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Numerical dispersion, or what is often referred to as the pollution effect, presents a chal-
lenge to an efficient finite element discretization of the Helmholtz equation in the medium
frequency regime. To alleviate this effect and improve the unsatisfactory pre-asymptotic
convergence of the classical Galerkin finite element method based on piecewise polyno-
mial basis functions, several discretization methods based on plane wave bases have been
proposed. Among them is the discontinuous enrichment method that has been shown to
offer superior performance to the classical Galerkin finite element method for a number
of constant wavenumber Helmholtz problems and has also outperformed two representa-
tive methods that use plane waves – the partition of unity and the ultra-weak variation for-
mulation methods. In this paper, the discontinuous enrichment method is extended to the
variable wavenumber Helmholtz equation. To this effect, the concept of enrichment func-
tions based on free-space solutions of the homogeneous form of the governing differential
equation is enlarged to include free-space solutions of approximations of this equation
obtained in this case by successive Taylor series expansions of the wavenumber around
a reference point. This leads to plane wave enrichment functions based on the piece-wise
constant approximation of the wavenumber, and to Airy wave enrichment functions. Sev-
eral elements based on these enrichment functions are constructed and evaluated on
benchmark problems modeling sound-hard scattering by a disk submerged in an acoustic
fluid where the speed of sound varies in space. All these elements are shown to outperform
by a substantial margin their continuous polynomial counterparts.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The Helmholtz equation models the time harmonic form of the wave equation. As such, its applications range from acous-
tics and electromagnetics, to aerodynamics and quantum mechanics. Traditional discretization methods such as the stan-
dard Galerkin finite element method (FEM) are well-suited for elliptic boundary value problems such as the Helmholtz
equation, but their scalability with respect to the wavenumber j is unsatisfactory. In particular, due to numerical dispersion,
traditional methods have difficulties computing the numerical solution accurately and efficiently at medium and high fre-
quencies. In this regime, the solution is highly oscillatory and features many wavelengths within the computational domain.
More specifically, it has been shown that the error of a finite element approximation with linear elements scales as O
(jðjhÞ2), where h denotes the element size [14]. It is thus insufficient to keep the same number of elements per wavelength
(i.e., keep jh constant) as the wavenumber is increased. This phenomenon, known as the pollution effect, combined with the
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fact that an increase in the frequency results in an increase in the number of wavelengths in the domain, makes the standard
polynomial FEM unaffordable in the medium frequency regime.

Recent developments suggest that for a fixed computational cost, the performance of a numerical algorithm for the solu-
tion of the Helmholtz equation is greatly improved by taking advantage of a priori knowledge of the exact solution. For a
problem with a constant wavenumber, instead of approximating a discrete solution using piece-wise polynomials, piece-
wise plane waves can be used, as these are known to be exact solutions of the homogeneous, free-space, Helmholtz equation
with a spatially constant wavenumber. Examples of methods that use these plane wave basis functions include the ultra-
weak variational formulation (UWVF) [2,13], the partition of unity method (PUM) [25,27,1,19,33], the discontinuous Galer-
kin method [10], the least squares method [26], the variational theory of complex rays [32,31,18], and the discontinuous
enrichment method with Lagrange multipliers (DEM) [4]. (The concept of free space solutions is native to Trefftz methods,
e.g. the wave based method [29] that uses a basis different from plane waves.) PUM is a continuous method that can be
understood as a generalized version of the polynomial FEM where the basis functions consist of the product of plane waves
and linear hat functions. The other methods are discontinuous – the basis functions are not constructed in a way that main-
tains continuity of the numerical solution across the element boundaries. Instead, the continuity across neighboring ele-
ments is maintained in a weak sense, by incorporating additional constraints into the variational formulation. For DEM,
these constraints are enforced by Lagrange multipliers. In a direct comparison on a two-dimensional scattering problem,
DEM has outperformed PUM and UWVF methods [37].

The discontinuous enrichment method was originally proposed in [4] for the solution of multi-scale boundary value prob-
lems (BVPs) with sharp gradients and oscillations. In this method, the standard finite element polynomial field, which can be
seen as representing the coarse scale of the solution [5], is enriched within each element by free-space solutions of the
homogeneous form of the partial differential equation (PDE) to be solved. Such enrichment functions can be interpreted
as representing the fine scales of the solution. Because these functions are typically discontinuous across the element inter-
faces, Lagrange multipliers are introduced at the element interfaces to enforce a weak continuity of the solution. DEM has
been benchmarked against the higher order polynomial FEM for the Helmholtz equation in both two dimensions (2D) [7]
and three dimensions (3D) [35]. CPU speedup factors as large as 100 have been observed for a fixed accuracy in 3D. Although
initially developed for quadrilateral and hexahedral elements, DEM can be applied on triangular meshes in 2D [11] and tet-
rahedral meshes in 3D [12] as well. The method has also been extended to other problems including interface problems with
evanescent waves [36], structural vibrations [38,24], fluid–structure interaction [23], the wave equation [28], and advection–
diffusion problems with constant [9] and non-constant [17,16] coefficients.

Even though a spatially constant wavenumber is encountered in many applications of the Helmholtz equation, others, for
example, underwater acoustics in large domains and wave propagation in geophysics or electromagnetics, often feature a
spatially variable wavenumber. Furthermore, whereas free-space solutions of the homogeneous Helmholtz equation with
a constant wavenumber are easy to find analytically, this is not necessarily the case when the wavenumber varies in space.
This raises the issue of how to generalize the aforementioned methods to the case of a variable wavenumber. Special solu-
tions in the case of a layered material have been suggested in references [36,23] in the context of DEM, and in [22] in the
context of UWVF; for treatment in the context of PUM, see references [20,21]. Here, the focus is set on the case of a smoothly
variable wavenumber. Some progress has been reported for this case in one dimension (1D) [15] for the UWVF method:
essentially, exponentials of polynomials have been explored to approximate the solution of the problem. In this paper,
the issue raised by the lack of analytical free-space solutions of the homogeneous Helmholtz equation with a variable wave-
number is addressed by focusing on DEM and using free-space solutions of approximations of this governing equation of
various orders. To this effect, the remainder of this paper is organized as follows.

Section 2 overviews the formulation of the discontinuous enrichment method and its discretization and computational
aspects. Section 3 enlarges the concept of free-space solutions of the homogeneous form of a governing differential equation
with a varying parameter as outlined above. This idea recovers as a particular case the piecewise constant approximation of
the varying parameter that was previously suggested in [4,5] and explored in more detail in [17,16] for advection–diffusion
problems. More importantly, the idea developed in this paper also leads to the Airy wave enrichment functions which are
free-space solutions of the homogeneous Helmholtz equation when the square of the wavenumber is linearized around a
reference point. Section 4 assesses the performance, for two model problems in the medium frequency regime, of various
DEM elements constructed using the enrichment functions considered or proposed in this paper for the Helmholtz equation
with a variable wave number. Finally, conclusions are drawn in Section 5.
2. Discontinuous enrichment method

2.1. Boundary value problem

The Helmholtz equation can be derived from the wave equation DU � 1
c2 @ttU ¼ 0, where t denotes time by assuming that

the solution Uðx; tÞ is time-harmonic with the angular frequency x, i.e., Uðx; tÞ ¼ uðxÞe�ixt , where x denotes the spatial coor-
dinates. In acoustics, U represents small pressure oscillations around an equilibrium value, and c is the speed of sound. By
denoting the wavenumber j ¼ x=c, the usual form of the Helmholtz equation, �Du� j2u ¼ 0, where u is the unknown com-
plex amplitude, is obtained.
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The following Helmholtz BVP is considered here
�Du� j2u ¼ 0 in X;
@u
@m
¼ gN on @XN ;

@u
@m
� iju ¼ gR on @XR;

ð1Þ
where m denotes the normal derivative on the domain boundary @X ¼ @XN [ @XR, @XN \ @XR ¼ ;; i is the imaginary unit,
i2 ¼ �1, and gN and gR are prescribed Neumann and Robin data, respectively. The Robin boundary condition makes the prob-
lem well-posed for any positive value of the wavenumber j [14]. It is often used as a simple approximation of the Sommer-
feld boundary condition when an infinite medium is considered and the problem domain is truncated to facilitate treatment
by finite elements. More accurate absorbing boundary conditions are available (for example, see [14,3,34]), and several of
these have been successfully used in the context of DEM [8]. The Robin and Neumann boundary conditions given in the
BVP (1) are used in the acoustic problems chosen in Section 4 for assessing the performance of the solution methods con-
sidered in this paper. However, incorporating a Dirichlet boundary condition in the formulation of DEM overviewed below
is straightforward and has been discussed in the literature [9,17]. Also, attention is restricted in this work to two dimensions
for the sake of simplicity, but without any loss of generality.

2.2. Hybrid variational formulation

Like any finite element method, the discontinuous enrichment method relies on a partitioning of the domain X into nel

subdomains (elements) such that X ¼ [nel
j¼1Xj and Xj \Xk ¼ ;; k – j. Let Cj ¼ @Xj be the boundary of Xj and let the edges be-

tween elements be denoted by Cjk ¼ Cj \ Ck; j; k ¼ 1; . . . ;nel. The formulation of DEM requires the introduction of two func-
tional spaces: the space of functions representing the solution, denoted here by U , and the space of approximation functions
for the dual unknowns, the Lagrange multipliers, denoted here byW. The functional space for the solution is allowed to have
discontinuities across element edges, i.e.,
U ¼ v 2 L2ð[nel
j¼1XjÞ : v jXj

2 H1ðXjÞ
n o

: ð2Þ
The spaceW of Lagrange multipliers, which are introduced on the edges between elements to enforce weakly the continuity
of the solution, is defined as
W ¼
Ynel

k¼1

Ynel

j¼1;j<k

H�1=2ðCjkÞ: ð3Þ
With this notation in place, the hybrid variational formulation of DEM can be written as [4]: Find ðu; kÞ 2 U �W such that
aðu;vÞ þ bðk;vÞ ¼ rðvÞ 8v 2 U;
bðl;uÞ ¼ 0 8l 2 W; ð4Þ
where a and b are two bilinear forms and r is a linear form. These are defined by
aðu;vÞ ¼
Z

X
ðru � rv � j2uvÞdX�

Z
@XR

ijuv dC; ð5Þ

bðl; vÞ ¼
Xnel

k¼1

Xnel

j¼1
j<k

Z
Cjk

lðv jXj
� vjXk

ÞdC; and ð6Þ

rðvÞ ¼
Z
@XN

vgN dCþ
Z
@XR

vgR dC: ð7Þ
2.3. DEM discretization

In the discretization process, U andW are replaced by finite dimensional subspaces, Uh andWh, where h denotes the typ-
ical element size, and the resulting linear system of equations is solved for the degrees of freedom of the approximate solu-
tion. Choices of the approximation spaces are the subject of the next section. Here, general guidelines and practical
considerations are discussed.

In [5], DEM is presented as a multiscale computational framework in whichUh ¼ UE þ UP . The spaceUP is a standard finite ele-
ment polynomial space. Functions in UP are continuous between elements and polynomial within each element; they are in-
tended to capture the coarse scales of the solution. The enrichment space UE is a space of discontinuous functions that are
designed to capture oscillatory and/or high-gradient components of the solution that are computationally expensive to approx-
imate using polynomials. Free-space solutions of the homogeneous PDE are suggested as good candidates for this space. For a
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range of applications – primarily source-free problems such as scattering problems whose exact solution is not known to contain
polynomials explicitly – it has been shown that the continuous polynomial field can be dropped from the approximation [7,8].

Denoting by u and k the vectors of degrees of freedom of the approximate solution uh 2 Uh and the approximate Lagrange
multiplier kh 2 Wh, respectively, the hybrid variational formulation leads to the linear system of equations
K C
CT 0

� �
u
k

� �
¼

r
0

� �
; ð8Þ
where the matrix K is associated with aðuh; vhÞ, the matrix C with bðkh;vhÞ, and the right hand side vector r with rðvhÞ.
When the basis functions used to approximate the solution are not continuous across neighboring elements, the corre-

sponding degrees of freedom associated with one element are decoupled from those of another element. Thus, these degrees
of freedom can be condensed out at the element level. Assuming for notational simplicity that this is the case for all degrees
of freedom corresponding to functions in Uh – in other words, assuming that UP ¼ ; or that the polynomial functions of UP

are also discontinuous – the local matrices after static condensation are assembled into the following global dual system
which governs the Lagrange multiplier degrees of freedom only
CT K�1Ck ¼ CT K�1r: ð9Þ
The primal solution vector is then obtained by computing in post-processing mode
u ¼ K�1ðr� CkÞ
at the element level (K is in this case a block diagonal matrix). Since the cost of local assembly and local static condensation
scales linearly with the number of elements, the computational cost of the method is, for large problems, determined mostly
by the cost of solving the system (9) for the Lagrange multiplier degrees of freedom. This cost estimate is particularly accu-
rate on parallel computing platforms because the local element operations are massively parallelizable.

By applying integration by parts to the definition of aðu; vÞ and substituting the result into the first of Eq. (4), one obtains
k ¼ @u

@m. This suggests that k should be discretized as a good approximation of the normal derivative of the solution which is in
the discrete case approximated by a linear combination of the enrichment functions [6,8]. However, assigning as many La-
grange multiplier degrees of freedom per element edge as there are enrichment degrees of freedom within that element is
not only computationally inefficient, but also leads to a singular global system. Farhat et al. [6] have shown that, for a square
mesh, a necessary algebraic condition is nk 6

nw
2 , where nk is a number of Lagrange multiplier degrees of freedom on each

element edge and nw is a number enrichment functions per element. This condition partially addresses the inf-sup condition
by maintaining the total number of constraints (Lagrange multipliers) smaller than the total number of enrichment
variables.

3. Choice of approximation spaces for variable wavenumber problems

Plane waves of the form eijd�x, where d is a unitary vector defining a direction of propagation, are free-space solutions of
the homogeneous Helmholtz equation with a constant wavenumber. DEM constructs the enrichment space for a Helmholtz
problem characterized by a constant wavenumber as a set of waves propagating in different directions that are chosen a pri-
ori. When the wavenumber varies in space, the plane waves identified above are no longer free-space solutions of the homo-
geneous Helmholtz equation. Furthermore, free-space solutions to the variable wavenumber Helmholtz equation are hard to
find in general. For this reason, the concept of free-space solutions of the homogeneous form of the governing equation is
expanded here to include approximations of such solutions. In particular, free-space solutions of approximations of various
orders of accuracy of the homogeneous form of the governing equation are considered. For the case of a Helmholtz problem
with a spatially variable wavenumber jðxÞ 2 C2ðXjÞ, two approximations of the homogeneous form of the governing equa-
tion, for which free-space solutions can be derived analytically, are obtained by approximating within each element Xj the
square of the wavenumber, j2ðxÞ, by its Taylor series expansions of order 0 and 1 around a reference point xj in Xj (practi-
cally, the midpoint is chosen). Indeed, the expansions
j2ðxÞ ¼ j2ðxjÞ þ frðj2Þjx¼xj
� ðx� xjÞ þ O kx� xjkð1þfÞ

� �
in Xj; ð10Þ
where rj2jx¼xj
� @j2

@x ðxjÞ; @j
2

@y ðxjÞ
� �T

and the superscript T denotes the transpose operation, lead to
�Du� j2ðxjÞ þ frðj2Þjx¼xj
� ðx� xjÞ

� �
u ¼ O kx� xjkð1þfÞ

� �
u; ð11Þ
where f ¼ 0 or 1 for the Taylor series of order 0 or 1. The free-space solutions of the homogeneous form of Eq. (11) and the
choice of approximation spaces they lead to for the discretization by DEM are pursued in Sections 3.1 and 3.2 for f ¼ 0 and
f ¼ 1, respectively.

Unlike the governing equation of the BVP (1), the alternative Eq. (11) has a non-zero source term. In [5], it was suggested
that for a right hand side that induces a slowly varying component of the solution (coarse scale), the polynomial component
in the DEM approximation be kept as it can represent this coarse scale component more efficiently than oscillatory functions
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that form the fine scale. However, the source term in Eq. (11) is proportional to the sought-after solution u and therefore does
not introduce in this solution a coarser scale. Hence, keeping or dropping in this case the polynomial component of the DEM
approximation must be decided based on other considerations. Here, the following reasoning is adopted for this purpose:

� For f ¼ 0, the low-order approximation of the homogeneous form of the governing Helmholtz Eq. (11) is not necessarily
expected to be adequate and therefore its corresponding free-space solutions are not expected to be as efficient as the
enrichment functions obtained for a Helmholtz problem with a constant wavenumber. Thus, the polynomial component
is maintained in the approximation. However, it is chosen here to be discontinuous for two reasons: (1) it is considered in
this case to remedy element-by-element the imperfections of the free-space solutions of the approximate equation as
these vary from element to element; (2) this enables the elimination of the polynomial component at the element level
and therefore yields a smaller and sparser global system of equations. In order to highlight the importance of the poly-
nomial component of the DEM approximation when f ¼ 0, elements without the polynomial field are also considered in
the numerical examples of Section 4.
� For f ¼ 1, it is anticipated that the higher-order approximation of the homogeneous form of the governing Helmholtz

equation will be more effective than its first-order counterpart. Therefore, the polynomial component is omitted because

in this case the source term O kx� xjk2
� �

u has a very small magnitude (much smaller than for f ¼ 0) and therefore is not

expected to significantly contribute to the solution of the BVP (1).

Throughout the remainder of this paper, a quadrilateral DEM element with nw functions per element for the approxima-
tion of the primal variable and nk discrete Lagrange multipliers per edge is denoted by Qf-nw-nk, where ‘‘Q’’ stands for quad-
rilateral and the integer superscript f characterizes the method used to design the spaces of approximation of this element. A
similar quadrilateral element which features however an additional polynomial field is denoted by Qf-nw-p-nk, where p de-
notes the degree of the polynomial field. Similarly, a standard finite element based on a tensor product of polynomial
approximation of degree p is denoted in the remainder of this paper by Qp. For example, the elements Qf-8-2 and Qf-16-
4 are graphically depicted in Fig. 1.

3.1. Approximation spaces based on the piece-wise constant approximation of the wavenumber

For f ¼ 0, the wavenumber in Eq. (11) becomes constant within an element Xj and the plane waves with j � jðxjÞ solve
the corresponding homogeneous equation. Hence in this case, the DEM approximation space Uh is constructed as
Uh ¼ Ue � bQ p ð12Þ
where bQ p is the discontinuous equivalent of the tensor-product polynomial space Qp,
Ue ¼ uh 2 L2ðXÞ : uhðxÞjXj
¼
Xnw;j

q¼1

eijðxjÞdjq �xujq;xj 2 Xj;ujq 2 C; j ¼ 1; . . . ;nel

( )
; ð13Þ
and nw;j denotes the number of plane wave functions in the element Xj. In the absence of some a priori knowledge of the
solution, nw;j is chosen to have the same value nw in all elements of the mesh, the angles /jq are typically chosen to be uni-
formly distributed and the same in all elements – i.e., /jq ¼ ðq� 1Þ2p=nw; q ¼ 1; . . . ;nw; j ¼ 1; . . . ;nel.

The space (13) described above follows the idea suggested in the founding papers of DEM [4,5] for constructing an enrich-
ment basis when the governing equation has variable coefficients and the homogeneous form of its constant coefficient
counterpart has analytical free-space solutions. This idea consists in freezing within each element the variable coefficients
so that the aforementioned free-space solutions can be used to construct a basis of enrichment functions. Furthermore, the
choice (13) is the same as that adopted in [7,8] for constructing DEM elements for the solution of the Helmholtz equation
with a constant wavenumber. Hence, the approximation space for the Lagrange multipliers is chosen here to be virtually
Fig. 1. The quadrilateral elements Qf-8-2 (left) and Qf-16-4 (right).



R. Tezaur et al. / Comput. Methods Appl. Mech. Engrg. 268 (2014) 126–140 131
the same as that developed in [7,8], with the exception that the wavenumber is allowed in this case to vary along an element
edge. This leads to
Wh ¼ kh 2 W : kh xðsÞð ÞjCjk
¼
Xnk

q¼1

eijðxðsÞÞcqskjk;q;xðsÞ 2 Cjk; kkj;q 2 C; j; k ¼ 1; . . . ;nel

( )
; ð14Þ
where s is the curvilinear abscissa along an edge and cq are coefficients, determined by an optimization procedure (see [7,8])
and given below.

Using the templates of the approximation spaces (12) and (14) with specific combinations of nw and nk, the DEM elements
Q0-4-p-1, Q0-8-p-2, Q0-12-p-3, Q0-16-p-4, and Q0-20-p-5 are constructed for the solution of the Helmholtz equation with a
spatially variable wavenumber. Here, the superscript 0 refers to f ¼ 0. The counterparts of these elements that do not include
the discontinuous polynomial contribution bQ p, i.e. where Uh ¼ Ue, are the elements Q0-4-1, Q0-8-2, Q0-12-3, Q0-16-4, and
Q0-20-5. As stated earlier, these elements are considered here only for the purpose of highlighting the importance of the
polynomial contribution. For a constant wavenumber, the approximation spaces given in (13) and (14) simplify to those pro-
posed in [7,8]. Consistently with this observation, the DEM elements Q0-4-1, Q0-8-2, and Q0-16-4 simplify in this case,
respectively, to the elements Q-4-1, Q-8-2, and Q-16-4 introduced in [6–8]. The DEM element Q0-12-3 becomes identical
to the element Q-12-3 introduced in [37], and the element Q0-20-5 is added here for the first time. It is also noted that
for the case of a constant wave number, all aforementioned DEM elements were shown to possess good approximation
and stability properties. Here, their generalization to the case of spatially variable wavenumbers is equipped with the fol-
lowing values of the coefficients cq introduced in (14).

� Q0-4-p-1 and Q0-4-1: c1 ¼ 0.
� Q0-8-p-2 and Q0-8-2: c1 ¼ �0:5; c2 ¼ 0:5.
� Q0-12-p-3 and Q0-12-3: c1 ¼ �0:707; c2 ¼ 0; c3 ¼ 0:707.
� Q0-16-p-4 and Q0-16-4: c1 ¼ �0:75; c2 ¼ �0:2; c3 ¼ 0:2; c4 ¼ 0:75.
� Q0-20-p-5 and Q0-20-5: c1 ¼ �0:9; c2 ¼ �0:5; c3 ¼ 0:0; c4 ¼ 0:5; c5 ¼ 0:9.

3.2. Approximation spaces based on the piece-wise linear approximation of the wavenumber: the Airy functions

For f ¼ 1, the wavenumber varies linearly within the element. Motivated by the plane waves used in the constant wavenum-
ber case, a basis of solutions resembling plane waves propagating in uniformly distributed directions is sought. To derive such a
function for a particular direction, a local coordinate system aligned with the direction is considered and free-space solutions of
the homogeneous form of Eq. (11) are obtained analytically using the method of separation of variables. More basis functions
can then be created by considering different angles of rotation. To this effect, consider the coordinate system ð~x; ~yÞ centered at
the linearization point xj ¼ ðxj; yjÞ and rotated by an angle / with respect to the global coordinate system – that is,
~x
~y

� �
¼

cos / � sin /

sin / cos /

� �
x� xj

y� yj

" #
:

In this rotated coordinate system, the linearized Helmholtz equation can be rewritten as
Duþ ða~xþ b~yþ cÞu ¼ 0; ð15Þ
where
a ¼ @j
2

@~x
ð0;0Þ; b ¼ @j

2

@~y
ð0;0Þ; and c ¼ j2ð0;0Þ:
Searching for a solution of this equation of the form
uð~x; ~yÞ ¼ Fð~xÞGð~yÞ ð16Þ
leads to
F 00

F
þ a~xþ c

� �
¼ � G00

G
þ b~y

� �
� d; ð17Þ
where F 00 and G00 denote the second derivatives of F and G with respect to their variables, respectively, and d 2 R is a free
parameter. Eq. (17) give rise to the ordinary differential equations
F 00 þ a~xþ c� dð ÞF ¼ 0 and ð18Þ

G00 þ b~yþ dð ÞG ¼ 0; ð19Þ
which are two variants of the Airy equation [30]. The reader can verify that the following functions are solutions of the above
equations
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Fð~xÞ ¼
C1Ai �a~x�cþd

a2=3

� �
þ C2Bi �a~x�cþd

a2=3

� �
a – 0

C1 cos
ffiffiffiffiffiffiffiffiffiffiffi
c� d

p
~x

	 

þ C2 sin

ffiffiffiffiffiffiffiffiffiffiffi
c� d

p
~x

	 

a ¼ 0

8<: ð20Þ
and
Gð~yÞ ¼
D1Ai �b~y�d

b2=3

� �
þ D2Bi �b~y�d

b2=3

� �
b – 0

D1 cos
ffiffiffi
d
p

~y
� �

þ D2 sin
ffiffiffi
d
p

~y
� �

b ¼ 0

8><>: ; ð21Þ
where Aið�Þ and Bið�Þ denote the so-called Airy functions and C1; C2; D1; D2 are arbitrary constants.
The Airy functions Ai and Bi are displayed in Fig. 2. They are oscillatory on the negative axis. For x! �1, they can be

related to scaled sine and cosine functions.
There is a lot of freedom in selecting the constants in Eqs. (20) and (21). In the context of this work, free-space solutions of

the homogeneous form of Eq. (11) with f ¼ 1 in a form close to that of a plane wave are sought. In the rotated coordinate
system, such a solution is oscillatory along ~x rather than decaying, and varies only slowly in the ~y direction. These consid-
erations lead to choosing d ¼ 0; Gð0Þ ¼ 1, and G0ð0Þ ¼ 0, which determines uniquely the constants D1 and D2. Then, two func-
tions uð~x; ~yÞ are obtained from (16) by choosing (C1 ¼ 1;C2 ¼ 0) and (C1 ¼ 0;C2 ¼ 1) in (20). These are denoted here by
Aiðxj;/; xÞ and Biðxj;/; xÞ, respectively, and referred to as Airy (plane) waves. Their parameters xj and / underline their
dependence on the linearization point and the rotation of the coordinate system. Both functions are displayed in Fig. 3
for j2ð0;0Þ ¼ 20 and rj2ð0;0Þ ¼ ð4;0Þ, and for / ¼ 0 (top) and / ¼ p=2 (bottom). For / ¼ 0, both Airy plane waves behave
like a plane wave propagating in the x direction with a variable wavenumber. For / ¼ p=2, both Airy plane waves propagate
in the y direction but also exhibit some variation in the x direction.

Using the Airy plane waves derived above, the enrichment space of DEM (discrete subspace of (2)) is constructed as
follows
Uh ¼ uh 2 L2ðXÞ : uhðxÞjXj
¼
Xnw;j=2

q¼1

Aiðxj;/jq; xÞujq þ Biðxj;/jq; xÞv jq;xj 2 Xj;ujq; v jq 2 C; j ¼ 1; . . . ;nel

( )
: ð22Þ
Again, in the absence of some a priori knowledge of the solution, the parameters nw;j are set to nw;j ¼ nw, the number of
enrichment functions per element nw is chosen to be an even number, and the angles /jq are chosen to be the same in all
elements and uniformly distributed between 0 and p – i.e., /jq ¼ ðq� 1Þp=ðnw=2Þ; q ¼ 1; . . . ;nw=2; j ¼ 1; . . . ;nel.

For a ¼ 0 in (20), F becomes a linear combination of sine and cosine functions that spans the same subspace as two plane
waves. More specifically, cos

ffiffifficp ~x
	 


and sin
ffiffifficp ~x

	 

span the same subspace as ei

ffiffi
c
p

~x ¼ ei
ffiffi
c
p

x�ðcos /;sin /Þ and e�i
ffiffi
c
p

~x

¼ ei
ffiffi
c
p

x�ðcosðpþ/Þ;sinðpþ/ÞÞ, respectively. If b ¼ 0, then G ¼ 1 and the Airy basis functions become independent of ~y. Thus, for
a ¼ b ¼ 0, the proposed basis is equivalent to the basis of plane waves.

Like the space of enrichment functions, the space of Lagrange multipliers is modeled here after its counterpart con-
structed for the case of a constant wavenumber. In the latter case, each Lagrange multiplier basis function can be interpreted
as the normal derivative of a plane wave propagating at an angle w with the interface between two elements (for example,
see (14) with a constant wavenumber jðxðsÞÞ ¼ jÞ – that is, a function of the form found in the enrichment space. Two plane
waves propagating at the angles �w give rise to the same Lagrange multiplier function on the interface. This property is
desirable because it makes the construction of the Lagrange multiplier basis functions independent of the order in which
two elements sharing an edge are processed.

It turns out that for the case of a variable wavenumber, constructing the Lagrange multiplier basis functions directly from
Aið�; �; xÞ and Bið�; �; xÞ does not provide the desired invariance property described above. Indeed, if hjk denotes the angle
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Fig. 2. Airy functions Ai and Bi.



Fig. 3. Airy plane waves: left to right and top to bottom, Aiðð0;0Þ;0; xÞ, Biðð0;0Þ;0; xÞ, Aiðð0;0Þ;p=2; xÞ, Biðð0;0Þ;p=2; xÞ for j2ð0;0Þ ¼ 20 and
rj2ð0;0Þ ¼ ð4;0Þ.
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between the interface Cjk and the x-axis, and xjk is a reference point for the linearization of the wavenumber j introduced on
this interface for the sake of constructing the Lagrange multiplier basis functions, then
@Aiðxjk; hjk þ w; �Þ
@m

–
@Aiðxjk; hjk � w; �Þ

@m
; and

@Biðxjk; hjk þ w; �Þ
@m

–
@Biðxjk; hjk � w; �Þ

@m
:

This issue can be addressed by adopting an arithmetic average of the normal derivatives of the Airy plane waves. Because of
the construction process of these waves described above, this issue can also be addressed by working with an arithmetic
average of these waves themselves. However, it turns out that averaging directly the Airy plane waves associated with
the angles 	w is not necessarily a good idea because occasionally, these waves can be in opposite phases. Therefore, the ap-
proach chosen here for addressing the invariance issue highlighted above begins with addressing the opposite phase prob-
lem by combining first the functions Ai and Bi as follows
Ciðxjk; hjk � w; �Þ � c�A Aiðxjk; hjk � w; �Þ þ c�B Biðxjk; hjk � w; �Þ
and

Siðxjk; hjk � w; �Þ � d�A Aiðxjk; hjk � w; �Þ þ d�B Biðxjk; hjk � w; �Þ:
Then, the constant coefficients cþA ; c�A ; cþB ; c�B ; dþA ; d�A ; dþB , and d�B are chosen so that the resulting functions Ciðxjk; hjk � w; �Þ
and Siðxjk; hjk � w; �Þ resemble the sine and cosine functions, respectively, near the point xjk along the lines at the angles �w
with the interface Cjk, i.e.,
Ciðxjk; hjk � w; xjkÞ ¼ 1; and Ci;hjk�wðxjk; hjk � w; xjkÞ ¼ 0;
and
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Siðxjk; hjk � w; xjkÞ ¼ 0; and Si;hjk�wðxjk; hjk � w; xjkÞ ¼ 1:
In the above equations, f;hjk�w denotes the derivative of f in the direction of the vector cos hjk � w
	 


; sin hjk � w
	 
	 


. Finally, two
Lagrange multiplier basis functions corresponding to each sampled value of the angle w are formed – one as the average of
the normal derivatives of the functions Ciðxjk; hjk � w; �Þ and the other as an average of the normal derivatives of the functions
Siðxjk; hjk � w; �Þ.

In summary for f ¼ 1, the proposed space of enrichment functions of DEM is that given in (22), and the proposed corre-
sponding space of approximation of the Lagrange multiplier field is
Wh
a ¼ kh 2 W : kh xð ÞjCjk

¼
Xdnk=2e

q¼1

@Ci xjk; hjk þ wq; x
	 


@m
þ
@Ci xjk; hjk � wq; x
	 


@m

 !
kjk;q

(

þ
Xbnk=2c

q¼1

@Si xjk; hjk þ wq; x
	 


@m
þ
@Si xjk; hjkwq; x
	 


@m

 !
ljk;q;xjk 2 Cjk; kjk;q 2 C;ljk;q 2 C; j; k ¼ 1; . . . ;nel

)
: ð23Þ
Using these approximation spaces, the DEM elements Q1-4-1, Q1-8-2, Q1-12-3, Q1-16-4, and Q1-20-5, where the superscript
1 refers to f ¼ 1, are constructed for the solution of the Helmholtz equation with a spatially variable wavenumber. These
elements do not contain the contribution of the polynomial approximation Qp for the reasons highlighted in Section 3. They
are equipped with the following values of the angles wq introduced in (23)

� Q1-4-1: w1 ¼ p=2.
� Q1-8-2: w1 ¼ arccosð0:5Þ.
� Q1-12-3: w1 ¼ arccosð0:707Þ; w2 ¼ p=2.
� Q1-16-4: w1 ¼ arccosð0:75Þ; w2 ¼ arccosð0:2Þ.
� Q1-20-5: w1 ¼ arccosð0:9Þ; w2 ¼ arccosð0:5Þ; w3 ¼ p=2.

Note that the elements with an odd number of Lagrange multiplier degrees of freedom per edge, nk, use the last angle p=2 to
generate only one Lagrange multiplier basis function (due to the ceiling/floor function in (23)) that is close to a constant
function. Each of the other angles gives rise to two Lagrange multiplier basis functions.

4. Performance assessment

4.1. Model problem and computational setup

Here, the performance of the DEM elements proposed in the previous sections for the solution of Helmholtz problems
with spatially varying wavenumbers is assessed. To this effect, the BVP (1) is considered for modeling the sound-hard scat-
tering by a disk of radius 0.5 of a planar incident wave eijdI �x, where dI ¼ ½1;0
 is a unitary 2D vector representing the direc-
tion of incidence. The scatterer is assumed to be submerged in an acoustic fluid where the speed of sound varies in space. The
computational domain X is chosen to be the two-dimensional domain delimited by the scatterer boundary @XN (the circle of
radius of 0.5 where the Neumann boundary condition is applied with gN ¼ 0), and the artificial boundary @XR (the circle of
radius 1.5 where the Robin boundary condition is applied with gR ¼ ijðm � dI � 1:0ÞeijdI �x (see Fig. 4). Hence, the solution of
the BVP (1) represents in this case the total pressure in the fluid medium. Two spatial distributions of the wavenumber are
considered in the subsections below.

A sequence of increasingly refined uniform meshes are constructed for the chosen computational domain: they are char-
acterized by nr elements in the radial direction, and nh ¼ 6nr in the tangential direction. The number of elements in the radial
direction, nr , is varied between 8 and 80. Because an analytical solution of the chosen model problem is not available, a ref-
erence solution is computed instead using an even finer mesh with nr ¼ 100 and bi-pentic elements Q5. Hence, this reference
solution is computed using 1:5 million degrees of freedom.

In order to capture accurately the curved boundaries of the chosen computational domain, all considered polynomial ele-
ments Qp are isoparametric, and the same geometrical mapping characterizing the isoparametric polynomial element of de-
gree five is used for approximating these boundaries in all considered DEM elements.

The performance of each considered element is assessed by computing the relative error of the solution it delivers with
respect to the reference solution. This relative error is evaluated on the set of nodes that are common to both the reference
mesh and the computational mesh used for generating the numerical solution being assessed. If this solution is computed
using DEM, its nodal values are defined by reconstructing at this node the DEM solutions associated with all elements at-
tached to this node and averaging them. Hence, if rðjÞ and nðjÞ; j ¼ 1; . . . ;nm denote the indices of degrees of freedom of
matching nodes of the reference mesh and mesh under consideration, respectively, the relative error is computed as
Relative error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnm
j¼1ðu

ref
rðjÞ � unðjÞÞ

2

Pnm
j¼1uref 2

rðjÞ

vuuut :



Fig. 4. Finite computational domain for a 2D scattering problem and contour plot of the real part of the numerical solution for the wavenumber
jðxðrÞÞ ¼ 160� 80r.
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Static condensation is applied in both the considered DEM elements, whether these incorporate the discontinuous polyno-
mial approximation or not, and the polynomial elements Qp for which the degrees of freedom pertaining to interior nodes are
eliminated. Table 1 summarizes the resulting degree of freedom counts for the considered elements and the mesh topology
described above. These degree of freedom counts imply that the standard bi-polynomial element of degree p, Qp, generates
asymptotically slightly fewer degrees of freedom than a DEM element with nk ¼ p Lagrange multipliers per edge. However,
the last column of Table 1 reveals that the matrices arising from a discretization by DEM are significantly sparser (see also
[37]). For these reasons, and because for a constant wavenumber the elements Qp and Q0-4p-p were shown to exhibit the
same convergence rate [7], each DEM element with nk ¼ p Lagrange multipliers is considered as a ‘‘comparable’’ to the stan-
dard element Qp.

4.2. Radially variable wavenumber problem

The wavenumber is assumed to vary in space as
jðxðrÞÞ ¼ 160� 80r; ð24Þ
where r is the distance from the center of the disk. This wavenumber: (1) is in the medium frequency regime, and (2) de-
creases in the radial direction from 120 next to the scatterer, to 40 on the artificial boundary. A numerical solution of the
considered BVP with the variable wavenumber (24) is illustrated in Fig. 4.
Table 1
Computational complexity of the considered DEM and polynomial elements for a nr � nh uniform mesh.

Element type Degree of freedom count Maximum stencil width

Qp ðnr þ 1Þnh þ ð2nrnh þ 1Þðp� 1Þ � nrnhð2p� 1Þ 9þ 12ðp� 1Þ
Q0-nw-nk ð2nrnh � 1Þnk 7nk

Q0-nw-p-nk ð2nrnh � 1Þnk 7nk

Q1-nw-nk ð2nrnh � 1Þnk 7nk
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Fig. 5. Convergence comparison of the DEM elements Q0-nw-nk and the standard elements Qp with p ¼ nk for jðxðrÞÞ ¼ 160� 80r.

10 20 30 40 50 60 80

10−4

10−3

10−2

10−1

100

nr

R
el

at
iv

e 
er

ro
r

Q2
Q3
Q4
Q5

Q−8−2
Q−12−3
Q−16−4
Q−20−5

Fig. 6. Convergence comparison of the DEM elements Q-nw-nk and the standard elements Qp with p ¼ nk for j ¼ 80.
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4.2.1. Performance assessment of the DEM elements Q0-nw-nk and Q0-nw-3-nk

First, each element Q0-nw-nk is benchmarked against its comparable standard polynomial finite element Qp with p ¼ nk.
The lowest-order elements Q0-4-1 and Q1 are not considered as they are known to be computationally inefficient in the med-
ium frequency regime. Fig. 5 shows that the DEM elements Q0-nw-nk deliver a respectable performance. For example, the
DEM elements Q0-8-2 and Q0-12-3 outperform their comparable elements Q2 and Q3, respectively, as they achieve the same
relative error using, in each case, a twice lower mesh resolution. However, Fig. 5 also reveals that the higher-order DEM ele-
ments Q0-nw-nk do not achieve for this problem a convergence improvement (cf. Section 3). Indeed, when the same BVP as
above is considered but the wavenumber is fixed to the constant value j ¼ 80, Fig. 6 shows that all of the previously devel-
oped DEM elements Q-8-2, Q-12-3, Q-16-4, and the newly added element Q-20-5 outperform their polynomial counterparts
Q2, Q3, Q4, and Q5, respectively. More specifically, these DEM elements deliver in this case the same accuracy as their stan-
dard polynomial counterparts using however a more than twice lower mesh resolution — that is, four times fewer degrees of
freedom.
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Next, the performance of the DEM elements Q0-nw-3-nk is evaluated for the same BVP characterized by the variable wave-
number (24). The convergence results reported in Fig. 7 show that, as expected, adding the discontinuous bi-cubic polyno-
mials to the approximation functions of the DEM elements Q0-nw-nk improves in this case significantly their performance at
a modest increase of their computational complexity (thanks to the element-level static condensation). For example, the ele-
ment Q0-16-3-4 delivers the relative error of 10�4 using 27 elements in the radial direction, whereas its comparable bi-quar-
tic continuous Galerkin element Q4 requires more than 55 elements in this direction to achieve the same accuracy. This
performance level of the DEM elements Q0-nw-3-nk for spatially variable wavenumbers is similar to the performance level
of the DEM elements Q-nw-nk for constant wavenumbers documented in the literature and Fig. 6.

4.2.2. Performance assessment of the DEM elements Q1-nw-nk

Finally, the performance of the DEM elements Q1-nw-nk based on the Airy plane waves is assessed against that of the stan-
dard polynomial finite elements Qp with p ¼ nk. It is noted that the Airy waves solve exactly a problem where the square of
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Fig. 10. The wavenumber distribution given by (25) (left); the pressure magnitude of the numerical solution (right).
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the wavenumber is linear. However, for the problem at hand, the wavenumber itself varies linearly. Fig. 8 shows that each
DEM element Q1-nw-nk outperforms its comparable polynomial finite element Q p¼nk

as it delivers the same accuracy but
using a twice lower mesh resolution. A comparison with Fig. 7 also shows that each DEM element Q1-nw-nk delivers roughly
the same performance as the DEM element Q0-nw-3-nk.

For completeness, the performance comparison of the DEM elements Q1-nw-nk, the DEM elements Q0-nw-3-nk, and the
standard elements Qp with p ¼ nk is illustrated in Fig. 9 in terms of degree of freedom count to achieve the same accuracy.
The reader can observe that overall, the DEM elements Q0-nw-3-nk and Q1-nw-nk perform similarly, and each of them requires
3 to 5 times fewer degrees of freedom than their comparable standard polynomial element Q p¼nk

to deliver the same accu-
racy. Based on the two-dimensional comparative study performed in [37] for the case of a constant wavenumber, these sav-
ings can be reasonably expected to translate into more than one order of magnitude speedup of the global system solution
time.

4.3. Asymmetrically variable wavenumber problem

The wavenumber is assumed to vary in space as
jðx; yÞ ¼ 75þ 25 cos
2p
3

x0
� �

þ 10 cos
4p
3

y0 þ p
� �

;
x0

y0

� �
¼

cos p
6 sin p

6

� sin p
6 cos p

6

" #
x

y
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Fig. 11. Comparison of the relative errors achieved for a given degree of freedom count by the DEM elements Q0-nw-3-nk and Q1-nw-nk and the standard
elements Qp with p ¼ nk for the wavenumber given by (25).
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This wavenumber varies from 40 to 110 and its distribution within the computational domain is depicted in Fig. 10 (left). The
corresponding numerical solution of the considered BVP is shown in Fig. 10 (right).

The performance comparison of the DEM elements Q1-nw-nk, the DEM elements Q0-nw-3-nk, and the standard elements Qp

with p ¼ nk is illustrated in Fig. 11. For brevity, only the performance in terms of degrees of freedom is included here for this
computational example. As in the previous computational example (cf. Fig. 9), the performance of the DEM elements Q0-nw-
3-nk and Q1-nw-nk is similar, and 3 to 5 times fewer degrees of freedom deliver the accuracy of the comparable Galerkin poly-
nomial element Qp¼nk

.

5. Conclusions

In this paper, efficient DEM elements for the solution of time-harmonic wave propagation problems with a spatially var-
iable wavenumber in the medium frequency regime have been constructed using free-space solutions of approximations of
the underlying equation. The considered approximations of the Helmholtz equation in two dimensions have been obtained
by successive Taylor series expansions of the wavenumber around a reference point. This has led to plane wave and Airy
wave enrichment functions based on the piece-wise constant and linear approximations of the square of the wavenumber,
respectively. Several two-dimensional elements based on these basis functions have been constructed. Their performance
has been assessed and contrasted with that of the standard polynomial finite elements of comparable computational com-
plexity for a benchmark problem modeling the sound-hard scattering by a disk of an incident wave in the medium frequency
regime. It was found that the proposed DEM elements deliver the same accuracy as their counterpart polynomial elements
using however three to five times fewer degrees of freedom, thereby validating the technical soundness of the proposed
extension of the concept of free-space solutions. The ideas presented in this paper can be extended to three dimensions
and this application will be presented in a future work.
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