−4 3.93× 10−4

80 283M 2048 1.20× 10−4 8.03× 10−5

160 563M 16,384 2.76× 10−5 −

As for the full 3D convergence study, 2D decompositions of the domain were generated (Figure

11). For the error analysis as a function of mesh spacing, we take the 160 vertical layer mesh with

graded spacing as the reference solution in (41). The last two columns of Table 5 report the relative645

errors as a function of the z–resolution for the uniform and graded mesh spacings. These errors are

plotted in Figure 14 as a function of the z–resolution
(

denoted by hz , taken to be the reciprocal

3The formula for the graded z–spacing is available in the CISM documentation, available at http://oceans11.lanl.gov/cism.
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of the number of vertical layers, i.e., hz = 1
5 ,

1
10 ,

1
20 , ...

)
. Convergence rates can be obtained by

calculating the slopes of the red and blue lines in Figure 14. Omitting the data points for the finest

mesh resolution4, the observed convergence rates are calculated to be 2.0096 for the uniform mesh650

spacing (slope of blue line in Figure 14) and 2.0041 for the graded mesh spacing (slope of red line

in Figure 14), in excellent agreement with the expected convergence rate of 2.

Fig. 14. Convergence in continuous L2 norm (41): z–refinement (number of vertical layers)

The results summarized above led to some practical recommendations that may be of interest to

the glaciological modeling community. First, if a relative error of less than O(10−3) is desired for

a GIS problem discretized by a mesh of linear (or trilinear) finite elements5 with a 1 km spatial655

mesh resolution, more than 10 vertical layers should be used in the full 3D mesh for this geometry.

Moreover, as noted in the discussion of the full 3D mesh convergence study described in Section

6.1, our study revealed that 2D parallel decompositions of the meshes (i.e., decompositions in which

all elements with the same x and y coordinates were on the same processor, as shown in Figure

11) led to out-of-the-box convergence of our linear and nonlinear solves. In contrast, convergence660

difficulties were encountered when splitting vertical columns in the mesh across processors. The 2D

parallel decomposition is therefore recommended over a full 3D parallel decomposition, especially

for problems on meshes having a finer vertical resolution.

4Including this data point will result in an over-estimation of the convergence rate since a reference solution is used in

place of the exact solution in the error calculation.
5Note that if higher-order elements are considered, as in the work of (Leng et al., 2014; Isaac et al., 2014), the recom-

mended number of layers would likely be smaller.
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6.3 Code performance and scalability

Having demonstrated the numerical convergence of our code on a realistic, large-scale ice sheet665

problem we now study the code’s robustness, performance and scalability.

6.3.1 Robustness

In Section 3.1.1, we described our approach for improving the robustness of the nonlinear solver

using a homotopy continuation of the regularization parameter (denoted by γ) appearing in the ef-

fective viscosity law expression (21). Here, we perform a numerical study of the relative robustness670

of Newton’s method with and without the use of this continuation procedure on a realistic, 5 km

resolution Greenland ice sheet problem. Three approaches are considered:

(a) Full Newton with no homotopy continuation.

(b) Newton with backtracking but no homotopy continuation.

(c) Full Newton with homotopy continuation.675

For all three methods, a uniform velocity field is specified as the initial guess for Newton’s method.

To prevent the effective viscosity (7) from evaluating to “not-a-number” for this initial guess, we

replace µ by µγ in (2), where µγ is given by (21) and γ = 10−10 for the first two approaches. The

third approach implements Algorithm 1, in which we use a natural continuation algorithm to reach

γ = 10−10 starting withza α0 = 0.1.680

Figure 15 illustrates the performance of Newton’s method for the three approaches considered by

plotting the norm of the residual as a function of the total number of Newton iterations. The reader

can observe that full Newton with no homotopy continuation diverges. If backtracking is employed,

the algorithm converges to a tolerance of 10−4 in 43 nonlinear iterations. With the use of homotopy

continuation, the number of nonlinear iterations is cut almost in half, to 24 nonlinear iterations. The685

natural continuation method leads to four homotopy steps.

It is well-known that for Newton’s method to converge to the root of a nonlinear function (i.e.,

the solution to the discrete counterpart of (20)), it must start with an initial guess which is reason-

ably close to the sought-after solution. The proposed homotopy continuation method is particularly

useful in the case when no “good” initial guess is available for Newton’s method, in which case the690

nonlinear solver may fail to converge (see Section 3.1.1 and Algorithm 1). Homotopy continuation

may not be needed for robust convergence in the case that a “good” initial guess is available (e.g.,

from observations or from a previously converged model time step).

6.3.2 Controlled weak scalability study on successively refined meshes with coarse mesh data

First, we report results for a controlled weak scalability study. For this experiment, the 8 km GIS695

mesh with 5 vertical layers described in Section 6.1 was scaled up to a 500 m GIS mesh with 80
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Fig. 15. Robustness of Newton’s method nonlinear solves with homotopy continuation

vertical layers using the uniform 3D mesh refinement discussed earlier. A total of five meshes

were generated, as summarized in Table 3. The term “controlled” refers to the fact that the lateral

boundary of the ice-sheet is kept constant for all the grids considered and equal to the polygonal

boundary determined by the coarsest 8km mesh. Moreover, topography, surface height, basal friction700

and temperature data have been smoothed and then interpolated as described in Section 6.1. Each

resolution problem was run in parallel on the Hopper6 Cray XE6 supercomputer at the National

Energy Research Scientific Computing (NERSC) Center. The number of cores for each run (third

column of Table 3) was calculated so that for each size problem, each core had approximately the

same number of dofs (≈ 70− 80K dofs/core). For a detailed discussion of the numerical methods705

employed, the reader is referred to Section 3. In particular, recall that the linear solver employed

is based on the preconditioned CG iterative method. The preconditioner employed is the algebraic

multilevel preconditioner based on the idea of semi-coarsening that was described in Section 3.1.2.

This preconditioner is available through the ML package of Trilinos (Heroux et al., 2005).

Figure 16(a) reports the total linear solver time, the finite element (FE) assembly time and the710

total time (in seconds) for each resolution problem considered, as a function of the number of cores.

Figure 16(b) shows more detailed timing information, namely:

• The normalized preconditioner generation time (“Prec Gen Time”).

6More information on the Hopper machine can be found here: http://www.nersc.gov/users/computational-systems/

hopper.
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• The normalized Jacobian fill time, not including the Jacobian export time7 (“Jac Fill - Jac

Export Time”).715

• The normalized number of nonlinear solves (“# Nonlin Solves”).

• The normalized average number of linear iterations (“Avg # Lin Iter”).

• The normalized total time not including I/O (“Total Time - IO”).

The run times and iteration counts have been normalized by the run time and iteration count (respec-

tively) for the smallest run (8 km GIS with 5 vertical layers, run on 4 cores). Figure 16 reveals that720

the run times and iteration times scale well, albeit not perfectly, in a weak sense.

(a) (b)

Fig. 16. Controlled, weak scalability study on Hopper: (a) Total linear solve, finite element assembly, and total

run times in seconds , (b) Additional timing information (X = time or # iterations).

6.3.3 Strong scalability for realistic Greenland initial conditions on a variable-resolution

mesh

For the performance study described in the previous paragraph, the data has been smoothed and

the lateral boundary was determined by the coarsest (8 km resolution) mesh. We now perform a725

scalability study for the GIS interpolating directly original datasets into the mesh considered. This

results in better resolved topography, basal friction and temperature fields. As before, the surface

topography and temperature fields are from (Bamber et al., 2013) and were generated as a part of the

7“Jacobian export time” refers to the time required to transfer (“export”) data from an element-based decomposition,

which can be formed with no communication, to a node-based decomposition, where rows of the matrix are uniquely owned

by a single processor.
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Ice2Sea project (Ice2sea, 2014); the basal friction coefficient (β) field and the bed topography were

calculated in (Perego et al., 2014).730

We consider a tetrahedral mesh with a variable resolution of between 1 km and 7 km and hav-

ing approximately 14.4 million elements, leading to approximately 5.5 million dofs (Figure 17(a)).

The mesh was created by first meshing the base of the GIS using the 2D meshing software Trian-

gle (Shewchuk et al., 1996). The 2D mesh generated using Triangle was a nonuniform Delaunay

triangulation in which the areas of the triangles were constrained to be roughly proportional to the735

norm of the gradient of the surface velocity data. This yields meshes with better resolutions in places

where the solution has larger variations. The 2D mesh is then extruded in the z–direction as prisms

and each prism is divided into three tetrahedra (Figure 17(b)).

(a) (b)

Fig. 17. (a) Close-up of variable-resolution 1–7 km GIS mesh, (b) Subdivision of hexahedral finite element into

three tetrahedra.

First, we verify that the solution computed on the 1–7 km variable resolution tetrahedral mesh –

the modeled surface velocity field – agrees well with that from observations (Joughin et al., 2010).740

The solution computed on this mesh is shown in Figure 18(a). The reader can observe that this

solution is in excellent agreement with the target velocity field from observations, shown in Figure

18(b).

Next, a strong scaling study on the 1–7 km variable resolution GIS problem is performed. The

problem is run on different numbers of cores on Hopper, from 64 to 512. The total solve, linear745

solve and finite element assembly times for each of the runs are reported (in seconds) in Table 6.

The speed-up relative to the smallest (64 core) run is plotted as a function of the number of cores in

Figure 19. Good strong scalability is obtained: a 3.75 times speed-up is observed with 4 times the
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(a) (b)

Fig. 18. Solution magnitude |u| in meters per year: (a) Albany/FELIX solution (surface speed) on the variable

resolution (1–7 km) tetrahedral mesh, (b) observed surface speeds (from (Joughin et al., 2010)).

number of cores (up to and including 256 cores), and a 6.64 times speed-up is observed with 8 times

the number of cores (up to and including 512 cores). In these results, the linear solver employed was750

the preconditioned CG iterative method, with the aforementioned algebraic multilevel preconditioner

based on the idea of semi-coarsening (see Section 3.1.2).

Table 6. Total, linear solve and finite element assembly times (sec) for variable resolution 1–7 km resolution

GIS problems as a function of # cores of Hopper

# cores Total Solve Time Linear Solve Time Finite Element Assembly Time

64 268.1 119.9 148.3

128 139.9 63.12 76.78

256 78.41 37.92 40.49

512 56.83 33.81 23.02

7 Conclusions

In this paper, we have presented a new, parallel, finite element solver for the first-order accurate,

nonlinear Stokes ice sheet model. This solver, Albany/FELIX, has been written using a component-755
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Fig. 19. Strong scalability for 1–7km resolution GIS problem: speed-up relative to 64 core run.

based approach to building application codes. The components comprising the code are modular

Trilinos libraries, which are put together using abstract interfaces and Template-Based Generic Pro-

gramming. Several verifications of the code’s accuracy and convergence are carried out. First, a

mesh convergence study is performed on several new method of manufactured solutions test cases

derived for the first-order Stokes equations. All finite elements tested exhibit their theoretical rate of760

convergence. Next, code-to-code comparisons are made on several canonical ice sheet benchmarks

between the Albany/FELIX code and the finite element solver of (Perego et al., 2012). The solutions

are shown to agree to within machine precision. As a final verification, a mesh convergence study on

a realistic Greenland geometry is performed. The purpose of this test is two-fold: (1) to demonstrate

that the solution converges at the theoretical rate with mesh refinement, and (2) to determine how765

many vertical layers are required to accurately resolve the solution with a fixed x–y resolution, when

using (low-order) trilinear finite elements. It is found that the parallel decomposition of a mesh has

some effect on the linear and nonlinear solver convergence: better performance is observed on the

finer meshes if a horizontal decomposition (i.e., a decomposition in which all nodes having the same

x and y coordinates are on the same processor) is employed for parallel runs. Further performance770

studies reveal that a robust nonlinear solver is obtained through the use of homotopy continuation

with respect to a regularization parameter in the effective viscosity in the governing equations, and

that good weak scalability can be achieved by preconditioning the iterative linear solver using an
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algebraic multilevel preconditioner constructed based on the idea of semi-coarsening.

Appendix A: Nonlinear Stokes model for glaciers and ice sheets775

The model considered here, referred to as the first-order (FO) Stokes approximation, or the “Blatter-

Pattyn” model (Blatter, 1995; Pattyn, 2003), is an approximation of the nonlinear Stokes model for

glacier and ice sheet flow. In general, glaciers and ice sheets are modeled as an incompressible fluid

in a low Reynolds number flow with a power-law viscous rheology, as described by the Stokes flow

equations. The equations are quasi-static, as the inertial and advective terms can be neglected due to780

the slow movement of the ice.

Let σ denote the Cauchy stress tensor, given by

σ = 2µε̇− pI ∈ R3×3, (42)

where µ denotes the “effective” ice viscosity, p the ice pressure, I the identity tensor, and ε̇ the

strain-rate tensor:785

ε̇ij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (43)

for i, j ∈ {1,2,3}. The effective viscosity is given by Glen’s law (Nye, 1957; Cuffey et al., 2010):

µ=
1
2
A−

1
n ε̇

( 1
n−1)
e , (44)

where

ε̇e =
√

1
2

∑
ij

ε̇2ij , (45)790

denotes the effective strain rate, given by the second invariant of the strain-rate tensor. A denotes the

flow rate factor (which is strongly dependent on the ice temperature), and n denotes the power law

exponent (generally taken equal to 3). The nonlinear Stokes equations for glacier and ice sheet flow

can then be written as follows:−∇ ·σ = ρg

∇ ·u = 0.
(46)795

Here, ρ denotes the ice density, and g the gravitational acceleration vector, i.e., gT =
(

0, 0, −g
)

,

with g denoting the gravitational acceleration. The values of the parameters that appear in the ex-

pressions above are given in Table 1. A stress-free boundary condition is prescribed on the upper

surface:

σn = 0, on Γs. (47)800
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On the lower surface, the relevant boundary condition is the no-slip or basal sliding boundary con-

dition:u = 0, on Γ0,

u ·n = 0 and (σn +βu)|| = 0, on Γβ ,
(48)

assuming Γb = Γ0∪Γβ with Γ0∩Γβ = ∅, where β ≡ β(x,y)≥ 0. The operator (·)|| in (48) performs

the tangential projection onto a given surface.805
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