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Motivation

The Finite Element Method (FEM) in Fluid Mechanics

@ Galerkin Finite Element Method (FEM) has a
number of attractions in fluid mechanics:

o Flexibility in handling complex geometries.
o Ability to handle different forms of
boundary conditions.

@ FEM is quasi-optimal for elliptic
(diffusion-dominated) PDEs: assures good
performance of the computation at any mesh
resolution.
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Motivation

The Finite Element Method (FEM) in Fluid Mechanics

@ Galerkin Finite Element Method (FEM) has a
number of attractions in fluid mechanics:

o Flexibility in handling complex geometries.
e Ability to handle different forms of
boundary conditions.

@ FEM is quasi-optimal for elliptic
(diffusion-dominated) PDEs: assures good
performance of the computation at any mesh
resolution.

However:
coarse mesh accuracy is not guaranteed
when the flow is advection-dominated!

Significant mesh refinement typically
needed to capture boundary layer region

EXPENSIVE!

@ Goal: build an efficient method that can accurately capture boundary layers.
@ Approach: start with simple canonical equation; then generalize.
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Advection-Diffusion Equation

2D Scalar Advection-Diffusion Equation

Lc=—-krkAc+a-Vc =f
——

diffusion  advection

@ Advection velocity:
a=(ay,a) = |a|(cos ,sin¢)’.
@ ¢ = advection direction.

@ x = diffusivity.

@ Describes many transport phenomena in fluid mechanics:
o Heat transfer.
@ Semi-conductor device modeling.
o Usual scalar model for the more challenging Navier-Stokes
equations.
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Advection-Diffusion Equation

2D Scalar Advection-Diffusion Equation

Lc=—-krkAc+a-Vc =f
——

diffusion  advection

@ Advection velocity:
a=(ay,a) = |a|(cos ,sin¢)’.
@ ¢ = advection direction.

@ x = diffusivity.

@ Describes many transport phenomena in fluid mechanics:
o Heat transfer.
@ Semi-conductor device modeling.
o Usual scalar model for the more challenging Navier-Stokes
equations.

@ Global Péclet number (L = length scale associated with Q):

rate of diffusion Sc (mass diffusion)

_ rate of advection _ Lja| Re~{ Pr (thermal diffusion)
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Advection-Diffusion Equation

Advection-Dominated Regime

@ Typical applications: flow is Advection-Dominated
advection-dominated. (High Pe) Regime
I
Pe=130 Sharp gradients in exact solution

Galerkin FEM inadequate:
spurious oscillations (Fig. 1)

@ Some classical remedies:

e Stabilized FEMs (SUPG, GLS,
USFEM): add weighted residual
(numerical diffusion) to
variational equation.

e RFB, VMS, PUM: construct

Figure 1: Galerkin @ solution conforming spaces that
(color) vs. exact solution (black) for incorporate knowledge of
Pe =150 local behavior of solution.
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Discontinuous Enrichment M

The Discontinuous Enrichment Method (DEM)

Idea of DEM:

“Enrich” the usual Galerkin polynomial field VF by the free-space solutions to
the governing homogeneous PDE Lc = 0.

c"=cf+cf e VP (VEVVP)

where
E —span{c: Lc =0}

@ Simple 1D Example:

{ ux—uXX:1+x, x €(0,1)
u(0) =0,u(1) =

e Enrichments: uf — uf, = 0= uf = Ci + Coe¥ =
VE = span{1, &}.

o Galerkin FEM polynomials: Vée_, ..., = span {M, = } .
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Discontinuous Enrichment M

History of DEM’s Success

@ Acoustic scattering problems (Helmholtz equation) [4,5].

o First developed by Farhat et. al in 2000 for the Helmholtz equation.

o A family of 3D hexahedral DEM elements for medium frequency
problems achieved the same solution accuracy as Galerkin
elements of comparable convergence order using 48 times fewer
dofs, and up to 60 times less CPU time [4].

e Numerically scalable domain decomposition-based iterative solver
for 2D and 3D acoustic scattering problems in medium- and high-
frequency regimes has been developed [5].

@ Wave propagation in elastic media (Navier’s equation) [6].

@ Fluid-structure interaction problems (Navier's equation and the
Helmholtz equation) [7, 8].
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History of DEM’s Success

@ Acoustic scattering problems (Helmholtz equation) [4,5].

o First developed by Farhat et. al in 2000 for the Helmholtz equation.

o A family of 3D hexahedral DEM elements for medium frequency
problems achieved the same solution accuracy as Galerkin
elements of comparable convergence order using 48 times fewer
dofs, and up to 60 times less CPU time [4].

e Numerically scalable domain decomposition-based iterative solver
for 2D and 3D acoustic scattering problems in medium- and high-
frequency regimes has been developed [5].

@ Wave propagation in elastic media (Navier’s equation) [6].
@ Fluid-structure interaction problems (Navier's equation and the

Helmholtz equation) [7, 8].

Excellent performance motivates
development of DEM for other applications
— Fluid Mechanics
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Two Variants of DEM

@ Two variants of DEM: “pure DGM” vs. “true DEM”

|| DGM | DEM
VT VE [ VP e (VR
ch cE cP + cf
— —
Enrichment-Only “Pure DGM”: True or “Full” DEM:
Contribution of the standard Splitting of the approximation
polynomial field is dropped into coarse (polynomial) and
entirely from the approximation. fine (enrichment) scales.

@ Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries
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Discontinuous Enrichment M

Two Variants of DEM

@ Two variants of DEM: “pure DGM” vs. “true DEM”

|| DGM | DEM
Vil VE VP e (VR
ch cE cP + cf
— —
Enrichment-Only “Pure DGM”: True or “Full” DEM:
Contribution of the standard Splitting of the approximation
polynomial field is dropped into coarse (polynomial) and
entirely from the approximation. fine (enrichment) scales.

@ Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries =~ DEM is discontinuous by
construction!

DEM = DGM with Lagrange Multipliers
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Discontinuous Enrichment M

What about Inter-Element Continuity?

@ Continuity across element boundaries is enforced weakly using
Lagrange multipliers A" € W":

A veE ne = —veh-n®  onre
but making sure we uphold the...

@ Discrete Babuska-Brezzi inf-sup condition':

# Lagrange multiplier # enrichment
constraint equations —  equations

Rule of thumb to satisfy the Babuska-Brezzi inf-sup condition is to limit:
E E
m = {n—J = max{n €Zln< %}

4
n* = # Lagrange multipliers per edge
nf = # enrichment functions

"Necessary condition for generating a non-singular global discrete problem.

DEM for Multi-Scale Transport Problems
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Hybrid Variational Formulation of DEM

@ Strong form:

Find ¢ € H'(Q) such that <
(5):] —rbetave = f i@ < ‘
: ¢c = g, on =00 . ’

Q=u¢,Q°

F=ug,re

re¢ =renre

MM = Ug e UM, {renTe
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Discontinuous Enrichment M

Hybrid Variational Formulation of DEM

@ Strong form:
Find ¢ € H'(Q) such that

(S): —-kAc+a-Ve = f, inQ . ‘
' ¢ = g, onl =090
Ce—Cy = 0, onr™ l

Notation:
Q= Un’;9=/19:
r=u2,r

MM = Uy o U, {FNTe
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Discontinuous Enrichment M

Hybrid Variational Formulation of DEM

@ Strong form:
Find ¢ € H'(Q) such that

(S) - —-kAc+a-Ve = f, inQ
' ¢ = g, onl =090
Ce—Cey = 0, on™

@ Weak hybrid variational form:

Find (¢, A\) € V x W such that:

alv,e) + b(\v) = r(v)
w):

b(u c) = () Notation:

holds Vc € V,Vu e W. & _ (e
12 9 _ U,;T/1%e
where M= Ul
re¢ =renre

a(v, C) = (KJVV + va, VC)Q rint — Ue'<e Uge:/1 {re n ref

bA, V) =30 > co Jreer A(Ver — Ve)dl + [ Av dl
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Discontinuous Enrichment M

Hybrid Variational Formulation of DEM

@ Strong form:

Find ¢ € H'(Q) such that <
5).) -—wAc+a-Ve = f inQ <& \
(S): ¢ = g, onl =090
Ce—Cy = 0, onr™ l
@ Weak hybrid variational form: " Q

Find (¢, A\) € V x W such that:

alv,e) + b(\v) = r(v)
(W):
b(u, €) = (1) [ Notation:
holds Vc € V,Vu € W. & _ el e
iy
where = Vet

ree —renre
v,c) = v+ Vi & i o /
a(v,0) = (xVv + va, Vo), 7 = U g U3, (1117

bA, V) =30 > o Jreer A(Ver — Ve)dl + [ Av dl
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Discretization & Implementation

@ Element matrix problem (uncondensed):

kPP kPE kPC cP rP
kEP kEE kEC cE — rE
kCP kCE 0 A h rC
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Discontinuous Enrichment M

Discretization & Implementation

@ Element matrix problem (uncondensed):

kPP kPE kPC cP rP
kEP kEE kEC cE — rE
kCP kCE 0 A h rC

Due to the discontinuous nature of V&, ¢F can be
eliminated at the element level by a static condensation
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Discontinuous Enrichment M

Discretization & Implementation

@ Element matrix problem (uncondensed):

kPP kPE kPC cP rP
kEP kEE kEC cE — rE
kCP kCE 0 A h rC

Due to the discontinuous nature of V&, ¢F can be
eliminated at the element level by a static condensation

@ Statically-condensed True DEM Element:
RPP RPC CP FP
(RCP RCC)(Ah):(fc>

@ Statically-condensed Pure DGM Element:
_kCE(kEE)—1kECAh _ rC _ kCE(kEE)—1rE
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Discretization & Implementation

@ Element matrix problem (uncondensed):

K  KPE KPC e’ P Computati.onal
KEP  KEE KEC cE — | complexn.y
( KP K 0 ) ( AP ) ( < ) depends on dimwW"
not on dimV&

Due to the discontinuous nature of VE, ¢t can be /A
eliminated at the element level by a static condensation

@ Statically-condensed True DEM Element:
RPP RPC CP FP
(RCP RCC)(Ah):(fc>

@ Statically-condensed Pure DGM Element:
_kCE(kEE)—1kECAh _ rC _ kCE(kEE)—1rE
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o DEM for Constant-Coefficient Advection-Diffusion
@ Enrichment Bases
@ Lagrange Multiplier Approximations
@ Element Design
@ Numerical Experiments
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Angle-Parametrized Enrichment Functions for 2D

Advection-Diffusion

@ Derived by solving £cf = a- Vcf — kAcE = 0 analytically (e.g.,
separation of variables).

aj+|al cos 6; ao+|a| sin 6;
G ) (R ) )

cE(x;0) = e(

a’ =( a, a )= advection velocity vector
(X..i, yr.i) = reference point for c¢f

e° = {0,-},”:51 € [0,27) = set of angles specifying V5

The parametrization with respect to 6; in (1) is non-trivial!

@ Enrichment functions are now specified by a set of “flow directions”.
@ Parametrization enables systematic element design.
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Plots of Enrichment Functions for Some Angles
0; € [0, 27T)

Figure 2: Plots of enrichment function c£(x; 6;) for several values of 6; (Pe = 20)
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

What about the Lagrange Multiplier Approximations?

Figure 3: straight edge re€ oriented at angle ¢ ¢ [0, 2r)

@ Trivial to compute given exponential enrichments:

h ~ E
by (s)lre’e/ ~ Vc© - n|re,e’
/
{% [Cos(qﬁae’e/)+COS(9k*°‘e’e/ )] (s—s7 )}
= const - e
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What about the Lagrange Multiplier Approximations?

Figure 3: straight edge re€ oriented at angle ¢ ¢ [0, 2r)

@ Trivial to compute given exponential enrichments:

h ~ E
by (s)lre’e/ ~ Vc© - n|re,e’
/
{% [cos(¢—a®)+oos(8,—a®®')| (s—sF° )}
= const - e

Non-trivial to satisfy inf-sup condition:
the set ©° that defines V- typically leads to
too many Lagrange multiplier dofs!
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Lagrange Multiplier Selection

/ /
e,e e,e
An;in Am’ax
L N ND N
vee e o6’ e
B B ) )
/\1 /\2 /\3 /\4

lllustration of Lagrange Multiplier selection for n* = 4

@ Define:
A = lal [cos(qﬁ —a®¥) + cos(bx — o> )}

K
¢

ee . .ee
AP e = span {e/‘f =57) 0<s< h}

@ Determine # Lagrange multipliers allowed: card{/\f’e/} = {%J

@ Sample A>® uniformly in the interval [A%, A%S,] to span space of all

; Aes  nee e,/ e,¢e’
exponentials of the form {&" °: AD> < AP < ADZ L.
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Mesh Independent Element Design Procedure

Algorithm 1. “Build r Own DEM Element”

Fix nf € N (the desired number of angles defining V).

Select a set of nF distinct angles ©° = {6 }7_, between [0, 27).
Define the enrichment functions by:

aj +|a| cos ©¢ ap+|a| sin @
J—zﬁ (x—x,’,-) T (,V—,Vr,i)
e

cE(x; 0% = e(

Determine n* = LéJ
for each edge ¢’ ¢
Ja| /

Compute max and min of 32 [cos(¢ — a®¥) 1 cos(Ox — a® )], call them A;’;’, ASS.

Sample {Af’e, :i=1,...,n*} uniformly in the interval [A;’i‘;,, NS
Define the Lagrange multipliers approximations on re.e by:

/ /
e,e e,e
(

A"|re,e/ = span {eAi =i ) 0<s< h}

end for
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Element Nomenclature

DGM Element: Q — nf — n*
DEM Element: Q — nf — i** =[Q — nf — N’ U[Q]

'Q’: Quadrilateral

nf: Number of Enrichment Functions

m*: Number of Lagrange Multipliers per Edge
Q1 : Galerkin Bilinear Quadrilateral Element

>

| Name | nf| e° |
Q—4-1 4 [ o+{%:m
Q-8-2 | 8 | ¢+{2:m .
Q-12-3 |12 | ¢+{%:m=0,..,11}
Q-16—-4 |16 | ¢+ {%F :m=0
Q-5-17 | 5 [ ¢+ {Z=:
Q-9-2" 9 (;5—}—{2"”: ..
Q-13-3" [ 13 | ¢+ {&F:m=0,..,12}
Q—-17—-4" |17 | ¢+ {¥¥F :m=0,..,16}

3

DGM elements

DEM elements

I
—~—
AOMND=2P~POND =
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[llustration of the Sets ©°¢ for the True DEM Elements

Q—13-3+ Q- 17— 4+ <)
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Computational Complexities

Element Asymptotic Stencil width for (# d(?fs). X 12 convergence
# of dofs uniform n x nmesh | (stencil width) | rate (a posteriori)
Q Ney 9 9N 2
Q—4-1 2ng 7 14n, 2
Q 31 21 63n, 3
Q-8-2 4ng 14 56N, 3
Q-5-1* 3ng 21 63, >_3
Qs 5ne; 33 165n, 4
Q—-12-3 6n¢; 21 1260, 4
Q-9-2* 5ng 33 1650, 3_4
Qs gy 45 315, 5
Q—-16—4 81y 28 224n¢ 5
Q—-13-3" 7ne 45 315ng 4_5
Q—17 —4* 9ng 57 5130 4-5

—_— —%—

—_— —%—

Figure 4: @ stencil Figure 5: @ — 4 — 1 stencil
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Summary of Computational Properties

“COMPARABLES”

S —

A priori in A posteriori in
computational cost: convergence rate:
e DGM with nLMs and Q, e DGM with n LMs and Q,
e DEM with n LMs and Q1 e DEM with n LMs and Q,/Qp++

@ Exponential enrichments = integrations can be computed analytically.

@ £cf =0 = convert volume integrals to boundary integrals:

a(vf,cf) = [(kVVvE-VcF +a- vehvE)dQ
:fﬁVCE'nVEdr
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Homogeneous Boundary Layer Problem
® Q=(0,1)x (0,1),f=0. Figure 6: ¢ =+ =0
@ a=(cosg, sing ).

@ Dirichlet boundary conditions are specified on
I" such that the exact solution to the BVP is

given by
eé{[oos @-+00s Y] (x—1)+[sin p+sin Pl(y—1)} _ 4 ‘:‘ﬂ}; ) e e o
Coxli 0, ) = e*ﬁICos b-+cos ptsin Gtsin ] _ 4 o
@ 1 € [0,2x) : some flow direction (not Figure 7: ¢ = 7/7,4 =0

necessarily aligned with ¢).
@ Solution exhibits a sharp exponential "

boundary layer in the advection direction ¢,
whose gradient is a function of the Péclet W
number. o
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Homogeneous Boundary Layer Problem
® Q=(0,1)x (0,1),f=0. Figure 6: ¢ =+ =0
@ a=(cosg, sing ).

@ Dirichlet boundary conditions are specified on
I" such that the exact solution to the BVP is

given by
eé{[oos @-+00s Y] (x—1)+[sin p+sin Pl(y—1)} _ 4 h P ) e e o
Coxli 0, ) = e*ﬁ[Cos b-+cos ptsin Gtsin ] _ 4 o
@ 1 € [0,2x) : some flow direction (not Figure 7: ¢ = 7/7,4 =0

necessarily aligned with ¢).
@ Solution exhibits a sharp exponential "

boundary layer in the advection direction ¢,
whose gradient is a function of the Péclet W
number. o
Homogeneous problem = L

pure DGM elements sufficient
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Non-trivial Test Case: Flow not Aligned with Advection

Direction (¢ # )

@ Set ¢ = 7/7; vary 1.

@ Can show that ce ¢ VE for any DGM elements and advection
directions tested here.

Table 1: Relative L2() errors, =~ 1600 dofs, unstructured mesh, ¢ = 7 /7, Pe = 10%: Galerkin

vs. DGM elts.

o/ Qi Q—4-1 Q Q-8-2
0 145x 1072 [ 165x 102 [ 5.92%x 107 % [ 1.79 x 1073
1/4 || 152 x 1072 | 9.38 x 107 || 6.06 x 1073 | 2.54 x 10~*
1/2 || 151 x 1072 | 9.23x107* || 5.97 x 1078 | 2.12x 10~*

/T Qs Q-12-3 Qs Q-16—-4
0 434x10° [ 1.10x107* || 323x107° | 2.30 x 10~°
1/4 || 446 x 1072 | 1.23x107% || 3.29x 1072 | 8.82x 10~
1/2 || 436 x 1072 | 111 x107% || 3.18 x 1072 | 1.59 x 10~°

Irina Kalashnikova™ Ph.D. Candidate Institute for Computational & Mathe
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Convergence Analysis & Results

Hognogeneous boundary layer problem, $= 27, y=10, Pe =100
10

\ - 2?44 Rate # dofs
1o ° Element of to achieve
1 _— @,25,2 convergence | 102 error
95 Q 1.90 63,266
i Q123 Q—4—-1 1.99 14,320
5 G @ 2.38 24,300
210 TTooEd Q-8-2 3.27 5400
e Qs 3.48 12,500
0 Q-12-3 3.88 850
- Q 4.4 8600
Q—-16—-4 5.19 570
107
°

10t 1w’ 1’

@ To achieve for this problem the relative error of 0.1% for Pe = 10°:

Q — 4 — 1 requires 4.4 times fewer dofs than Q.
Q — 8 — 2 requires 4.5 times fewer dofs than Q..
Q — 12 — 3 requires 14.7 times fewer dofs than Qs.
Q — 16 — 4 requires 15.1 times fewer dofs than Q.
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Solution Plots for Homogeneous BVP

Figure 8: ¢ = ¢ = 0, Pe = 10%, ~ 1600 dofs Figure 9: ¢ = 7/7,4 = 0, Pe = 10°, = 1600 dofs
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Double Ramp Problem on an L-Shaped Domain

Y,
1 c=0 @ Homogeneous Dirichlet boundary
conditions are prescribed on all six
c=0 sides of L—shaped domain .
Q @ Advection direction: ¢ = 0.
05 —¢=0 c=0 @ Source: f=1.
@ Strong outflow boundary layer along
c=0 a'=(1 0) the line x = 1.
@ Two crosswind boundary layers
- alongy=0andy =1.
0 c=0 1 «x gy=>oandy
@ A crosswind internal layer along
y =0.5. B
Figure 10: L-shaped domain for double (
ramp problem >-;
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Solutions Plots: Galerkin vs. DGM vs. DEM Elements

Figure 11: L-shaped double ramp problem solutions: Pe = 10°, 7600 dofs

Qs Q-12-3 Q—9-2*

@ No oscillations can be seen in the computed DGM and DEM
solutions.

@ Would expect: DEM elements to outperform DGM elements for
this inhomogeneous problem.

@ In fact: DGM elements experience some difficulty along the
y = 0.5 line, the location of the crosswind internal layer.
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Cross Sectional Solution Plots

Figure 12: Solution along the line x = 0.9 with 7600 dofs

x10®

Galerkin DGM

DEM
Figure 13: Solution along the line y = 0.5 with 7600 dofs

x10°

x10°
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Relative Errors (Pe = 102, Uniform Mesh)

# elements Qs Q-12-3 Q-9-2*
300 1.49x 107" [ 111 x10° " | 411 x 1072
1200 6.57 x 1072 | 5.00 x 1072 | 8.47 x 107¢
4800 236 x 1072 | 1.02x1072 | 1.65x 107°

10, 800 1.08x 1072 | 454 x10°% | 743 x10~*

# elements Q4 Q-16—-4 | Q—13-3"
300 958x 1072 [ 832x102 | 2.80 x 102
1200 3.78x 1072 | 1.33x 1072 | 4.71 x 1073
4800 1.03x1072 | 917 x10°% | 824 x 10~*

10,800 3.70x107% | 4.92x107™* | 9.75 x 107°

@ DEM elements outperform DGM elements.
@ Both DGM and DEM elements outperform Galerkin elements.
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Outline

e DEM for Variable-Coefficient Advection-Diffusion
@ Enrichment Bases
@ Lagrange Multiplier Approximations
@ Element Design
@ Numerical Experiments
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Extension to Variable-Coefficient Problems

@ Define VE within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.

@ a(x) =~ a® =constant inside each element Q° as h — 0:
{a(x)- Ve —kAc=f(x) in Q} ~U¥ {a° Vc—rAc=f(x) in Q.

yi+h
ae:< Y- 8 ) ae’z( iz )
it Ve a0 f= (. %)
Q° o
Yj
X X+ h X +2h

@ Enrichment in each element:
ct (X 96) —e 2 |(cos¢e+cos€ Jx=x7)) ‘z—l(sin $C+sin 07)(y—y7 ;) c Vé_:
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Relation Between Local Enrichment and Governing

PDE

@ Given a(x) € C'(Q°), Taylor expand a(x) around an element’s midpoint

xe:
a(x) = a(X®) + Valx_ze - (X — X°) + O(x — X°)®  inQ°
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Relation Between Local Enrichment and Governing

PDE

@ Given a(x) € C'(Q°), Taylor expand a(x) around an element’s midpoint
x°:

a(x) = a(X®) + Valx—ze - (X — X°) + O(x —X°)?  in Q°
@ Operator governing the PDE inside the element Q° takes the form
a(x) -Vc— kAc = Lec+ f(C) in Q°
where
Lec=a(X®)- Ve — kAc

f(c) = [Valxse - (X — X°) + O(x — X°)?] - Ve
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Relation Between Local Enrichment and Governing

PDE

@ Given a(x) € C'(Q°), Taylor expand a(x) around an element’s midpoint
x°:

a(x) = a(X°) + Va|y_ze - (X —X°) + O(x —x°)®> inQ°
@ Operator governing the PDE inside the element Q° takes the form
a(x) -Vc— kAc = Lec+ f(C) in Q°
where
Lec=a(X®)- Ve — kAc
f(c) = [Valxse - (X — X°) + O(x — X°)?] - Ve

@ “Residual” advection equation acts as source-like term = suggests true
DEM elements are in general more appropriate than pure DGM
elements for variable-coefficient problems.
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Relation Between Local Enrichment and Governing

PDE

@ Given a(x) € C'(Q°), Taylor expand a(x) around an element’s midpoint
x°:

a(x) = a(X°) + Va|y_ze - (X —X°) + O(x —x°)®> inQ°
@ Operator governing the PDE inside the element Q° takes the form
a(x) -Vc— kAc = Lect+ f(C) in Q°
where
Lec=a(X®)- Ve — kAc
f(c) = [Valxse - (X — X°) + O(x — X°)?] - Ve

@ “Residual” advection equation acts as source-like term = suggests true
DEM elements are in general more appropriate than pure DGM
elements for variable-coefficient problems.

Can we build a better pure DGM
element for variable-coefficient problems?
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Additional “First Order” Enrichment Functions

@ Are we missing any free-space solutions to a° - Vcf — kAcE = 0?
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Additional “First Order” Enrichment Functions

@ Are we missing any free-space solutions to a° - Vcf — kAcE = 0?

@ Yes! Polynomial free-space solutions to £c5, = a®- Vc5, — Ac5, =0
(of any desired degree n) can be derived as well.
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Additional “First Order” Enrichment Functions

@ Are we missing any free-space solutions to a° - Vcf — kAcE = 0?

@ Yes! Polynomial free-space solutions to £c5, = a®- Vc5, — Ac5, =0
(of any desired degree n) can be derived as well.

cE1(x) = |a® x x|
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Additional “First Order” Enrichment Functions

@ Are we missing any free-space solutions to a° - Vcf — kAcE = 0?

@ Yes! Polynomial free-space solutions to £c5, = a®- Vc5, — Ac5, =0
(of any desired degree n) can be derived as well.
cE1(x) = |a® x x|

cEo(x) = [a® x x|* +2(a° - x)
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Additional “First Order” Enrichment Functions

@ Are we missing any free-space solutions to a° - Vcf — kAcE = 0?

@ Yes! Polynomial free-space solutions to £c5, = a®- Vc5, — Ac5, =0
(of any desired degree n) can be derived as well.

cE1(x) = |a® x x|
cEo(x) = [a® x x|* +2(a° - x)

cEa(x) = |a® x x[° + 6]a® x x|(a° - x)
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“Higher Order” Enrichment Functions

@ Linearize a(x) to second order, instead of to first order:
a(x) ~ a(X®) + Va|xge - (x — X°) inQ°
@ Enrich with free-space solutions to
[AX +b] - Vcf — kAcE =0 )
where A = Valx—ze, b = (a(X®) — Va|x=xeX°).

@ Solutions to (2) are given by:

VX 2 05
cE(x):/ exp{a’W +(v,--b)w} dw u
0

2

o; = eigenvalue of Va|x_ze
v; = eigenvector of Va|y—ze ’ 0
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“Enrichment Function Bank”

Exponential Family

ae+|ae|cose'> aS+|a®| sin 6;
pn Bl el (X=X, 1) (Q)(},_y )
Cf(x; 6,) — e( 2K T e 2k Tyl
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“Enrichment Function Bank”

Exponential Family

ae+|ae|cosol> aS+|a®| sin 6;
pn Bl el (X=X, 1) (Q)(y_y )
Cf(x; 6,) — e( 2K T e 2k Tyl

Polynomial Family
Cgo(x) = 1
cs1(x) = [a® x x| VE
E _ e 2 e e
Ceo(X) = |a® x x|* +2(a° - x)
cEs(x) = [a® x x[° + 6la® x x|(a® - x)
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“Enrichment Function Bank”

Exponential Family

a$+|ae|cos«9i> a5+a®| sin 6;
A o) () 0w
cE(x;0)) = e( 2x "e\ "

Polynomial Family
Cgo(x) = 1
cs1(x) = [a® x x| VE
E _ e 2 e e
Ceo(X) = |a® x x|* +2(a° - x)
cEs(x) = [a® x x[° + 6la® x x|(a® - x)

“Higher Order” Enrichment
cE(x) = [} ™exp { ”';”2 + (v; - b)w} dw
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Modification of the Lagrange Multiplier Field

Limit n* to satisfy inf-sup:

"% | exponential LMs
Use o i
T~ | polynomial LMs

Figure 14: Straight edge re-¢’
oriented at angle o ¢ [0,2m)

@ LM approximations arising from exponential enrichments:

_ee

S=ST ), 0§s§h,1§i§nexp}

/
e,e
(

A’

where Af’e' =1l [cos(qﬁ — a®%) + cos(; — ae’e')}.

K

@ LM approximations arising from polynomial enrichments:

/\h|re,e/ :SpE:ln{sk7 0<s<hO0<k< Pl _ 1}
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New DGM Elements

Q- (npol7 nexp) _ n>\

New DGM Elements: { Q- (np"', o) — s

'Q': Quadrilateral

nP°': Number of Polynomial Enrichment Functions
n®®: Number of Exponential Enrichment Functions
n*: Number of Lagrange Multipliers per Edge

"*’: Element Augmented by “Higher Order” Enrichment

I Name | n® | e° |
Q-(45-21]9 [¢+{%:m=0,..,4} ] 2
Q- (45 -2 |10 | ¢+ {20 :m=0,..,4} | 2
DGMelements || ‘o _4,0)-3 | 13 | ¢+ {2 .m=o0,..8} | 3
Q- (49" -3 |14 | ¢+ {2 :m=0,.,8} | 3

9

@ Polynomial enrichment fields of new DGM elements contain n*® = 4
polynomial free-space solutions of degrees 0, 1, 2 and 3.
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Computational Complexities

Element Asymptotic Stencil width for (# dofs) x L2 convergence
# of dofs uniform n x nmesh | (stencil width) | rate (a posteriori)
@ el 9 9ne; 2
Q—-4-1 2ng 7 14ng 2
Q 3/ 21 63N/ 3
Q-8-2 4ng 14 560, 3
4ne 14 - |
R - = S
Q-5-—17 3ne 21 63ng 2-3
Qs 5ney 33 165n, 4
Q—-12-3 6ng 21 126N, 4
Q- (49 -3 6 21 1261 4
Q-(49" -3 6l 21 1267, 4
Q—-9-—2" 5ngy 33 165N, 3_4
Qu g, 45 3150, 5
Q-16-4 81/ 28 224n, 5
Q—-13-3" 7ne 45 315n, 4_5
Q—17 — 47 9Ng 57 5131, 4_5
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Inhomogeneous Rotating Advection Problem on an
L-Shaped Domain

@ Homogeneous Dirichlet
boundary conditions are
prescribed on all six sides of
L—shaped domain Q.

@ Source: f =1.

ea’'(x)=(1-y, x).

@ Outflow boundary layer along the
line y =1.

1 X @ Second boundary layer that

terminates in the vicinity of the

Figure 15: L-shaped domain and re—entrimtocg rgesr (3
rotating velocity field (curved lines (x,y) = (0.5,0.5). ;
indicate streamlines) s ]
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Solutions Plots for Pe = 102 with ~ 3000 dofs

Q-5—-17 Q-9-2*

* “Stabilized Q" is upwind stabilized bilinear finite element proposed by Harari et al.
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Convergence Analysis & Results

L-shaped rotating field, inhomageneous problem, Pe = 1000
10

. S:ahihzed Q Rate #dofs

N ' Element of to achieve

o'l R convergence | 102 error
Sj ! Q 1.94 62,721
. g Q-5-17F 1.55 21,834
5 — g, Qs 267 33,707
£y o ona Q-9-2* 2.37 7,568
® ot Q 3.50 20, 796
Q—13—3" 3.23 5,935
Ina! Q—17 — 4" 3.26 4,802

i

107 10"

h
* “Stabilized Q" is upwind stabilized bilinear finite element proposed by Harari et al.

@ To achieve for this problem the relative error of 1% for Pe = 10°:
e Q—5— 1" requires 2.9 times fewer dofs than Qo.
e Q-9 — 2" requires 4.5 times fewer dofs than Qs.
e Q— 13 — 3% requires 3.5 times fewer dofs than Qq.
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Lid-Driven Cavity Flow Problem

Vactor Plat of Advection Fisld for Lk Diven Caviy Problem
1

=3

)
\
f
=7

AN
A
e e e
AN

,
0
N
AN

@ c(x) represents temperature in

@ Q=(0,1)x(0,1), f=0.
@ a(x) computed numerically by

solving the incompressible
Navier-Stokes equations for
lid-driven cavity flow problem
(stationary sides and bottom,
tangential movement of top).

@ Advection field reconstructed using

interpolation with bilinear shape
functions ¢7:

# nodes of Q°

>

i=1

CHELC

cavity.
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Convergence Analysis & Results (x = 0.01, Pe =~ 260)

Cavity Flow DGM Relative Errors, & =0.01

10’ E Q,
—— Q{452
Oﬁ
— =483
10’
5
5
2 ap?
=
@
10°
w* .
o'
h

@ New pure DGM elements without
“higher order” enrichment outperform
Galerkin comparables.

o
1 03 03 07 06 0s o4 03 02 o1

Q- (4,5)—2
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Convergence Analysis & Results (x = 0.01, Pe =~ 260)

Cavity Flow DGM Relative Errors, = 0.01

10’ E Q,
Q452
Oﬁ
Q973
10’
5
5
2 ap?
=
@
10°
w*

10’
h

@ New pure DGM elements without
“higher order” enrichment outperform
Galerkin comparables.

Q—(4,5)-2
@ Further improvement in computation by
adding “higher order” enrichment.
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Outline

e Extension of DEM to Unsteady, Non-Linear Problems
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DEM for the Viscous Burgers Equation

@ Non-linear unsteady version of advection-diffusion equation =
viscous Burgers equation:

U+ Uly — klUyy =0
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DEM for the Viscous Burgers Equation

@ Non-linear unsteady version of advection-diffusion equation =
viscous Burgers equation:

U+ Uly — klUyy =0

@ Semi-discrete form of PDE (with semi-implicit Euler) at time n:

n+l_n
g+ Ut — kUl =0
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DEM for the Viscous Burgers Equation

@ Non-linear unsteady version of advection-diffusion equation =
viscous Burgers equation:

U+ UlUy — klUyy =0

@ Semi-discrete form of PDE (with semi-implicit Euler) at time n:

n+1
7% S+ Uit — kUl =0

@ Enrichment functions inside each element at time step n are the
free-space solutions to steady version of the equation above:

Ve = span{u”(x) : U™ (Xe)ul — kUl = 0,x € Q°}
where

Vf’” = enrichment field inside element Q° at time step n CE
Xe = midpoint of element Q°
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Outline

o Summary

te for Computational & Math cale Transport Problems



Discontinuous Enrichment Method (DEM) =
efficient, competitive alternative to stabilized FEMs
for advection-diffusion in a high Péclet regime.

@ Parametrization of exponential basis enables systematic design of DEM
elements of arbitrary orders.

@ Augmentation of enrichment space with additional free-space solutions
can improve further the approximation.

@ For all test problems, enriched elements outperform their Galerkin and
stabilized Galerkin counterparts of comparable computational
complexity, sometimes by many orders of magnitude.

@ In a high Péclet regime, DGM and DEM solutions are almost completely
oscillation-free, in contrast with the Galerkin solutions.

@ Advection-diffusion work generalizable to more complex equations in
fluid mechanics (e.g., non-linear, unsteady, 3D).

@ Future work: DEM for incompressible Navier-Stokes.
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