
Applied Mathematics and Computation 249 (2014) 569–596
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
Construction of energy-stable projection-based reduced order
models
http://dx.doi.org/10.1016/j.amc.2014.10.073
0096-3003/Published by Elsevier Inc.

⇑ Corresponding author.
Irina Kalashnikova a,⇑, Matthew F. Barone b, Srinivasan Arunajatesan b,
Bart G. van Bloemen Waanders c

a Quantitative Modeling and Analysis Department, Sandia National Laboratories, P.O. Box 969, MS 9159, Livermore, CA 94551-0969, United States
b Aerosciences Department, Sandia National Laboratories, P.O. Box 5800, MS 0825, Albuquerque, NM 87185-0825, United States
c Optimization and Uncertainty Quantification Department, Sandia National Laboratories, P.O. Box 5800, MS 1318, Albuquerque, NM 87185-1318, United States
a r t i c l e i n f o

Keywords:
Reduced order model (ROM)
Proper orthogonal decomposition (POD)/
Galerkin projection
Linear hyperbolic/incompletely parabolic
systems
Linear time-invariant (LTI) systems
Numerical stability
Lyapunov equation
a b s t r a c t

An approach for building energy-stable Galerkin reduced order models (ROMs) for linear
hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using
continuous projection is developed. This method is an extension of earlier work by the
authors specific to the equations of linearized compressible inviscid flow. The key idea is
to apply to the PDEs a transformation induced by the Lyapunov function for the system,
and to build the ROM in the transformed variables. For linear problems, the desired
transformation is induced by a special inner product, termed the ‘‘symmetry inner
product’’, which is derived herein for several systems of physical interest. Connections
are established between the proposed approach and other stability-preserving model
reduction methods, giving the paper a review flavor. More specifically, it is shown that a
discrete counterpart of this inner product is a weighted L2 inner product obtained by
solving a Lyapunov equation, first proposed by Rowley et al. and termed herein the
‘‘Lyapunov inner product’’. Comparisons between the symmetry inner product and the
Lyapunov inner product are made, and the performance of ROMs constructed using
these inner products is evaluated on several benchmark test cases.

Published by Elsevier Inc.
1. Introduction

Numerous modern-day engineering problems require the simulation of complex systems with tens of millions or more
unknowns. Despite improved algorithms and the availability of massively parallel computing resources, ‘‘high-fidelity’’
models are, in practice, often too computationally expensive for use in a design or analysis setting. The continuing push
to incorporate into modeling efforts the quantification of uncertainties, critical to many science and engineering
applications, can present an intractable computational burden due to the high-dimensional systems that arise. This situation
has prompted researchers to develop reduced order models (ROMs): models constructed from high-fidelity simulations that
retain the essential physics and dynamics of their corresponding full order models (FOMs), but have a much lower
computational cost. Since ROMs are, by construction, small, they can enable uncertainty quantification (UQ) as well as
on-the-spot decision making and/or control.

In order to serve as a useful predictive tool, a ROM should possess the following properties: consistency (with respect to
its corresponding high-fidelity model), stability, and convergence (to the solution of its corresponding high-fidelity model).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.10.073&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.10.073
http://dx.doi.org/10.1016/j.amc.2014.10.073
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


570 I. Kalashnikova et al. / Applied Mathematics and Computation 249 (2014) 569–596
The second of these properties, namely numerical stability, is particularly important, as it is a prerequisite for studying the
convergence and accuracy of a ROM. It is well-known that popular model reduction approaches known as the proper orthog-
onal decomposition (POD) method [24,25,18] and the balanced proper orthogonal decomposition (BPOD) method [30,22]
lack, in general, an a priori stability guarantee. In [29], Amsallem et al. suggest that POD ROMs constructed for linear
time-invariant (LTI) systems in descriptor form tend to possess better numerical stability properties than POD ROMs con-
structed for LTI systems in non-descriptor form. Although heuristics such as these exist, it is in general unknown a priori
if a ROM constructed using POD or BPOD will preserve the stability properties of the high-fidelity system from which the
model was constructed. There does exist a model reduction technique that has a rigorous stability guarantee, namely bal-
anced truncation [28,10]; however, the computational cost of this method, which requires the computation and simulta-
neous diagonalization of infinite controllability and observability Gramians, makes balanced truncation computationally
intractable for systems of very large dimensions (i.e., systems with more than 10,000 degrees of freedom [23]).

The importance of obtaining stable ROMs has been recognized in recent years by a number of authors. It is shown by
Patera, Veroy and Rozza in [26,27] that a stable ROM can be constructed using the reduced basis method. In [23], Rowley
et al. show that Galerkin projection preserves the stability of an equilibrium point at the origin if the ROM is constructed
in an ‘‘energy-based’’ inner product. In [6,7], Barone et al. demonstrate that a symmetry transformation leads to a stable for-
mulation for a Galerkin ROM for the linearized compressible Euler equations [6,7] with solid wall and far-field boundary con-
ditions. In [1], Serre et al. propose applying the stabilizing projection developed by Barone et al. in [6,7] to a skew-symmetric
system constructed by augmenting a given linear system with its adjoint system. This approach yields a ROM that is stable at
finite time even if the solution energy of the full-order model is growing.

The methods described above derive (a priori) a stability-preserving model reduction framework that is specific to a par-
ticular equation set. There exist, in addition to these techniques, approaches which stabilize an unstable ROM through a
post-processing (a posteriori) stabilization step applied to an unstable algebraic ROM system. Ideally, the stabilization is such
that it will only minimally modify the ROM. In [5], Amsallem et al. propose a method for stabilizing projection-based linear
ROMs through the solution of a small-scale convex optimization problem. In [37], a set of linear constraints for the left-pro-
jection matrix, given the right-projection matrix, are derived by Bond et al. to yield a projection framework that is guaran-
teed to generate a stable ROM. An approach for stabilizing unstable ROMs for LTI systems, termed ROM stabilization via
optimization-based eigenvalue reassignment, was proposed by Kalashnikova et al. in the recent work [53]. In this approach,
the unstable eigenvalues of an unstable ROM are modified through the numerical solution of a constrained nonlinear least-
squares optimization problem formulated such that the error in the stabilized ROM output is minimal. In [38], a ROM sta-
bilization methodology that achieves improved accuracy and stability through the use of a new set of basis functions rep-
resenting the small, energy-dissipation scales of turbulent flows is derived by Balajewicz et al. In [34], Zhu et al. derive
some large eddy simulation (LES) closure models for POD ROMs for the incompressible Navier–Stokes equations, and dem-
onstrate numerically that the inclusion of these LES terms yields a ROM with increased numerical stability (albeit at the sac-
rifice of consistency of the ROM with respect to the direct numerical simulation (DNS) from which the ROM is constructed).

In this article, several approaches to building stable ROMs for linear systems, both in the continuous as well as in the dis-
crete projection setting, are presented, connected and extended. The article has a review flavor, but contains several new
contributions, most notably the following:

� The energy-stable continuous projection ROM method developed specifically for the equations of linearized compressible
inviscid flow in [6,7] is extended to generic systems of PDEs of the hyperbolic or incompletely parabolic type.
� A stability preserving symmetry inner product is derived for several physical systems (the wave equation, the linearized

shallow water equations, the linearized compressible Euler equations, the linearized compressible Navier–Stokes
equations).
� Connections between the proposed energy-stable continuous projection method and other model reduction techniques

with an a priori stability guarantee, e.g., a discrete projection approach involving a Lyapunov equation-based inner prod-
uct introduced by Rowley et al. in [23], are established using the concept of energy stability.
� Numerical studies evaluating the performance of ROMs constructed in the energy inner products described herein are

performed.

The remainder of this paper is organized as follows. The first part consists of some preliminaries: projection-based model
reduction (in particular, the POD1/Galerkin method) is overviewed (Section 2), and several notions of stability (energy-stability,
Lyapunov stability, asymptotic stability, exponential stability, time-stability) are defined (Section 3). Attention is then turned to
the construction of energy-stable ROMs for linear systems of PDEs using continuous projection (Section 4). The energy-stability
preserving model reduction approach developed specifically for the equations of linearized compressible inviscid flow in [6,7] is
generalized. Examples of this inner product are given for several systems of physical interest, and some numerical results are
presented. Next, it is shown that a certain transformation applied to a generic linear hyperbolic or incompletely parabolic set of
PDEs and induced by the Lyapunov function for these equations will yield a Galerkin ROM that is stable for any choice of
1 For concreteness, it is assumed herein that the reduced basis is constructed via the POD method, as the POD is a popular method for computing reduced
bases that is feasible even for very large systems but can give rise to unstable ROMs. It is emphasized that the energy-stability results discussed herein hold for
any choice of reduced basis, not just the POD basis, however.
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reduced basis. It is then shown that, for many PDEs, the desired transformation is induced by a special weighted L2 inner prod-
uct, termed the ‘‘symmetry inner product’’. It is also demonstrated that a discrete weighted L2 inner product first derived by
Rowley et al. in [23] and termed herein the ‘‘Lyapunov inner product’’ is a discrete counterpart of the symmetry inner product.
The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system
arising from the discretization of a linear system of PDEs in space. Numerical studies of POD ROMs constructed in the Lyapunov
inner product are performed. A unifying summary of the energy-stability preserving model reduction approaches described
within this paper is given Section 6, along with some conclusions. It is anticipated that this discussion will aid the reader in
selecting the most appropriate model reduction methodology for his/her application.

2. Projection-based model reduction

In this section, several approaches to building projection-based reduced order models are reviewed. Attention is
restricted to LTI systems. A system is called time-invariant if the output response for a given input does not depend on when
that input is applied [14].

At the continuous level, an LTI system can be represented by a PDE (or system of PDEs) of the form
_xðtÞ ¼ L ðxðtÞÞ þL cðuðtÞÞ;
yðtÞ ¼ L oðxðtÞÞ;

ð1Þ
in an open bounded domain X, subject to some boundary conditions on the boundary of X, denoted by @X, written abstractly
as
L bðxðtÞÞ ¼ gðtÞ: ð2Þ
Here, t denotes time, x 2 Rn is called the state vector, u 2 Rp represents the vector of control variables, y 2 Rq is the mea-
sured signal or output, and the ‘�’ symbol denotes differentiation with respect to time, i.e., _x � @x

@t . The operator L : Rn ! Rn is
a smooth linear spatial-differential operator, i.e.,
L �
X
jmj6d

AmðtÞ@ðjmjÞm1 ...md
; ð3Þ
where Am 2 Rn�d; m ¼ m1; . . . ; mdð Þ is a multi-index, jmj ¼
Pd

i¼1mi, and @ðiÞm1 ...mi
denotes the ith derivative with respect to variables

m1; . . . ; mi, for i ¼ 1; . . . ; d, where d 2 N. The boundary operator L b : Rn ! Rn is a similar smooth linear spatial-differential
operator, and g 2 Rn is a smooth function specifying the boundary data. The boundary conditions (2) can be of the Dirichlet,
Neumann or Robin type, or a combination of these three types. It is assumed that the boundary conditions (2) are selected
such that the resulting initial boundary value problem ((1) with boundary conditions (2) and an initial condition) is well-
posed. The operators L c : Rp ! Rn and L o : Rn ! Rq are smooth linear mappings. The abstract operators L ; L b, L c and
L o are introduced to keep the discussion as general as possible, and used in subsequent analysis.

Suppose the PDE system (1) has been discretized in space using some numerical scheme, e.g., the finite element method.
The result will be a semi-discrete LTI system of the form:
_xNðtÞ ¼ AxNðtÞ þ BuPðtÞ
yQNðtÞ ¼ CxNðtÞ:

ð4Þ
Here, xN 2 RN is the discretized state vector, uP 2 RP is the discretized vector of control variables, and yQN 2 RQ is the dis-
cretized output; A 2 RN�N , B 2 RN�P and C 2 RQ�N are constant matrices (in particular, they are not functions of time t).

The general approach to projection-based model reduction consists of three steps, described below.

Step 1: Calculation of reduced trial and test bases, denoted by UM ¼ /1; . . . ;/Mð Þ and WM ¼ w1; . . . ;wMð Þ respectively, each
of order M, with M � N.
Step 2: Approximation of the solution to (1) by
xðtÞ �
XM

i¼1

xM;iðtÞ/i ¼ UMxMðtÞ; ð5Þ
where xM;iðtÞ are the unknown ROM coefficients or modal amplitudes, to be determined in solving the ROM.
Step 3: Substitution of the approximation (5) into the governing system (1) or (4) and projection of this system onto the
reduced test basis.

The result of this procedure is a ‘‘small’’ (size M � N) dynamical system that, for a suitable choice of reduced bases,
accurately describes the dynamics of the full order system for some set of conditions. The reduced bases UM 2 RN�M and
WM 2 RN�M are functions of space but not time, and are assumed to have full column rank. In the case that WM – UM , the
projection is referred to as a Petrov–Galerkin projection. Otherwise, if WM ¼ UM , the projection is referred to as a Galerkin
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projection. This terminology is introduced here as it will be shown later that the energy-stable model reduction approaches
derived in this work are effectively Petrov–Galerkin methods.

2.1. Calculation of the reduced bases (Step 1)

There exist a number of approaches for calculating the reduced basis modes (Step 1 of the model reduction), e.g., the POD
method [24,25,18], the BPOD method [30,22], the balanced truncation method [28,10], the reduced basis method [26,27];
also methods based on goal-oriented bases [20], generalized eigenmodes [36], and Koopman modes [39]. Attention is
restricted here to the POD basis, but it is noted that the energy-stability results derived in this paper hold for any choice
of reduced basis. The reason for the choice of the POD reduced basis is twofold. First, the POD is a widely used approach
for computing efficient bases for dynamical systems. Moreover, ROMs constructed via the POD/Galerkin method lack in gen-
eral an a priori stability guarantee (meaning POD/Galerkin ROMs would benefit from stability-preserving model reduction
approaches such as those developed herein).

Discussed in detail in Lumley [15] and Holmes et al. [18], POD is a mathematical procedure that, given an ensemble of
data and an inner product, denoted generically by ð�; �Þ, constructs a basis for the ensemble. This basis is optimal in the sense
that it describes more energy (on average) of the ensemble in the chosen inner product than any other linear basis of the
same dimension M. The ensemble fxk : k ¼ 1; . . . ;Kg is typically a set of K instantaneous snapshots of a numerical solution
field, taken for K values of a parameter of interest, or at K different times. Mathematically, POD seeks an M-dimensional
(M � K) subspace spanned by the set f/ig such that the projection of the difference between the ensemble xk and its pro-
jection onto the reduced subspace is minimized on average. It is a well-known result [6,18,33,32] that the solution to the
POD optimization problem reduces to the eigenvalue problem
2 We
R/ ¼ k/; ð6Þ
where R is a positive semi-definite matrix with its ði; jÞ entry given by Rij ¼ 1
K ðxi;xjÞ for 1 6 i; j 6 K. It can be shown [18,15]

that the set of M eigenfunctions, or POD modes, f/i : i ¼ 1; . . . ;Mg corresponding to the M largest eigenvalues of R is
precisely the desired basis. This is the so-called ‘‘method of snapshots’’ for computing a POD basis [24].

2.2. Approximation of solution in reduced basis (Step 2)

Once the reduced basis is computed, the solution xðtÞ is approximated as a linear combination of the reduced basis modes
(5) (Step 2). Given this approximation, the following error formula can be shown for the POD [18,33]:
1
K

XK

i¼1

xi �
XM

j¼1

xi;/j

� �
/j

�����
�����

�����
�����

2

¼
XJ

k¼Mþ1

kk; ð7Þ
where J ¼ dim x1; . . . ;xK
� �� �

, and where k1 P . . . P kJ > 0 are the positive eigenvalues of the operator R (6).
Typically, the size of the reduced basis is chosen based on an energy criterion. That is, M is selected to be the minimum

integer such that
EPODðMÞP tol; ð8Þ
where 0 6 tol 6 1 represents the snapshot energy represented by the POD basis, and
EPODðMÞ �
PM

i¼1kiPK
i¼1ki

: ð9Þ
2.3. Projection (Step 3)

There are two approaches for performing Step 3 of the model reduction: continuous and discrete projection. These
approaches are described, as well as compared and contrasted, in the present subsection. Stability-preserving methods
for constructing ROMs using these approaches will be detailed in Sections 4 and 5.

2.3.1. Model reduction via continuous projection
In the continuous projection approach [6,7], the continuous system of PDEs (1) is projected onto a continuous represen-

tation (discussed in more detail below) of the reduced test basis fwig
M
i¼1 2 Rn in a continuous inner product ð�; �Þ, for example,

the usual L2 inner product2
xð1Þ; xð2Þ
� �

¼
Z

X
xð1ÞT xð2ÞdX; ð10Þ
ighted variants of the L2 inner product are considered later in this work.
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where the xM;iðtÞ are the unknown ROM coefficients or modal amplitudes (so that xT
M � xM;1; . . . ; xM;Mð Þ), to be determined in

solving the ROM dynamical system (derived below).
Substituting (5) into (1), the following is obtained
XM

i¼1
_xM;iðtÞ/i ¼ L

XM

i¼1

xM;iðtÞ/i

 !
þL cðuðtÞÞ;

yQMðtÞ ¼ L o

XM

i¼1

xM;iðtÞ/i

 !
;

ð11Þ
where yQMðtÞ is the reduced approximation of the output.
Next, a reduced test basis fwig

M
i¼1 2 Rn is introduced, and the system of PDEs (11) is projected onto a continuous repre-

sentation of the reduced test basis modes wj for j ¼ 1;2; . . . ;M in the inner product ð�; �Þ to yield
XM

i¼1
_xM;iðtÞ wj;/i

� �
¼ wj;L

XM

i¼1

xM;iðtÞ/i

 ! !
þ wj;L cðuðtÞÞ
� �

;

yQMðtÞ ¼ L o

XM

i¼1

xM;iðtÞ/i

 !
;

ð12Þ
for j ¼ 1;2; . . . ;M. Typically, the reduced trial and test bases /i and wi are chosen to be orthonormal in the inner product ð�; �Þ,
so that ðwj;/iÞ ¼ dij, where dij denotes the Krönecker delta function. Invoking this property, as well as the linearity property of
the operators L and L o, (12) simplifies to
_xM;jðtÞ ¼
XM

i¼1

xM;iðtÞ wj;L ð/iÞ
� �

þ wj;L cðuðtÞÞ
� �

;

yQMðtÞ ¼
XM

i¼1

xM;iðtÞL oð/iÞ;
ð13Þ
for j ¼ 1;2; . . . ;M. The Eq. (13) define a set of M time-dependent ODEs for the modal amplitudes xM;iðtÞ in (5).
Note that, since Step 1 of the model reduction (Section 2.1) yields a discrete–valued basis UM , before applying the contin-

uous projection approach, this basis needs to be represented using a set of continuous basis functions. One way to do this is
to cast the discrete-valued POD modes as a collection of continuous finite elements. This procedure is outlined here, and
described in more detail in Section 4.4.1. Assume without loss of generality that the solution of the POD eigenvalue problem
(6) gives a set of basis vectors defined at the nodes of an associated mesh that can be broken up into nel disjoint finite ele-
ments Xe such that [nel

e¼1Xe ¼ X. Assume also (without loss of generality) that the continuous solution to (11) is scalar-valued.
Let /ijXj

e
denote the value of the ith basis function at the jth node of element Xe for i ¼ 1; . . . ;M and j ¼ 1; . . . ;nn, where nn is

the number of nodes of element Xe. Then, the finite element representation of the vector /i in the element Xe is:
/e
i ¼

Xnn

j¼1

NjðxÞ/ijXj
e
; ð14Þ
where NjðxÞ denotes the jth finite element shape function. Assembling the set of functions /e
i over the full set of elements

fXegnel
e¼1 gives a continuous representation of /i. A similar procedure can be applied to obtain a continuous representation

of the test basis WM . The integrals in (13) can then be evaluated numerically through the use of numerical quadrature. If
the integrands in (13) are polynomials, it is possible to select a quadrature rule to evaluate the integrals exactly.

2.3.2. Model reduction via discrete projection
In the discrete projection approach, the FOM ODE system (4) (the PDE system discretized in space) is projected onto a

discrete reduced test basis in a discrete inner product. Suppose this discrete inner product is the following weighted L2 inner
product:
xð1ÞN ;xð2ÞN

� �
P
¼ xð1ÞTN Pxð2ÞN ; ð15Þ
where P 2 RN�N is a symmetric positive-definite matrix. Let UM 2 RN�M and WM 2 RN�M denote the reduced trial and reduced
test bases for (4), respectively. Assume these matrices have full column rank, and are orthonormal in the inner product (15),
so that WT

MPUM ¼ IM , where IM denotes the M �M identity matrix. The first step in constructing a ROM for (4) using discrete
projection is to approximate the solution xNðtÞ by (5). Substituting (5) into (4), and projecting this system onto the reduced
test basis, the following M �M LTI system is obtained:
_xMðtÞ ¼ AMxMðtÞ þ BMuPðtÞ;
yQMðtÞ ¼ CMxMðtÞ;

ð16Þ
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where
AM ¼ WT
MPAUM;

BM ¼ WT
MPB;

CM ¼ CUM

ð17Þ
and where yQM is a reduced approximation of the output.

2.3.3. Continuous vs. discrete projection
In the majority of applications of reduced order modeling, the discrete projection approach is employed in constructing the

ROM. This discrete approach has the advantage that boundary condition terms present in the discretized equation set are
often (depending on the implementation) inherited by the ROM; that is, the ROM solution will satisfy the boundary conditions
of the FOM. Certain properties of the numerical scheme used to solve the full equations may be inherited by the ROM as well.
The discrete approach can be black-box, at least for linear systems of the form (4): it operates on the matrices A; B and C, so
that access to the high-fidelity code that was used to generate these matrices or the governing PDEs is not required provided
these matrices can be written out from the high-fidelity code. In contrast, the continuous projection approach is tied to the
governing PDEs – the continuous problem (1) needs to be translated to the discrete setting, e.g., by interpolating the reduced
basis modes and evaluating the continuous inner products in (13) using a numerical quadrature [6]. Although the continuous
approach is inherently an embedded method, its similarity to spectral numerical approximation methods allows the use of
analysis techniques employed by the spectral methods community [35,7].

Which of the two projection approaches described above (continuous vs. discrete projection) is preferred depends on the
application and the type of model reduction approach sought (e.g., embedded vs. black-box). The discussion in the remainder
of this paper is intended to aid the reader in selecting one of these approaches for his or her problem of interest.

Note that, regardless of which projection approach is used to build the ROM, the ROM dynamical system will have the
form (16), as (13) has this form when written as a matrix problem. The solution to the ROM is obtained by advancing
(16) forward in time using a time-integration scheme. Since the system considered here is linear, the projection terms in
(13) are not time-dependent. Hence, these terms can be pre-computed and stored in the offline stage of the model reduction
– in particular, they need not be re-computed at each time step of the online time-integration stage of the ROM.

3. Stability definitions

As stated in Section 1, one of the objectives of this paper is to present and establish connections between some model
reduction techniques that have an a priori stability guarantee. Before beginning this discussion, some general definitions
of stability that will be used in subsequent analysis are reviewed.

3.1. Energy-stability

The concept of energy-stability originated in the literature involving the numerical analysis of spectral and finite differ-
ence discretizations to time-dependent PDEs [45,8,12]. It has also appeared in the Galerkin finite element method literature,
e.g., [4,2], where the energy-method was employed to derive stable Galerkin methods for hyperbolic conservation laws. It is
well-known that physical systems admit a certain energy structure. The basic idea behind building energy-stable ROMs is
that a ROM constructed for such systems should preserve this energy structure. Among the authors who have explored
the concept of energy-stability in the context of model reduction are Rowley et al. [22] and Kwasniok [3]. In [22], Rowley
et al. introduced a family of ‘‘energy-based’’ inner products for the purpose of constructing stable Galerkin ROMs for fluid
problems. In [3], Kwasniok recognized the role of energy conservation in ROMs of nonlinear, incompressible fluid flow for
atmospheric modeling applications, and proposed a Galerkin projection approach in which the ROM conserves turbulent
kinetic energy or turbulent enstrophy.

The concept of energy-stability will be introduced in the context of a specific canonical model problem, then generalized.
Consider, without loss of generality, the following scalar initial value problem, known as a Cauchy problem [19]:
_xðtÞ ¼ L ðxðtÞÞ; t P 0
xð0Þ ¼ f:

ð18Þ
Here, L denotes a linear differential operator with constant coefficients (e.g., (3), the linear operator in (1)), f 2 Rn is the
initial condition, and xðtÞ 2 Rn is the system state at time t P 0. No boundary conditions are given in (18), as the canonical
Cauchy problem is posed on the whole real line [8]. This is equivalent to the problem being posed on a fixed domain with
periodic boundary conditions. The operator L is said to be semi-bounded with respect to an inner product ð�; �Þ if it satisfies
the following inequality for all sufficiently smooth functions w 2 L2:
ðw;LwÞ 6 aðw;wÞ; ð19Þ
where a 2 R. The following theorem (quoted from [19]) states the conditions under which the Cauchy problem (18) is
well-posed.
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Theorem 3.1.1 [19, p. 70]. The Cauchy problem (18) is well-posed if and only if the operator L is semi-bounded with respect to
an inner product ð�; �Þ which corresponds to a norm equivalent to the L2 norm.

Consider now a Galerkin approximation to (18), denoted here by xN , and satisfying
_xN;/ð Þ ¼ ðL ðxNÞ;/Þ; ð20Þ
for all / sufficiently smooth, and suppose L is semi-bounded with respect to ð�; �Þ. Setting / ¼ xN in (20) leads to the follow-
ing energy estimate for the Galerkin approximation:
dEN

dt
6 2aEN; ð21Þ
where EN � 1
2 jjxNjj2 denotes the energy of the Galerkin approximation xN , and jj � jj is the norm induced by the inner product

ð�; �Þ. Applying Gronwall’s lemma ((84) in Appendix A.1) to (21) gives the inequality
jjxNðtÞjj 6 e
1
2at jjxNð0Þjj: ð22Þ
The result (22) says that the energy of the numerical solution to (20) is bounded in a way that is consistent with the
behavior of the energy of the exact solution to the original differential Eq. (18), i.e., the numerical solution is energy-stable.
This definition can be extended to a ROM LTI system of the form (16).

Definition 3.1.2 (Energy-Stability [12]). A ROM LTI system (16) is called energy-stable if
EMðtÞ 6 eatEMð0Þ; ð23Þ
for some constant a 2 R, where
EM �
1
2
jjxM jj2 ð24Þ
is the system energy of the ROM numerical solution xM to (16), and jj � jj is a norm equivalent to the L2 norm.
In general, a ROM LTI system (16) is not guaranteed to satisfy Definition 3.1.2 even if the PDE system (1) is well-posed and

the full order LTI system arising from the discretization of these PDEs in space (4) is stable. However, it is often possible to
ensure (23) holds for the ROM LTI system through a careful selection of the reduced trial and test bases UM and WM and/or
the inner product in which the projection step of the model reduction is performed (Sections 4 and 5).

3.2. Lyapunov, asymptotic and exponential stability

The concept of energy-stability can be related to classical notions of stability, namely Lyapunov stability, asymptotic sta-
bility and exponential stability. Consider an autonomous nonlinear dynamical system:
_x ¼ fðxÞ; x 2 Rn; ð25Þ
where f 2 Rn is a given function, subject to some initial condition xð0Þ ¼ x0. Let xe be an equilibrium point of the system (25),
meaning fðxeÞ ¼ 0 for all t P 0.

Definition 3.2.1 (Lyapunov, asymptotic and exponential stability [14]). The equilibrium point xe of (25) is said to be:

(a) Lyapunov stable if 8� > 0 there exists a dð�Þ > 0 such that if jjxð0Þ � xejj < d, then jjxðtÞ � xejj < � 8t P 0.
(b) Asymptotically stable if there exists a d > 0 such that if jjxð0Þ � xejj < d, then limt!1jjxðtÞ � xejj ¼ 0.
(c) Exponentially stable if there exist a; b; d > 0 such that if jjxð0Þ � xejj < d, then jjxðtÞ � xejj 6 ajjxð0Þ � xejje�bt 8t P 0.

In other words, if an equilibrium point of (25) is Lyapunov stable, solutions within a distance d > 0 from it will remain a
distance � > 0 from it for all time; if it is asymptotically stable, solutions within this distance will eventually converge to the
equilibrium; if it is exponentially stable, the solutions will not only converge, but at an exponential rate. In general, expo-
nential stability implies asymptotic stability, and asymptotic stability implies Lyapunov stability.

The following theorem, known as the Lyapunov stability theorem [14], can be used to characterize the stability of an equi-
librium point xe for (25).

Theorem 3.2.2 (Lyapunov Stability Theorem [14]). Let V be a non-negative function on Rn and let _V represent the time

derivative of V along trajectories of the system dynamics (25), i.e., _V ¼ @V
@x

_x ¼ @V
@x fðxÞ. Let Br ¼ BrðxeÞ be a ball of radius r around an

equilibrium point xe of (25). If there exists an r > 0 such that V is positive definite and _V is negative semi-definite for all x 2 Br, then
xe is Lyapunov stable.

The function V defined in Theorem 3.2.2 above is known as the Lyapunov function for the system (25). Observe that the
numerical energy EN defined in (21) satisfies the definition of a Lyapunov function (Theorem 3.2.2) if (26) holds. Thus, if an
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LTI ROM (4) is energy-stable with a ¼ 0 (Definition 3.1.2), then the ROM is Lyapunov stable. In Section 5, it is shown how
Theorem 3.2.2 can be used to define a stability-preserving inner product for building stable ROMs for (4).

The stability concepts introduced above simplify for the specific case of LTI systems of the form (4). It is straightforward to
verify that for linear systems, asymptotic and exponential stability are equivalent. Moreover, the following result holds.

Theorem 3.2.3 (Asymptotic Stability Theorem for LTI Systems [14]). An LTI system (4) is asymptotically (and exponentially)
stable if and only if all the eigenvalues of A have strictly negative real parts.

Theorem 3.2.3 is commonly used to check numerically (a posteriori) the stability of an LTI system (4) or a ROM (16) con-
structed for an LTI system (Section 5.2).

3.3. Time-stability

Another form of stability is what is referred to herein as ‘‘time-stability’’. Essentially, a system that is time-stable is one
whose solution will not ‘‘blow up’’ (i.e., produce an unbounded output) given a finite input and/or non-zero initial condition.
For a general nonlinear system, exponential stability implies time-stability, but time-stability is a stronger notion than
asymptotic stability [51]. Since exponential and asymptotic stability are equivalent for LTI systems, asymptotic stability does
imply time-stability in this special case.

The concept of time-stability can also be defined in terms of the system energy.

Definition 3.3.1 (Time-Stability [12]). A ROM LTI system (16) is called time-stable if the numerical energy of the ROM
solution is non-increasing in time, i.e., if
dEN

dt
6 0: ð26Þ
It is straightforward to demonstrate that a time-stable scheme is also energy-stable. Suppose an LTI ROM (16) is time-
stable, so the ROM solution satisfies the energy estimate (26). Applying Gronwall’s lemma ((84) in Appendix A.1) to this
inequality, ENðtÞ 6 ENð0Þ. Thus, (23) holds with a ¼ 0.

In general, the converse of the above statement does not hold: energy-stability does not necessarily imply time-stability.
This is to be expected. The practical implication of a ROM possessing the energy-stability property is that its numerical solu-
tion is bounded in a way that is consistent with the behavior of the exact solutions of the governing Eq. (1). It is possible, in
general, that unstable, physical solutions to the governing PDEs exist, i.e., solutions that are unbounded as t !1. In this
case, the energy-stable ROM may also possess unstable solutions that correspond to those unstable solutions of the govern-
ing continuous equations [1].

4. Stable model reduction for LTI systems via continuous projection

In this section, an approach for building energy-stable ROMs via continuous Galerkin projection is developed for linear
PDE systems of the form:
_q0 þ Ai
@q0

@xi
� Kij

@2q0

@xi@xj
þ Gq0 ¼ f; ð27Þ
posed in an open bounded domain X. In (27), q0 2 Rn denotes a vector of unknowns, f 2 Rn is a source term, Ai;Kij and G are
n� n matrices, where 1 6 i; j 6 d, with d denoting the number of spatial dimensions, and n 2 N. The matrices Ai; Kij and G
could be a function of space, but they are assumed to be steady (not a function of time t). They are also assumed to be inde-
pendent of the solution q0, so that (27) is linear. The so-called Einstein notation (implied summation on repeated indices) has
been employed in (27) and subsequent expressions. Most linearized conservation laws, as well as many PDEs of physical
interest, can be written in the form (27). For conservation laws, a system of the form (27) is obtained by writing the solution
qðx; tÞ to the underlying nonlinear conservation law as a steady mean plus an unsteady fluctuation,
qðx; tÞ ¼ �qðxÞ þ q0ðx; tÞ ð28Þ
and linearizing the full set of PDEs around the steady mean �q to yield a system of the form (27) for q0ðx; tÞ. In this case, the
matrices Ai, Kij and G appearing in (27) are functions of �q and its gradients. If Kij ¼ 0 8i; j, (27) is known as a hyperbolic sys-
tem [13]. An example of a system of this form is the linearized compressible Euler system. A method for constructing energy-
stable ROMs specifically for the compressible Euler system using continuous Galerkin projection was presented in [6,7], and
is extended to generic systems of the form (27) herein. Otherwise, if Kij – 0, (27) is known as an incompletely parabolic sys-
tem [13]. A canonical example of such a system is the linearized compressible Navier–Stokes system.

Before presenting an approach for building stable ROMs for (27) using continuous Galerkin projection, some discussion of
the assumptions required for these stability results is in order.

The first assumption warranting some discussion is smoothness. In general, the analysis below assumes that the solution
to (27) is in the Sobolev space of first order, H1ðXÞ and that the matrices Ai and Kij are once and twice differentiable with
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respect to the spatial variable, respectively. Note that in order to obtain (27) from a nonlinear conservation law through a
linearization around a steady base state (28), it is required that the base flow linearized around is differentiable.

To complete the problem definition, it is necessary to specify some boundary conditions for the system (27). A detailed
discussion of well-posed boundary conditions for hyperbolic and incompletely parabolic systems of the form (27) is given in
[8]. The key result shown therein is that it is always possible to find a set of boundary conditions such that the problem (27)
is well-posed even in the hyperbolic limit, that is, as Kij ! 0 (Theorem 3.3 in [8]). Moreover, the number of Dirichlet bound-
ary conditions required for well-posedness depends on the signs of the eigenvalues of the matrix
3 It c
An � Aini; ð29Þ
on a boundary @X having an outward-facing unit normal n. Most often, boundary conditions are formulated in the so-called
characteristic variables [7,8], given by:
w0 ¼ S�1
n q0; ð30Þ
where Sn is the matrix that diagonalizes An:
An ¼ SnKnS�1
n ; ð31Þ
with Kn denoting the diagonal matrix containing the eigenvalues of An.3

The subsequent stability proofs for ROMs constructed using continuous Galerkin projection for systems of the form (27)
will assume the specific scenario in which the An has eigenvalues that are all the same sign on the boundaries of @X. More
specifically, it will be assumed that @X can be partitioned as @X ¼ @XI [ @XO, where @XI \ @XO ¼ ; and An is negative definite
on @XI and positive definite on @XO, so that well-posed boundary conditions are all-Dirichlet boundary conditions on @XI and
no boundary conditions on @XO [8]. This scenario, and the boundary conditions it leads to, arise in many physically-relevant
problems, e.g., fluid problems with a supersonic inflow and supersonic outflow [7], and enables a clean, generic stability
analysis of the ROM including boundary condition terms.

It will also be assumed (again, to enable a clean, generic stability analysis of the ROM) that the all-Dirichlet boundary
condition on @XI is steady (not a function of time), i.e.,
qðx; tÞ ¼ gðxÞ; on @XI; ð32Þ
where gðxÞ is a function of boundary data. It is straightforward to see that if the base flow �qðxÞ is selected such that it satisfies
the boundary condition (32), the relevant boundary conditions on the fluctuation q0ðx; tÞ are of the homogeneous Dirichlet
type:
q0ðx; tÞ ¼ 0; on @XI: ð33Þ
It is equally straightforward to show that if the snapshots for q0ðx; tÞ satisfy the boundary condition (33), the POD modes
obtained from these snapshots will satisfy this boundary condition as well.

Lastly, in the case Kij – 0 (e.g., a viscous flow problem), it will be assumed that the viscous boundary conditions imposed
are well-posed, i.e., they satisfy the well-known well-posedness conditions derived in [8].

A stability analysis for boundary conditions arising from a scenario in which An does not have strictly positive or negative
eigenvalues (e.g., subsonic inflow, subsonic outflow in a fluid context) and/or the boundary conditions are time-dependent is
often possible, but requires a case-by-case examination of the boundary terms that arise in the proofs of Theorem 4.1.1 and
Corollary 4.2.1. This study was one undertaken in earlier work by the authors for the specific case of linearized inviscid com-
pressible flow in some earlier work [7,6]. The boundary conditions can be implemented in a ROM constructed via continuous
Galerkin projection using either a weak formulation or the penalty method. For completeness, these approaches are detailed
in Appendix A.4.

4.1. A stabilizing transformation

Suppose there exists a transformation
T : Rn ! Rn;

q0 ! v0;
ð34Þ
such that v0 ¼ v0ðTq0Þ, and such that in the new variables v0, the system (27) has the form
_v0 þ AS
i
@v
@xi
� KS

ij
@2v0

@xi@xj
þ GSv0 ¼ fS

; ð35Þ
where:

� Property 1: The matrices AS
i are symmetric for all 1 6 i 6 d.
an be shown that An is diagonalizable for hyperbolic and incompletely parabolic systems [8].
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� Property 2: The matrices KS
ij are symmetric for all 1 6 i; j 6 d.

� Property 3: The augmented viscosity matrix:
KS �
KS

11 . . . KS
1d

..

. . .
. ..

.

KS
d1 . . . KS

dd

0
BB@

1
CCA ð36Þ

is positive semi-definite.
Theorem 4.1.1. Suppose a ROM for (35) on an open bounded domain X with a smooth boundary @X ¼ @XI [ @XO; @XI \ @XO ¼ ;
is constructed for v0 using continuous Galerkin projection in the L2ðXÞ inner product. Suppose AS

n (29) is negative definite on @XI

(e.g., @XI is a supersonic inflow boundary in a fluid mechanics context), and positive definite on @XO (e.g., @XO is a supersonic out-
flow boundary in a fluid mechanics context), so that the following boundary conditions on v0 are well-posed:

� Homogeneous all-Dirichlet boundary conditions (v0 ¼ 0) on @XI .
� No boundary conditions on @XO.

If KS
ij – 0 suppose additional viscous boundary conditions are imposed following the criteria listed in [8] such that the resulting

IBVP is well-posed. Suppose the matrices in (35) satisfy Properties 1–3 above. Let v0M denote the ROM solution to (35). Then the
ROM is energy-stable with energy estimate
jjv0Mð�; TÞjj2 6 e
1
2bST jjv0Mð�;0Þjj2; ð37Þ
where bS is an upper bound on the eigenvalues of the matrix
BS � @AS
i

@xi
þ
@2KS

ij

@xi@xj
� GS � ðGSÞT : ð38Þ
Moreover, this energy-stability result holds for any choice of reduced basis.
Proof. To prove energy-stability of a ROM constructed for (35), it is necessary to bound the energy of the ROM solution to
(35) with fS ¼ 0:
dEM

dt
¼ 1

2
d
dt
jjv0Mjj

2
2 ¼

1
2

d
dt

v0M;v
0
M

� �
¼ v0M ;

@v0M
@t

	 

¼ v0M;�AS

i
@v0M
@xi
þ KS

ij
@2v0M
@xi@xj

� GSv0M

 !

¼ �
Z

X
ðv0MÞ

T AS
i
@v0M
@xi

dXþ
Z

X
ðv0MÞ

T KS
ij
@2v0M
@xi@xj

dX�
Z

X
ðv0MÞ

T GSv0MdX: ð39Þ
Each of the terms in (39) will be bounded separately. First,
�
Z

X
ðv0MÞ

T AS
i
@v0M
@xi

@X ¼ �1
2

Z
X

@

@xi
ðv0MÞ

T AS
i v
0
M

� �
dXþ 1

2

Z
X
ðv0MÞ

T @AS
i

@xi
v0MdX

¼ �1
2

Z
@XI

ðv0MÞ
T AS

i niv0MdC� 1
2

Z
@XO

ðv0MÞ
T AS

i niv0MdCþ 1
2

Z
X
ðv0MÞ

T @AS
i

@xi
v0MdX: ð40Þ
In (40), the property that each of the matrices AS
i is symmetric has been employed (Property 1). Substituting the homo-

geneous all-Dirichlet boundary condition on @XI into the first integral in (40), and employing the fact that AS
n is symmetric

positive definite on @XO, the following bound is obtained:
�
Z

X
ðv0MÞ

T AS
i
@v0M
@xi

@X ¼ �1
2

Z
@XO

ðv0MÞ
T AS

i niv0MdCþ 1
2

Z
X
ðv0MÞ

T @AS
i

@xi
v0MdX 6

1
2

Z
X
ðv0MÞ

T @AS
i

@xi
v0MdX: ð41Þ
Next, note that:
KS
ij
@2v0M
@xi@xj

¼ @

@xi
KS

ij
@v0M
@xj

	 

�

@KS
ij

@xi

@v0M
@xj

 !
: ð42Þ
Then,
Z
X
ðv0MÞ

T KS
ij
@2v0M
@xi@xj

dX ¼
Z

X
ðv0MÞ

T @

@xi
KS

ij
@v0M
@xj

	 

dX�

Z
X
ðv0MÞ

T @KS
ij

@xi

@v0M
@xj

dX: ð43Þ
Again, each of the two terms in (43) will be bounded separately.
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Z
X
ðv0MÞ

T @

@xi
KS

ij
@v0M
@xj

	 

dX ¼ �

Z
X

@v0M
@xi

T

KS
ij
@v0M
@xj

dXþ
Z
@XI

ðv0MÞ
T KS

ij
@v0M
@xj

nidCþ
Z
@XO

ðv0MÞ
T KS

ij
@v0M
@xj

nidC

6

Z
@XI

ðv0MÞ
T KS

ij
@v0M
@xj

nidCþ
Z
@XO

ðv0MÞ
T KS

ij
@v0M
@xj

nidC; ð44Þ
provided the matrix (36) is positive semi-definite (Property 3).
Now for the second term in (43):
�
Z

X
ðv0MÞ

T @KS
ij

@xi

@v0M
@xj

dX ¼ �1
2

Z
X

@

@xj
ðv0MÞ

T @KS
ij

@xi
v0M

 !
dXþ 1

2

Z
X
ðv0MÞ

T @2KS
ij

@xi@xj
v0MdX

¼ �1
2

Z
@XI

ðv0MÞ
T @KS

ij

@xi
njv0MdC� 1

2

Z
@XO

ðv0MÞ
T @KS

ij

@xi
njv0MdCþ 1

2

Z
X
ðv0MÞ

T @
2KS

ij

@xi@xj
v0MdX: ð45Þ
In (45), the property that the KS
ij matrices and therefore their derivatives are symmetric has been employed (Property 2).

Finally, (41) and (43) are substituted into (39). As shown in [8], the viscous boundary integral terms on @XI will be
negative provided the viscous boundary conditions are well-posed. The following bound is obtained:
1
2

d
dt
jjv0Mjj

2
2 6

1
2

Z
X
ðv0MÞ

T @AS
i

@xi

 !
v0MdXþ 1

2

Z
X
ðv0MÞ

T @
2KS

ij

@xi@xj
v0MdX� 1

2

Z
X
ðv0MÞ

T GSv0MdX� 1
2

Z
X
ðv0MÞ

TðGSÞTv0MdX

� 1
2

Z
@XN

ðv0MÞ
T AS

i niv0MdC ¼ 1
2
jjBSjj22; ð46Þ
where BS is given by (38). Applying Gronwall’s inequality ((84) in Appendix A.1) to (46), it is found that:
jjv0Mð�; TÞjj2 6 e
1
2bST jjv0Mð�;0Þjj2; ð47Þ
where bS is an upper bound on the eigenvalues of the matrix BS (38). h

The proof of Theorem 4.1.1 is one of the new contributions of this article.
Note that, if G ¼ 0 in (27) and the Ai and Kij matrices are spatially-constant, it follows that bS ¼ 0 in (47). In this case, if the

ROM for (27) is constructed in the variables v, the ROM will be time-stable as well as stable in the sense of Lyapunov, in
addition to being energy-stable. For linearized conservation laws (e.g., the linearized shallow water equations, the linearized
compressible Euler equations, the linearized compressible Navier–Stokes equations), the property that G ¼ 0 and the Ai and
Kij are spatially-constant will in general hold if the base flow is spatially uniform.

4.2. Stability-preserving ‘‘symmetry inner product’’ and Petrov–Galerkin connection

A key property of systems of the form (27) is that they are symmetrizable [8,6,7]; that is, it is possible to derive a sym-
metric positive-definite matrix H such that:

� Property 1⁄: The matrices HAi are symmetric for all 1 6 i 6 d.
� Property 2⁄: The matrices HKij are symmetric for all 1 6 i; j 6 d.
� Property 3⁄: The augmented viscosity matrix:
KH �
HK11 . . . HK1d

..

. . .
. ..

.

HKd1 . . . HKdd

0
BB@

1
CCA ð48Þ

is positive semi-definite.

Since H is symmetric positive-definite, the following defines a valid inner product:
qð1Þ;qð2Þ
� �

ðH;XÞ �
Z

X
qð1ÞT Hqð2ÞdX: ð49Þ
Following the terminology introduced in [6,7], the inner product (49) will be referred to as the ‘‘symmetry inner product’’.
It is straightforward to see that the following corollary to Theorem 4.1.1 holds.

For a general system of PDEs, e.g., the linearized Euler equations (Example 3 in Section 4.3), the norm induced by the
symmetry inner product (49) is not a recognizable ‘‘energy’’ quantity, but still satisfies the requisite mathematical properties
for an energy analysis. For some PDEs, there is a clear connection between the energy inner product and a physical energy
quantity associated with those equations, e.g., the L2 inner product for the incompressible Navier–Stokes equations, which is
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identical to the kinetic energy of the solution, or the entropy inner product for the full nonlinear compressible Navier–Stokes
equations, which represents the solution entropy [60].

Corollary 4.2.1. Suppose a ROM for (27) on an open bounded domain X with the same boundary condition assumptions as those
in Theorem 4.1.1 for q0 on @X ¼ @XI [ @XO, where @XI \ @XO ¼ ; is constructed using continuous Galerkin projection in the
symmetry inner product (49). Suppose Properties 1⁄–3⁄ hold. Let qM denote the ROM solution to (27). Then the ROM is energy-
stable with energy estimate
jjq0Mð�; TÞjjðH;XÞ 6 e
1
2bHT jjq0Mð�;0ÞjjðH;XÞ; ð50Þ
where bH is an upper bound on the eigenvalues of the matrix
BH � @ðHAiÞ
@xi

þ @
2ðHKijÞ
@xi@xj

�HG� GT H ð51Þ
Moreover, this energy-stability result holds for any choice of reduced basis.
Proof. Because of simple linear transformations, the proof is analogous to the proof of Theorem 4.1.1. h

Again, in the case that G ¼ 0 and the Ai; Kij and H matrices are spatially-constant (which will occur if the base flow is
uniform, i.e., not a function of the spatial variable x), it will follow from Corollary 4.2.1 that a ROM constructed in the sym-
metry inner product (49) will be time-stable and stable in the sense of Lyapunov, in addition to being energy-stable.

It is interesting to observe that a Galerkin projection of the governing (27) in the symmetry inner product (49) is equiv-
alent to a Petrov–Galerkin projection. Let /i for i ¼ 1; . . . ;M denote the reduced trial basis vector for the solution q. Perform-
ing a Galerkin projection of the Eq. (27) onto the modes /k gives
Z

X
/T

k H _q0 þ Ai
@q0

@xi
þ Kij

@2q0

@xi@xj
þ Gq0

 !
dX ¼

Z
X

/T
k HfdX; ð52Þ
for k ¼ 1; . . . ;M. Eq. (52) is equivalent to a Petrov–Galerkin projection of the Eq. (27) in the regular L2 inner product
Z
X

wT
k

_q0 þ Ai
@q0

@xi
þ Kij

@2q0

@xi@xj
þ Gq0

 !
dX ¼

Z
X

wT
k fdX; ð53Þ
where the reduced test basis functions are given by wk ¼ H/k, for all k ¼ 1; . . . ;M.

4.3. Examples of stability-preserving transformation and symmetry inner product for several physical systems

It is straightforward to derive the matrix H that defines the symmetry inner product (49) for many problems of physical
interest. This matrix has been derived herein by the authors for several hyperbolic and incompletely parabolic systems (the
wave equation, the linearized shallow water equations, the linearized compressible Euler equations, and the linearized com-
pressible Navier–Stokes equations), and is given below.

Example 1. Wave Equation
Consider the one-dimensional (1D) wave equation:
€u ¼ a2 @
2u
@x2 ; ð54Þ
where a 2 R denotes the wave speed, and €u � @2u
@t2 . (54) is a canonical PDE of the hyperbolic type. This equation can be written

as a first order system
_q ¼ A
@q
@x

; ð55Þ
where
q ¼
_u
@u
@x

 !
; A ¼ 0 a2

1 0

 !
: ð56Þ
Remark that if
H ¼
1 0
0 a2

	 

; ð57Þ
the matrix HA is symmetric [31].
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Example 2. Linearized Shallow Water Equations
Consider the linearized form of the shallow water equations:
_q0 þ Ai
@q0

@xi
þ Gq0 ¼ 0: ð58Þ
These equations are obtained from the full (non-linear) shallow water equations by decomposing the fluid vector qðx; tÞ
into a steady mean plus an unsteady fluctuation (28), and linearizing the full shallow water equations around the steady
mean state �q. If qT ¼ u;v ;w;/ð Þ, then the convective flux matrices in the hyperbolic system (58) in three-dimensions
(3D) are given by:
A1 ¼

�u 0 0 1
0 �u 0 0
0 0 �u 0
�/ 0 0 �u

0
BBB@

1
CCCA; A2 ¼

�v 0 0 0
0 �v 0 1
0 0 �v 0
0 �/ 0 �v

0
BBB@

1
CCCA; A3 ¼

�w 0 0 0
0 �w 0 0
0 0 �w 1
0 0 �/ �w

0
BBB@

1
CCCA; ð59Þ
where / denotes the local height of the fluid above the equilibrium depth, and u; v , and w are the components of the fluid
velocity vector [31]. The matrix G in (58) is given by
G ¼

@�u
@x

@�u
@y

@�u
@z 0

@�v
@x

@�v
@y

@�v
@z 0

@ �w
@x

@ �w
@y

@ �w
@z 0

@�/
@x

@�/
@y

@�/
@z r � �u

0
BBBBB@

1
CCCCCA: ð60Þ
Each of the convective flux matrices (59) can be symmetrized by the matrix
H ¼

�/ 0 0 0
0 �/ 0 0
0 0 �/ 0
0 0 0 1

0
BBB@

1
CCCA: ð61Þ
Example 3. Linearized Compressible Euler Equations

Consider the linearized compressible Euler equations. These equations may be used if a compressible fluid system can be
described by inviscid, small-amplitude perturbations about a steady-state mean flow. The equations are obtained from the
full (non-linear) compressible Euler equations by decomposing the fluid vector qðx; tÞ into a steady mean plus an unsteady
fluctuation (28) and linearizing these equations around the steady mean state �q. If qT ¼ u;v;w; f; pð Þ, where u; v and w are
the three components of the velocity vector, f is the specific volume (the reciprocal of the density), and p is the pressure, the
linearized compressible Euler equations take the form (58). In 3D, the convective flux matrices Ai in the linearized
compressible Euler hyperbolic system (58) are given by:
A1 ¼

�u 0 0 0 �f

0 �u 0 0 0

0 0 �u 0 0

��f 0 0 �u 0

c�p 0 0 0 �u

0
BBBBBBB@

1
CCCCCCCA
;

A2 ¼

�v 0 0 0 0

0 �v 0 0 �f

0 0 �v 0 0

0 ��f 0 �v 0

0 c�p 0 0 �v

0
BBBBBB@

1
CCCCCCA
;

A3 ¼

�w 0 0 0 0

0 �w 0 0 0

0 0 �w 0 �f

0 0 ��f �w 0

0 0 c�p 0 �w

0
BBBBBB@

1
CCCCCCA
:

ð62Þ
Here, c ¼ CP=CV is the ratio of specific heats. The matrix G in (58) has the form
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G ¼

@�u
@x

@�u
@y

@�u
@z

@�p
@x 0

@�u
@x

@�u
@y

@�u
@z

@�p
@y 0

@�u
@x

@�u
@y

@�u
@z

@�p
@z 0

@�f
@x

@�f
@y

@�f
@z �r � �u 0

@�p
@x

@�p
@y

@�p
@z 0 cr � �u

0
BBBBBBBB@

1
CCCCCCCCA
: ð63Þ
The reader may verify that if the linearized compressible Euler system (58) is pre-multiplied by the following symmetric
positive definite matrix:
H ¼

�q 0 0 0 0
0 �q 0 0 0
0 0 �q 0 0
0 0 0 a2c�q2�p �qa2

0 0 0 �qa2 ð1þa2Þ
c�p

0
BBBBBB@

1
CCCCCCA
; ð64Þ
where a is a real, non-zero parameter to yield the system, the convective flux matrices HAi are all symmetric [6,7].
Example 4. Linearized Compressible Navier–Stokes Equations
Consider the 3D linearized compressible Navier–Stokes equations. These equations are appropriate when a compressible

fluid system can be described by viscous, small-amplitude perturbations about a steady-state base flow. As with the
linearized shallow water equations and linearized compressible Euler equations, to derive these equations from the full
(non-linear) compressible Navier–Stokes equations, the fluid vector qðx; tÞ is written as the sum of a steady mean plus an
unsteady fluctuation (28), and a linearization around the steady mean is performed. If the viscous work terms are neglected
from the equations4 (appropriate, for example, in a low Mach number regime), the result is a linear incompletely parabolic
system of the form (27). If the fluid vector is given by qT ¼ u; v;w; T;qð Þ, where T and q denote the fluid temperature and
density respectively, the convective and viscous flux matrices that appear in (27) are given by the expressions found in [8], and
are repeated in Appendix A.5 to keep this article self-contained. The reader can verify that if the system (27) is pre-multiplied by
the symmetric positive definite matrix given by
H �

�q 0 0 0 0
0 �q 0 0 0
0 0 q 0 0
0 0 0 �qR

�Tðc�1Þ 0

0 0 0 0 R�T
�q

0
BBBBBBB@

1
CCCCCCCA
; ð65Þ
the ‘‘symmetrized’’ convective flux matrices HAi and diffusive flux matrices HKij satisfy Properties 1⁄–3⁄ in Section 4.2. Here,
R denotes the universal gas constant.

Note that the symmetry transformations in the examples above are not unique. For example, in [9], Abarbanel et al.
exhibit a transformation of the form (35) for the linearized compressible Navier–Stokes equations written in the primitive
variables qT ¼ q;u;v ;w; pð Þ.
4.4. Numerical experiments

The stability-preserving model reduction approach based on continuous projection described in Sections 4.1 and 4.2 is now
evaluated numerically on a test case involving a 2D inviscid acoustic pressure pulse in a 2D prismatic domain. The governing
equations are the equations of linearized compressible flow, given in Section 4.3 (Example 3) above. Prior to showing these
results, a stability-preserving discrete implementation of the projection step of the model reduction is outlined.

4.4.1. Stability-preserving discrete implementation
The stability analysis of Sections 4.1 and 4.2 has assumed that the integrals resulting from the projection of the governing

equations onto the reduced basis modes are evaluated exactly in continuous form. This continuous result can be translated
to the discrete setting through the use of high-precision numerical quadrature as follows. First, the snapshots and the POD
basis modes are cast as a collection of continuous finite elements. It is then possible to construct a numerical quadrature
the authors’ knowledge, the viscous work terms are invariably neglected from the linearized compressible Navier–Stokes equations by researchers
g energy-stability of these equations [8,9]. The omission of these terms is justified only in the low Mach number regime, or in the case that the base flow
rm. The extension of the energy-stability symmetrization approach presented here to the linearized compressible Navier–Stokes equations in which the
work terms are retained is the subject of present research.
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operator that computes exactly (with respect to the finite element representation) all continuous inner products arising from
the continuous Galerkin projection of the equations onto the POD modes. Suppose the domain X is broken up into nel finite
elements Xe such that [nel

e¼1Xe ¼ X. Suppose each of these elements have nn nodes. Then, the finite element representation of
the vector q0 in (27) in each element Xe is:
q0he ¼
Xnn

i¼1

NiðxÞq0iðxÞ; x 2 Xe; ð66Þ
where the NiðxÞ are the finite element shape functions used to represent the solution in each element. With the represen-
tation (66), the modes will necessarily be in the Sobolev space H1ðXÞ, as required for the proof of Theorem 4.1.1.

By the discussion in Section 4.2, it is necessary to compute numerically integrals of the form:
qð1Þ;qð2Þ
� �

ðH;XÞ ¼
Z

X
qð1ÞT Hqð2ÞdX: ð67Þ
Suppose, without loss of generality, that the finite element shape functions are chosen to be bilinear, so nn ¼ 4. The dis-
crete representations of the vectors qð1Þ and qð2Þ are denoted by qhð1Þ and qhð2Þ, respectively. The length of these vectors is
equal to the number of mesh nodes N times the dimension of the vector, r. Let Hh

e be the r � r element inner product matrix,
taken to be piecewise constant over each element. Then, the formula for numerical integration of (67) can be written as
qð1Þ;qð2Þ
� �

ðH;XÞ ¼ qhð1ÞT Wqhð2Þ; ð68Þ
where W is a sparse block matrix comprised of N � N blocks of dimension r � r. The ðk; lÞth block of this matrix given by wklI,
where
wkl ¼
Xnel

kl

e¼1

Hh
e

X4

j¼1

Nkeðxje ÞNle ðxje Þxje : ð69Þ
Here, the outer sum is over the elements connected to the k� l nodal ‘‘edge’’; the xje are the integration weights and the
xje are the integration points.

A parallel C++ code that reads in the snapshot data written by a high-fidelity code, assembles the necessary finite element
representation of the snapshots and computes the numerical quadrature necessary for evaluation of the inner products has
been written by the authors. The code, known as Spirit, performs all the calculations in parallel using distributed matrix
and vector data structures and parallel eigensolvers from the Trilinos project [46], and uses the libmesh finite element
library [47] to compute element quadratures. The parallelism in Spirit allows for large data sets and a relatively large
number of POD modes. The libmesh finite element library [47] was used to compute element quadratures. The online
time-integration of the ROM system (4) (with the ROM coefficient matrix computed within Spirit and written to disk)
is then performed using a fourth-order Runge–Kutta scheme in MATLAB. For more information on the Spirit code, the
reader is referred to [55,54].

4.4.2. 2D inviscid acoustic pulse example
For the sake of brevity, the proposed model reduction approach is evaluated on only one of the physics sets given in

Section 4.3. The test case considered is that of a 2D inviscid acoustic pressure pulse in the following 2D prismatic domain:
X ¼ ð�1;1Þ � ð�1;1Þ 2 R2. The governing equations are the linearized compressible Euler equations (Example 3 in
Section 4.3). The base flow is uniform, with the following values: �p ¼ 101;325 Pa;�T ¼ 300 K, �q ¼ �p

RT ¼ 1:17 kg=m3;

�u1 ¼ �u2 ¼ 0:0 m=s, and �c ¼ 348:0 m=s, where �c �
ffiffiffiffiffiffiffiffiffi
cR�T

q
is the mean speed of sound. The problem is initialized with a pressure

pulse in the middle of the domain:
p0ðx; 0Þ ¼ 141:9e�10ðx2þy2Þ;

q0ðx; 0Þ ¼ p0ðx; 0Þ
R�T

;

T 0ðx; 0Þ ¼ 0;
u01ðx; 0Þ ¼ u02ðx; 0Þ ¼ 0:

ð70Þ
In terms of the mean values, the amplitude of the initial pressure pulse (70) is 0:001�q�c2.
For the problem considered, the high-fidelity fluid simulation data were generated using a Sandia in-house finite volume

flow solver known as SIGMA CFD. This code is derived from LESLIE3D [48], a Large Eddy Simulations (LES) flow solver
originally developed in the Computational Combustion Laboratory at the Georgia Institute of Technology. For a detailed
description of the schemes and models implemented within LESLIE3D, the reader is referred to [40,50].

As both the high-fidelity code as well as the ROM code are 3D codes, a 2D mesh of the domain X is converted to a 3D mesh
by extruding the 2D mesh in the z-direction by one element. The computational grid for this test case is composed of 3362
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nodes, cast into 9600 tetrahedral finite elements within the ROM code. A no-penetration (slip wall) boundary condition is
imposed on the four sides of the domain in the x and y plane:
u0 � nnp ¼ 0 on Cnp; ð71Þ
where Cnp ¼ fðx; zÞ 2 X : y ¼ 1;�1g [ fðy; zÞ 2 X : x ¼ 1;�1g, and nnp denotes the unit normal vector to Cnp. To ensure the
solution has no dynamics in the z-direction, the following values of the z-velocity component are specified: �u3 ¼ 0,
u03ðx; 0Þ ¼ 0. Symmetry boundary conditions are imposed for z = constant in the high-fidelity code:
u0 � ns ¼ 0;
ru0 � ns ¼ 0;
rp0 � ns ¼ 0;
rq0 � ns ¼ 0;

8>>><
>>>:

on Cs; ð72Þ
where Cs ¼ fðx; yÞ 2 X : z ¼ constg and ns is the unit normal vector to Cs. The high-fidelity computational fluid dynamics
(CFD) simulation from which the ROM is generated is performed until time T ¼ 0:01 s. During this simulation, the initial
pressure pulse (70) reflected from the walls of the domain a number of times. Snapshots from this simulation were saved
every 5� 10�5 s, to yield a total of 200 snapshots. These snapshots were used to construct 20 mode POD bases. Two dif-
ferent procedures were used to generate a fluid ROM for this problem: the POD/Galerkin method with the symmetry inner
product (49) with H given by (64), and the POD/Galerkin method with the classical L2 inner product. The size of the POD
basis was determined using an energy criterion (8) (see Section 2.1): M was selected such that the modes capture 99.9% of
the snapshot energy. Since the base flow for this example is uniform, G ¼ 0 and Ai and Kij are spatially-constant in (27),
meaning an energy-stable ROM is expected to be time-stable and stable in the sense of Lyapunov. Fig. 1 shows a time
history of the first two ROM modal amplitudes (circles) compared to the projection of the FOM CFD simulation onto
the first two POD modes (solid lines) for the symmetry (a) and L2 (b) ROMs. Mathematically, this figure compares as a
function of time t:
xM;iðtÞ vs: q0FOM;/i

� �
ðH;XÞ; ð73Þ
for i ¼ 1; 2, where q0FOM is the high-fidelity CFD solution from which the ROMs were constructed. The reader may observe
reasonable agreement between the symmetry ROM and the full simulation (Fig. 1(a)) for the time interval considered. In
contrast, agreement between the L2 ROM and the full simulation is reasonable only until approximately t ¼ 0:005 s
(Fig. 1(b)). The oscillations in the L2 ROM modal amplitudes observed for t > 0:008 s suggest the presence of an instability
in the L2 ROM. If the modal amplitudes xM;iðtÞ are plotted up to a longer time horizon (Fig. 2), the instability in the L2 ROM is
apparent.

Figs. 3 and 4 compare the FOM pressure field (a) with the field reconstructed from the symmetry (b) and L2 (c) ROM solu-
tions at times t ¼ 4:5� 10�4 and 7:95� 10�3 s, respectively. At time t ¼ 4:5� 10�4 s, both the symmetry and L2 ROM solu-
tions are in good agreement with the high-fidelity solution (Fig. 3). At the later time, 7:95� 10�3 s, there is a good qualitative
agreement between the high-fidelity solution and the symmetry ROM solution (Fig. 4(a) and (b)). The same cannot be said of
the L2 ROM solution, however. It is apparent from Fig. 4(c) that the L2 ROM solution has blown up by t ¼ 7:95� 10�3 s, which
confirms the instability of the 20 mode L2 ROM suggested in Figs. 1 and 2.
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Fig. 1. Time history of modal amplitudes for inviscid pressure pulse problem.



Fig. 3. Pressure field at time t ¼ 4:5� 10�4 s.

Fig. 4. Pressure field at time t ¼ 7:95� 10�3 s.
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Fig. 2. Time history of modal amplitudes for inviscid pressure pulse problem for longer time horizon.
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5. Stable model reduction for LTI systems via discrete projection

In Section 4, a method for constructing energy-stable ROMs via continuous projection of a linear system of PDEs was pre-
sented. The discussion in Section 4 motivates the following question: can the energy inner product be determined in a black-
box fashion for any given full order model system? It is shown in the present section that there is a discrete counterpart of
the symmetry inner product, first derived by Rowley et al. [23] and termed the ‘‘Lyapunov inner product’’ herein. Although
the Lyapunov inner product has appeared in several publications [23,1,29], to the authors’ knowledge, a numerical study of
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the properties and performance of POD ROMs constructed in the Lyapunov inner product is lacking from the literature at the
present time, and one of the contributions of this work.

5.1. Stability-preserving Lyapunov inner product and Petrov–Galerkin connection

Suppose the LTI system (4) is stable in the sense of Lyapunov, i.e., all eigenvalues of the matrix A have non-positive real
parts (Corollary 3.4.2). Since A is stable, there exists a Lyapunov function for
5 The
_xNðtÞ ¼ AxNðtÞ: ð74Þ
In particular,
VðxNÞ ¼ xT
NPxN ; ð75Þ
is a Lyapunov function for (74), where P is the solution of the following Lyapunov equation:
AT Pþ PA ¼ �Q : ð76Þ
Here, Q is some positive-definite matrix [14]. A positive definite solution P to (76) exists provided A is stable. Moreover, if
Q is symmetric, P is symmetric as well. Given A and Q , a solution to the Lyapunov Eq. (76) can be obtained, for instance,
using the lyap function in the MATLAB control toolbox [41]:
P ¼ lyapðA0; Q; ½ 	; speyeðN; NÞÞ :
Assume the system (74) is stable and a positive-definite symmetric P has been computed from (76). Since P is symmetric
positive-definite, the following
xð1ÞN ;xð2ÞN

� �
P
� xð1ÞTN Pxð2ÞN ; ð77Þ
defines an inner product. Let UM be a reduced basis of size M, so that
xNðtÞ � UMxMðtÞ; ð78Þ
where xMðtÞ denotes the ROM solution. Theorem 5.1.1 (summarized here from Section 2.3 of [23] to keep this work self-con-
tained) shows that (77) is the energy inner product for this system.

Theorem 5.1.1 (from Section 2.3 of [23]). Assume the linear full order system (74) is stable. Suppose a ROM for (74) is
constructed via a Galerkin projection in the ð�; �ÞP inner product (77), to yield the following reduced linear system:
_xM ¼ UT
MPAUMxM; ð79Þ
where it has been assumed that the basis UM has been constructed to be orthonormal in the ð�; �ÞP inner product, i.e., UT
MPUM ¼ IM

where IM denotes the M �M identity matrix. Then, the ROM (79) is energy-stable, time-stable and stable in the sense of Lyapunov.
Proof. It is shown that the energy EM � 1
2 jjxMjj22 of the ROM system (79) is non-increasing:
dEM

dt
¼ 1

2
d
dt

xM; xMð Þ2 ¼ xT
M

_xM ¼ xT
MUT

MPAUMxM ¼ xT
MUT

M
1
2

PAþ 1
2

PT A
	 


UMxM ¼ xT
MUT

M
1
2

PAþ 1
2

AT P
	 


UMxM

¼ �1
2

xT
MUT

MQUMxM < 0; ð80Þ
since Q > 0. It follows that (79) is time-stable, stable in the sense of Lyapunov and energy-stable (Section 3). h

The Lyapunov inner product (77) is a discrete counterpart of the continuous symmetry inner product (49). This inner
product can be employed to construct stable Galerkin ROMs for (4) using discrete projection. An interesting question that
arises is whether the matrix P defining the Lyapunov inner product (77) is related in some way to the matrix W (68) that
is used to perform the continuous projection in the symmetry inner product. In general, the answer is No. In particular,
W is by construction a sparse matrix (Fig. 5(a)), whereas P may be dense even if A is sparse. This is clear from Figs. 5(b)
and (c), which show (respectively) the sparsity pattern of a sample A matrix,5 and its corresponding P matrix.

One downside of the Lyapunov inner product is that the matrix P which defines this inner product is admittedly
expensive to compute: the cost of solving the Lyapunov Eq. (76) requires OðN3Þ operations. As a consequence, the Lyapunov
inner product has the same downside as another model reduction approach with an a priori stability guarantee, namely
balanced truncation [28,10]: it may not be practical to compute the matrix P defining the Lyapunov inner product for very
large systems. It is worthwhile to note that computing P (76) is less computationally intensive than reducing a system using
balanced truncation, which requires the solution of two Lyapunov equations for the so-called observability and reachability
A matrix whose sparsity pattern is shown in Fig. 5(b) is the ‘‘PDE example’’ in the SLICOT model reduction benchmark repository [40].
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Fig. 5. Sparsity structure of representative P matrix for a given sparse A matrix compared to sparsity structure of representative W matrix.
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Gramians and the factorizations of these Gramians [28,10] (see Appendix A.2). The computational cost of calculating the
weighting matrix that defines the Lyapunov inner product relative to the computational cost of reducing a system using bal-
anced truncation is studied numerically in Section 5.2. Note that it can be shown that the balanced truncation algorithm may
be viewed as a projection algorithm in a special Lyapunov inner product [23]. A proof uncovering this connection is given in
Appendix A.3.

As observed earlier for the symmetry inner product, it is clear from (79) that the Galerkin projection of the system (74) in
the Lyapunov inner product (77) can be viewed as a Petrov–Galerkin projection of this system in the regular L2 inner product,
with the reduced test basis given by WM ¼ PUM , where UM is the reduced trial basis.

5.2. Numerical experiments

The stability-preserving model reduction approach based on discrete projection presented in Section 5.1 is now evaluated
on a problem involving a model of an electrostatically actuated beam. For this example, the error in the ROM output relative
to the full order model output, defined by
E o
rel ¼

PKmax
i¼1 jyQNðtiÞ � yQMðtiÞjPKmax

i¼1 jyQNðtiÞj
; ð81Þ
is computed and reported. Here the symbol Kmax denotes the integer such that Tmax ¼ Kmaxdtsnap, where Tmax is the maximum
time until which the ROM is run. The notation j � j in (81) denotes the absolute value, which evaluates to a scalar for the
numerical example considered, as it has one output (Q ¼ 1).

5.2.1. Electrostatically actuated beam example
The numerical example considered is that of an electrostatically actuated beam. One application for this model is analysis

of microelectromechanical systems (MEMS) devices, such as electromechanical radio frequency (RF) filters [42]. Given a sim-
ple enough shape, these devices can be modeled as 1D beams embedded in two or three dimensional space. It is assumed
that the beam deflection is small, so that geometric nonlinearities can be neglected. The resulting linear PDEs are discretized
using the finite element method following the approach presented in [43,42] to yield a ROM LTI system of the form (4). The
matrices A and B in (4) are downloaded from the Oberwolfach model reduction benchmark collection [44]. These global
matrices are then disassembled into their local counterparts, and reassembled to yield a discretization of any desired size.
In the full order model for which results are reported here, the FOM has N ¼ 10;000 degrees of freedom. It is verified that the
full order system is stable: the maximum real part of the eigenvalues of A is �0:0016.

To generate the snapshots from which POD bases are constructed, the full order model (4) is solved using a backward
Euler time integration scheme with an initial condition of xNð0Þ ¼ 0 and an input corresponding to a periodic on/off switch-
ing, i.e.,
uPðtÞ ¼
0:005 < t < 0:01; 0:015 < t < 0:02;
1; 0:03 < t < 0:035;
0; otherwise

8><
>: ð82Þ
A total of Kmax ¼ 1000 snapshots are collected, every dtsnap ¼ 5� 10�5 s, until time t ¼ 0:05 s. From these snapshots, 5, 10,
20 and 30 mode ROMs are constructed using POD in the L2 inner product, and POD in the Lyapunov inner product. In solving
the Lyapunov Eq. (76) for the Lyapunov inner product weighting matrix P, the matrix Q is taken to be the N � N identity
matrix. The system (4) is reduced also using balanced truncation.
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The first step is to study the stability of each ROM. Table 1 reports the maximum real part of the ROM system matrices AM

for each M considered. It is found that the L2 ROM is unstable for each M, and becomes more unstable with increasing M. In
contrast, the balanced truncation and POD Lyapunov inner product ROMs are stable for all M considered, as expected.

Next, the accuracy of each ROM is examined. Table 2 summarizes the errors (81) in the ROM solutions relative to the full
order model solution for three runs of different lengths. An entry of ‘–’ in the table indicates that the error overflowed due to
an instability in the ROM.

The objective of the first run (Kmax ¼ 1000) is to study how well the POD ROMs can reproduce the snapshots from which
they were constructed, and to compare these ROMs’ performance with the performance of ROMs constructed using balanced
truncation. The reader can observe that the POD ROM constructed in the Lyapunov inner product is the most accurate. The
POD L2 ROM is both unstable as well as inaccurate (Fig. 6(a)).

The second two runs (Kmax ¼ 2000 and Kmax ¼ 5000) are aimed to study the predictive capabilities of the ROMs for long-
time simulations. The full order model is run until times 0.1 and 2.5 s respectively. As before, only snapshots up to time
t ¼ 0:05 s are used to construct the POD bases for the ROMs. In addition to the signal (82), the following inputs are applied
in both the full order model and the ROM:
Table 2
Relative

Kmax

1000

2000

5000
uPðtÞ ¼

0:055 < t < 0:06; 0:065 < t < 0:07;
0:08 < t < 0:085; 0:105 < t < 0:11;
0:115 < t < 0:12; 0:13 < t < 0:135;
0:205 < t < 0:21; 0:215 < t < 0:22;
1; 0:23 < t < 0:235;
0; otherwise:

8>>>>>>>><
>>>>>>>>:

ð83Þ
The reader may observe by examining Table 2 and Fig. 6 that the balanced truncation ROMs are in general the most accu-
rate. The POD ROMs constructed in the Lyapunov inner product nonetheless produce reasonable results (Fig. 6) and appear to
be converging to the full order model solution with M-refinement (Table 2). The POD L2 ROM result is not shown in
Figs. 6(b)–(c), as the solution produced by this ROM blows up around time t ¼ 0:02 s.

Lastly, the level of computational resources required for computing the Lyapunov inner product and the level of compu-
tational resources required for performing model reduction via balanced truncation [28,10] are compared. Table 3 gives the
CPU times for the sum of the following operations in the balanced truncation [28,10] algorithm as a function of N, the prob-
lem size: calculation of the observability Gramian, calculation of the controllability Gramian, and calculation of the balancing
transformation (Appendix A.2). All computations are performed in serial using MATLAB’s linear algebra capabilities and
MATLAB’s control toolbox [41], on a Linux workstation with 6 Intel Xeon 2.93 GHz CPUs. Both methods exhibit OðN3Þ scaling.
Although the Lyapunov inner product computation is costly, as it requires the solution of a Lyapunov equation, it completes
in 2–3 times less CPU time than the balanced truncation algorithm. This is because balanced truncation requires the solution
of two Lyapunov equations for the observability and reachability Gramians, as well as the Cholesky and eigenvalue factor-
izations of these Gramians.
Table 1
Maximum real part of eigenvalues of ROM system matrix AM for electrostatically actuated
beam problem as a function of basis size M.

Basis size (M) Balanced truncation POD L2 POD Lyapunov P

5 �2:97� 10�6 4:51� 101 �3:15� 101

10 �3:95� 10�6 1:39� 102 �1:89� 101

20 �2:78� 10�6 1:68� 103 �7:48

30 �3:22� 10�6 3:40� 103 �4:37

errors (81) E o
rel in ROM output for electrostatically actuated beam problem.

Method M

5 10 20 30

BT 6:29� 10�2 4:51� 10�3 6:93� 10�5 3:60� 10�6

POD L2 8:56� 10�1 6:62 – –

POD Lyapunov P 2:05� 10�3 6:23� 10�5 2:09� 10�8 1:35� 10�8

BT 5:84� 10�2 4:47� 10�3 6:29� 10�5 3:17� 10�6

POD L2 7:76 4:26� 103 – –

POD Lyapunov P 3:62� 10�2 1:12� 10�2 3:47� 10�4 4:13� 10�5

BT 7:36� 10�2 4:77� 10�3 5:48� 10�5 2:77� 10�6

POD L2 4:40� 103 � – –

POD Lyapunov P 1:80� 10�1 1:09� 10�1 2:03� 10�2 6:09� 10�3
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Fig. 6. yQMðtÞ For M ¼ 10 ROMs (FOM = full order model) for electrostatically actuated beam problem.

Table 3
CPU Times (in s) for balanced truncation vs. Lyapunov inner product computations.

Method N

1250 2500 5000 10,000

Lyapunov inner product 5:08� 101 4:60� 102 4:02� 103 6:09� 104

Balanced truncation 1:09� 102 1:10� 103 1:04� 104 1:24� 105
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6. Summary and conclusions

The energy-stability preserving model reduction approach developed specifically for the equations of linearized com-
pressible inviscid flow in [6,7] is generalized: for ROMs constructed using the continuous projection approach, it is shown
that a transformation of a generic PDE system of the hyperbolic or incompletely parabolic type leads to a stable formulation
of the Galerkin ROM for this system. It is then shown that, for many linear PDE systems, the said transformation is induced
by a special inner product, referred to as the ‘‘symmetry inner product’’. If the Galerkin projection step of the model reduc-
tion procedure is performed in this inner product, the resulting ROM is guaranteed to satisfy certain stability bounds regard-
less of the reduced basis employed. It is demonstrated that a discrete counterpart of the symmetry inner product is the
weighted L2 inner product obtained by solving a Lyapunov equation, derived in [23] by Rowley et al. For completeness, this
inner product, referred to as the ‘‘Lyapunov inner product’’, is re-derived herein, and it is shown using the energy method
that this inner product gives rise to stable ROMs constructed via discrete projection. The performance of POD ROMs
constructed using the symmetry and Lyapunov inner products are assessed on several numerical examples for which POD
ROMs constructed in the L2 inner product manifest instabilities.

The key properties of the symmetry inner product and Lyapunov inner product are summarized in Table 4. Both inner
products are weighted L2 inner products and have the same origin: they are induced by the Lyapunov function for the



Table 4
Comparison of symmetry inner product and Lyapunov inner product.

Symmetry inner product (49) Lyapunov inner product (77)

Continuous Discrete
For linear PDE system of the form For linear ODE system of the form

_q0 þ Ai
@q0
@xi
þ Kij

@2 q0
@xi@xj

þ Gq0 ¼ f _xN ¼ AxN

Defined for unstable systems but time-stability of ROM is not guaranteed Undefined for unstable systems
Induced by Lyapunov function for the system Induced by Lyapunov function for the system
Equation specific Black-box
Derived analytically in closed form Computed numerically by solving a Lyapunov equation
Sparse Dense
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governing system of equations. The symmetry inner product is a continuous inner product derived for a specific PDE system
of the form (27). Projection in this inner product requires access to the governing PDEs, which gives rise to a projection algo-
rithm that is embedded. The Lyapunov inner product is discrete, on the other hand, and operates on an LTI system of the
form (4) arising from the discretization of a PDE of the form (1) in space using some numerical scheme, e.g., the finite ele-
ment method. Projection in the Lyapunov inner product is therefore a black-box algorithm, as only the A, B and C matrices in
(4) are needed; in particular, access to the governing equations is not required. The symmetric positive definite matrix that
defines the Lyapunov inner product can also be computed numerically in a black-box fashion by solving a Lyapunov equa-
tion. The existence of a solution to this Lyapunov equation is certain only if the full order system (4) is stable; hence the
Lyapunov inner product is not defined for unstable systems. In contrast, the symmetry inner product is defined for unstable
systems. In this case, a ROM constructed in this inner product will be energy-stable, by construction. However, it will not be
time-stable, i.e., it may produce (physical) solutions that are unbounded as t !1. The discussion above may lead the reader
to prefer the Lyapunov inner product to the symmetry inner product, as the former inner product can be computed in a
black-box fashion for any stable linear system, and can be used to build a ROM for this system without accessing the PDEs.
One of the biggest drawbacks of the Lyapunov inner product projection approach involves its large computational cost. To
solve numerically the Lyapunov equation that defines this inner product, OðN3Þ operations are required. Moreover, since the
matrix that defines the Lyapunov inner product is typically dense (in contrast to the matrix defining the symmetry inner
product, which is sparse), at least OðN2Þ storage is required [11]. As a result, creating ROMs using the Lyapunov inner product
may not be practical for systems of very large size. The Lyapunov inner product may nonetheless be preferable to balanced
truncation, which requires the solution of two Lyapunov equations, and the storage of two Gramians, in addition to Cholesky
and eigenvalue factorization of these Gramians. For large-scale unsteady problems, the symmetry inner product combined
with the continuous projection approach is recommended by the authors, despite its more involved implementation.

It is worthwhile to note that there exist in the literature many efficient, low storage algorithms to compute approximate
solutions to large-scale Lyapunov equations, like the equation defining the Lyapunov inner product, e.g., the work of Li
[56,57], Benner [58] and Simoncini [59]. These approximate Lyapunov solvers can be used to perform approximate balanced
truncation model reduction, and can, in a similar fashion, be used to compute an approximation of the Lyapunov inner prod-
uct. With these approximate methods, however, the theoretical a priori stability guarantee shown herein for ROMs con-
structed in the Lyapunov inner product is lost, in general. Likely, ROMs constructed in approximate Lyapunov inner
products will in practice have better numerical stability properties than ROMs constructed in the L2 inner product. A numer-
ical study of the performance of such ROMs is a worthwhile future research endeavor that may be the subject of future work.
It is beyond the scope of the present article, which focuses on inner products that give rise to Galerkin formulations with an a
priori stability guarantee.
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Appendix A

A.1. Gronwall’s Lemma

Gronwall’s lemma (also known as Gronwall’s inequality) allows one to bound a function that is known to satisfy a certain
differential or integral inequality by the solution of the corresponding differential or integral equation [52]. The differential
form of this inequality is used herein:
_xðtÞ 6 bðtÞxðtÞ ) xðTÞ 6 xð0Þe
R T

0
bðsÞds ð84Þ
for b 2 L2; t P 0; 0 6 T 6 t.
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A.2. Balanced truncation algorithm for model reduction

The balanced truncation algorithm, first introduced by Moore [28], assumes a semi-discrete full order model of the form
(4). The linear system (4) is first transformed into a balanced form that isolates observable and reachable (or controllable)
modes. This is achieved by simultaneously diagonalizing the reachability (or controllability) and observability Gramians. The
reachability (or controllability) Gramian (Chapter 30 of [16])
6 In t
transpo

7 In p
Gramia
P �
Z 1

0
eAtBBT eAT tdt; ð85Þ
is the unique symmetric (at least) positive semi-definite solution of the Lyapunov equation
APþ PAT þ BBT ¼ 0: ð86Þ
The observability Gramian (Chapter 30 of [16])
Q �
Z 1

0
eAT tCT CeAtdt; ð87Þ
is the unique symmetric (at least) positive semi-definite solution of the Lyapunov equation
AT Q þ QAþ CT C ¼ 0: ð88Þ
It will be assumed herein that the matrix A defining the full order system (4) is stable, i.e., it has no eigenvalues with a
positive real part. It will also be assumed ðA;CÞ is observable and ðA;BÞ is reachable (controllable). If this is true, the Lyapu-
nov equations (86) and (88) will have positive definite solutions P and Q respectively (Chapter 6 of [17]). For a discussion of
balanced truncation applied to unstable systems, the reader is referred to [21].

The balanced truncation algorithm is summarized below for the specific case of real system matrices6 A; B and C. First, the
reachability Gramian P is obtained by solving the Lyapunov equation (86). Next, the observability Gramian Q is obtained by
solving the Lyapunov equation (88). The Cholesky factorization of P is computed,
P ¼ UUT : ð89Þ
followed by an eigenvalue decomposition of UT QU:
UT QU ¼ KR2KT : ð90Þ
The balancing transformation matrices:
Tbal ¼ R1=2KT U�1; T�1
bal ¼ UKR�1=2; ð91Þ
can now be computed,7 where the entries of R are in decreasing order. The change of variables ~xNðtÞ ¼ TbalxNðtÞ is applied to the
full-order LTI system (4) to yield:
_~xNðtÞ ¼ TbalAT�1
bal

~xNðtÞ þ TbalBuPðtÞ;
yQNðtÞ ¼ CT�1

bal
~xNðtÞ:

ð92Þ
Next, the matrices ~A � TbalAT�1
bal;

~B � TbalB; ~C � CT�1
bal are partitioned as follows:
ð93Þ
Here, the blocks with subscript 1 correspond to the most observable and reachable states, and blocks with subscript 2
correspond to the least observable and reachable states. Finally, the reduced system for a ROM of size M is given by:
_xMðtÞ ¼ AMxMðtÞ þ BMuPðtÞ;
yQMðtÞ ¼ CMxMðtÞ;

ð94Þ
where AM ¼ ~A11; BM ¼ ~B1; CM ¼ ~C1. The left and right reduced bases are given respectively by:
WM ¼ TT
balð:;1 : MÞ; UM ¼ Sbalð:;1 : MÞ; ð95Þ
where Sbal � T�1
bal.

In effect, balanced truncation is a method for computing the test and trial bases WM and UM in (16). Given the test and
trial bases defined in (95), the ROM system matrices (94) can be obtained from the formulas (17). The entries of the diagonal
he case these matrices are complex, the transpose operation T in the algorithm (and all analysis of this algorithm) should be replaced with a Hermitian
se H.
ractice, the transformation matrices (91) are typically computed as Tbal ¼ VT ZT , and T�1

bal ¼ UW, where Z is the Cholesky factor of the observability
n (Q ¼ ZZT ), and W is the left singular vector of UT Z (UT Z ¼WRVT ). This is due to numerical stability issues that could arise in computing R�1=2 in (91).
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matrix R in (91) are known as the Hankel singular values of the system (4). Assuming a ROM of size M has been constructed
using balanced truncation, the following error bound on the output can be shown [30]:
8 Rea
(contro
jjyQNðtÞ � yQMðtÞjj2 6 2
XN

i¼Mþ1

rijjuPðtÞjj2: ð96Þ
Generally, balanced truncation is viewed as the ‘‘gold standard’’ in model reduction. Although it is not optimal in the
sense that there may be other ROMs with smaller error norms, the approach has a priori error bounds that are close to
the lowest bounds achievable by any reduced order model [22]. Unfortunately, balanced truncation becomes computation-
ally intractable for systems of very large dimension (e.g., of size N P 10;000), and hence is not practical for many systems of
physical interest [23]. This is due to the high computational cost of solving the Lyapunov equations (86) and (88) for the
reachability and observability Gramians (OðN3Þ operations). The storage requirements of balanced truncation can be prohib-
itive as well. Even efficient iterative schemes developed for large sparse Lyapunov equations compute the solution to (86)
and (88) in dense form, and hence require OðN2Þ storage [11]. Unlike POD, balanced truncation delivers ROMs that preserve
stability of a stable system (4) [28], however.

Note that there exist methods for performing model reduction via an approximate balanced truncation, namely balanced
POD [22], as well as low-storage solvers for calculating efficiently approximate solutions of large-scale Lyapunov equations like
those arising in balanced truncation [56–59]. Unlike balanced truncation, these algorithms, by construction, can be applied to
large-scale problems. Although these methods have been found to exhibit better numerical stability properties than the POD/
Galerkin method to model reduction, they lack in general the provable a priori stability guarantee of balanced truncation.

A.3. Lyapunov inner product associated with balanced truncation

In comparing the steps of the balanced truncation algorithm with the discussion in Section 5.1, the reader may observe
some similarities. In particular, both algorithms require the solution of a Lyapunov equation for a Gramian used to transform
and reduce the system. Here, this connection is investigated further. In particular, it is shown that the balanced truncation
algorithm (Appendix A.2) may be viewed as a projection algorithm in a special Lyapunov inner product.

Suppose the stable LTI system (4) has been reduced using the balanced truncation model reduction algorithm summa-
rized in Appendix A.2. In order to uncover the inner product associated with balanced truncation, several transformations
are required.

The first step is to substitute (91) into (95). Then, the following expressions for the left and right bases are obtained:
WT
M ¼ Tbalð1 : M; :Þ ¼ R1=2ð1 : M; :ÞKT U�1; ð97Þ

UM ¼ Sbalð:;1 : MÞ ¼ UKR�1=2ð:;1 : MÞ: ð98Þ
Remark that (97) and (98) satisfy the following identity:
R�1ð1 : M;1 : MÞWT
MP ¼ UT

M ; ð99Þ
where P is the reachability Gramian (89). It follows that the ROM system matrices in (94) are:
AM ¼ WT
MAU ¼ WT

MAPTWMR�1ð1 : M;1 : MÞ; ð100Þ

BM ¼ WT
MB; ð101Þ

CM ¼ CU ¼ CPTWMR�1ð1 : M;1 : MÞ: ð102Þ
Defining
zMðtÞ � R�1=2ð1 : M;1 : MÞxMðtÞ ð103Þ
and employing the symmetry property of the reachability Gramian (P ¼ PT ), (94) becomes:
_zMðtÞ ¼ ŴT
MAPŴMzMðtÞ þ ŴT

MBuPðtÞ;
yQMðtÞ ¼ CPŴMzMðtÞ;

ð104Þ
where
ŴM � WMR�1=2ð1 : M;1 : MÞ: ð105Þ

It is clear that (104) defines a projection of the original LTI system (4) in an L2 inner product weighted by the reachability

Gramian matrix P. This matrix defines a true inner product in the case when P is symmetric positive-definite, which will hold
if ðA;BÞ is reachable (controllable).8
chability (a.k.a. controllability) is a standard concept in control theory. The author is referred to [14] for a detailed discussion of reachability
llability).
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A property of balanced truncation is that it preserves stability when applied to stable systems [10] (Appendix A.2). This
result can be proven using the energy method. The proof is analogous to the proof of Theorem 5.1.1.

A.4. Weak and penalty method implementations of ROM boundary conditions

Consider a linear PDE system of the form (35) in an open bounded domain X with boundary @X. Assume, without loss of
generality, that a transient, Dirichlet boundary condition is imposed on @X:
v0ðx; tÞ ¼ gðx; tÞ; on @X; ð106Þ
for some given, smooth function of boundary data gðx; tÞ. Detailed below are two ways to enforce the boundary condition
(106) in a ROM constructed via continuous Galerkin projection.

It is often possible to prove stability of a ROM constructed using continuous Galerkin projection with boundary conditions
implemented using the weak or penalty methods. For an example of how to do this in the context of the linearized compress-
ible Euler equations with non-reflecting far-field and acoustically-reflecting solid wall boundary conditions, the reader is
referred to [7].

A.4.1. Weak implementation of boundary conditions
Projecting (35) onto the kth reduced basis mode, /k for v0M , after applying the identities in (40), (43) and (45), and inte-

grating by parts gives:
Z
X

/T
k _v0MdX ¼ �1

2

Z
@X

/T
k AS

i þ
@KS

ji

@xj

 !
niv0MdCþ

Z
@X

/T
k KS

ij
@v0M
@xj

nidC�
Z

X

@/T
k

@xi
KS

ij
@v0M
@xj

dX

þ 1
2

Z
X

/T
k
@AS

i

@xi
þ
@2KS

ij

@xi@xj

 !
v0MdX; ð107Þ
for k ¼ 1; . . . ;M. A weak implementation of the boundary condition (106) amounts to substituting gðx; tÞ into v0M in the
boundary integrals in (107). Doing so yields:
Z
X

/T
k _v0MdX ¼ �1

2

Z
@X

/T
k AS

i þ
@KS

ji

@xj

 !
nigdCþ

Z
@X

/T
k KS

ij
@g
@xj

nidC�
Z

X

@/T
k

@xi
KS

ij
@v0M
@xj

dX

þ 1
2

Z
X

/T
k
@AS

i

@xi
þ
@2KS

ij

@xi@xj

 !
v0MdX; ð108Þ
for k ¼ 1; . . . M. Next, the modal decomposition v0M ¼
PM

i¼1v 0M;i/i is substituted into (108). For a linear system of PDEs like that
considered here, (108) will give rise to a ROM dynamical system of the form
_vM ¼ AMvM þ FM : ð109Þ
The implementation of the boundary condition (108) is called a ‘‘weak implementation’’ because v0M will only satisfy the
boundary condition (106) in a weak sense. The weak implementation of other boundary conditions (e.g., a Neumann and/or
Robin boundary condition) is similar to the procedure described above for the Dirichlet boundary condition.

A.4.2. Penalty method implementation of boundary conditions
The boundary condition (106) can also be implemented using a penalty method. To do this, the following boundary term

is added to the right hand side of (107):
s
Z
@X

/T
k v0M � g
� �

dC; ð110Þ
for each mode /k with k ¼ 1; . . . ;M. In (110), the parameter s 2 R is a user-specified penalty parameter that controls the
strength of the enforcement of (106) on @X. The idea is, as s!1, v0M ! g on @X. Eq. (107) together with Eq. (110) yields
a system of the form (109). Since, with the penalty method implementation of the boundary condition, v0M will only equal
g on @X in a weak sense, the penalty method implementation of a boundary condition is also a weak implementation. The
implementation of other boundary conditions, e.g., a Neumann and/or Robin boundary condition, via the penalty method is
analogous to the procedure for the Dirichlet boundary condition.

A.5. Linearized compressible Navier–Stokes system matrices

If the fluid vector is given by qT ¼ u1;u2;u3; T;qð Þ, where T and q denote the fluid temperature and density respectively,
the matrices that appear in (27) are given by the expressions found in [8], repeated below to keep this article self-contained.
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A1 �

�u1 0 0 R R�T
�q

0 �u1 0 0 0

0 0 �u1 0 0
�Tðc� 1Þ 0 0 �u1 0

�q 0 0 0 �u1

0
BBBBBBBB@

1
CCCCCCCCA
;

A2 �

�u2 0 0 0 0

0 �u2 0 R R�T
�q

0 0 �u2 0 0

0 �Tðc� 1Þ 0 �u2 0

0 �q 0 0 �u2

0
BBBBBBBB@

1
CCCCCCCCA
;

A3 �

�u3 0 0 0 0

0 �u3 0 0 0

0 0 �u3 R R�T
�q

0 0 �Tðc� 1Þ �u3 0

0 0 �q 0 �u3

0
BBBBBBBB@

1
CCCCCCCCA
;

ð111Þ

G ¼

@�u1
@x

@�u1
@y

@�u1
@z

R
�q
@�q
@x

1
�q

�u � r�u1 þ R @�T
@x

� �
@�u2
@x

@�u2
@y

@�u2
@z

R
�q
@�q
@y

1
�q

�u � r�u2 þ R @�T
@y

� �
@�u3
@x

@�u3
@y

@�u3
@z

R
�q
@�q
@z

1
�q

�u � r�u3 þ R @�T
@z

� �
@�T
@x

@�T
@y

@�T
@z ðc� 1Þr � �u 1

�q
�u � r�T þ ðc� 1Þ�Tr � �u
� �

@�q
@x

@�q
@y

@�q
@z 0 r � �u

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð112Þ
and
K11 �
1

�qRe

2lþ k 0 0 0 0

0 l 0 0 0

0 0 l 0 0

0 0 0 cj
Pr 0

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
; ð113Þ

K12 �
1

�qRe

0 k 0 0 0

l 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
; ð114Þ

K13 �
1

�qRe

0 0 k 0 0

0 0 0 0 0

l 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
; ð115Þ

K21 �
1

�qRe

0 l 0 0 0

k 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
; ð116Þ



I. Kalashnikova et al. / Applied Mathematics and Computation 249 (2014) 569–596 595
K22 �
1

�qRe

l 0 0 0 0
0 2lþ k 0 0 0
0 0 l 0 0
0 0 0 cj

Pr 0
0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
; ð117Þ
K23 �
1

�qRe

0 0 0 0 0
0 0 k 0 0
0 l 0 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
; ð118Þ
K31 �
1

�qRe

0 0 l 0 0
0 0 0 0 0
k 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
; ð119Þ
K33 �
1

�qRe

l 0 0 0 0
0 l 0 0 0
0 0 2lþ k 0 0
0 0 0 cj

Pr 0
0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
: ð120Þ
The parameters appearing in the viscous stress matrices Kij are: the Lamé viscosity coefficients k and l, the thermal dif-
fusivity j, the Prandtl number Pr, and the Reynolds number Re.
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