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Advection-Diffusion Equation

2D Scalar Advection-Diffusion Equation

Lc=—-krkAc+a-Vc =f
~——

diffusion  advection

@ Advection velocity:
a=(a,a) =|al(cosa,sing).
@ ¢ = advection direction.

@ x = diffusivity.

@ Describes many transport phenomena in fluid mechanics:
o Heat transfer.
e Semi-conductor device modeling.
@ Usual scalar model for the more challenging Navier-Stokes
equations.
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diffusion  advection

@ Advection velocity:
a=(a,a) =|al(cosa,sing).
@ ¢ = advection direction.

@ x = diffusivity.

@ Describes many transport phenomena in fluid mechanics:
o Heat transfer.
e Semi-conductor device modeling.
@ Usual scalar model for the more challenging Navier-Stokes
equations.

@ Global Péclet number (L = length scale associated with Q):

_ rate of advection _ L[a| Re. Pr (thermal diffusion)
~ rate of diffusion k& Sc (mass diffusion)
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Advection-Diffusion Equation

Advection-Dominated Regime

@ Typical applications: flow is
advection dominated.

Pe=150

Figure 1: Galerkin @; solution
(color) vs. exact solution (black) for
Pe = 150

Advection-Dominated
(High Pe) Regime
I

Sharp gradients in exact solution

I
Galerkin FEM inadequate:

spurious oscillations (Fig. 1)

@ Objective of DEM:
e To produce efficiently an
oscillation-free solution.

o Alternative to stabilized FEMs
(SUPG, GLS, USFEM).




Discontinuous Enrichment Method (DEM)

The Discontinuous Enrichment Method (DEM)

@ First developed by Farhat et al. in 2000 [1] for the Helmholtz equation.

Idea of DEM:

Employ as the finite element shape functions the free-space solutions to the
governing homogeneous constant-coefficient PDE Lc¢ = 0.

c"=cFeVE

where

VE = span{c: Lc=0}

@ Continuity across element boundaries is enforced weakly using
Lagrange multipliers A" € W

/ /
Ma Vel -n®=-veE -n®  onree
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The Discontinuous Enrichment Method (DEM)

@ First developed by Farhat et al. in 2000 [1] for the Helmholtz equation.

Idea of DEM:

Employ as the finite element shape functions the free-space solutions to the
governing homogeneous constant-coefficient PDE Lc¢ = 0.

c"=cFeVE

where

VE = span{c: Lc=0}

@ Continuity across element boundaries is enforced weakly using
Lagrange multipliers A" € W

/ /
Ma Vel -n®=-veE -n®  onree

DEM = DGM with Lagrange Multipliers




Discontinuous Enrichment Method (DEM)

Discretization, Implementation & Computational

Complexity

@ Element matrix problem (uncondensed):

kEE kEC CE I'E
(e o ) (%)= (%)
Due to the discontinuous nature of VE, ¢E can be

eliminated at the element level by a static condensation

@ Statically-condensed matrix problem:
—kCE(kEE)_1kECAh _ rC _ kCE(kEE)—1rE

Static condensation greatly reduces computational complexity!
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Discretization, Implementation & Computational

Complexity

@ Element matrix problem (uncondensed):

kEE kEC CE I'E
(e fo ) (%)= (%)
Due to the discontinuous nature of VE, ¢F can be
eliminated at the element level by a static condensation

@ Statically-condensed matrix problem:
—kCE(kEE)_1kECAh _ rC _ kCE(kEE)—1rE
Static condensation greatly reduces computational complexity!

e Complexity depends on number of Lagrange multiplier
approximations per edge.

@ Sparser global system than FEM.




DEI  Enrichment Basis Numerical Results

Polynomial Enrichment Functions for 2D

Advection-Diffusion

@ Polynomial free-space solutions to a - Vc5 — Act = 0 (of any desired
degree n) can be derived.
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cf (%)




DEI  Enrichment Basis Numerical Results

Polynomial Enrichment Functions for 2D

Advection-Diffusion

@ Polynomial free-space solutions to a - Vc5 — Act = 0 (of any desired
degree n) can be derived.
cr(x) = lax x|
cE(x)=laxx*+2(a-x)

c5(x) = |a x x* + 6]a x x|(a - x)

a2 s

cf (%) c5 (%) c5 (%)

Slowly-varying (coarse) scale shape functions



DEI  Enrichment Basis Numerical Results

Angle-Parametrized Exponential Enrichment

Functions for 2D Advection-Diffusion

@ Exponential free-space solutions to a - Vet — kAcE = 0 can be derived
as well.

aj+|al cos 6 . ap+lal sin 6; .
CE(X; 9/) _ e( s )(X Xr,r)e<72,c >(y Yr,i) (1)

e° = {0,-},‘;51 € [0,27) = set of angles specifying VE

Figure 2: Plots of enrichment functions c£(x; 6;) for several values of 6; (Pe = 20)

Rapidly-varying (fine) scale shape functions



® Q=(0,1)x(0,1), f=0
@ a=( cosg, sing ).

@ Dirichlet boundary conditions are specified on
I" such that the exact solution to the BVP is
given by

ei {[cos ¢-+cos W](x—1)+[sin p+sin ](y—1)} _ 1

Cex (X; =
ex( ¢7 w) e—ﬁ[cos ¢+cos +sin p+sinp] 1

@ ¢ € [0,27) : some flow direction (not
necessarily aligned with ¢).

@ Solution exhibits a sharp exponential
boundary layer in the advection direction ¢,
whose gradient is a function of the Péclet
number.




DEI  Enrichment Basis Numerical Results

Convergence Analysis & Results (¢ = 7/7,%

Hagnngenenus boundary layer problem, 6= 17, =0, Pe = 100
10

g, Rate # dofs
' I Element of to achieve
) % convergence | 102 error
’ o o] 1.90 63,266
10° o2 Q-4-1 1.99 14,320
& Q 2.38 24,300
z il Q-8-2 3.27 5400
[ [ 3.48 12,500
Q-12-3 3.88 850
10" Q4 4.41 8600
v Q-16-4 5.19 570
*

10" 10" 10’
h

@ To achieve for this problem the relative error of 0.1% for Pe = 10°:

o Q-4-1 and Q-8-2 require ~ 4.5 x fewer dofs than Q; and Q»
respectively.

e Q-12-3 and Q-16-4 require =~ 15 x fewer dofs than Qs and Qs
respectively.
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Convergence Analysis & Results (¢ = 7/7,1 = 0)

Hagnngenenus boundary layer problem, 6= 17, =0, Pe = 100
10

g, Rate # dofs
' I Element of to achieve
) % convergence | 102 error
’ o o] 1.90 63,266
i0° 0123 Q-4-1 1.99 14,320
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z il Q-8-2 3.27 5400
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10" Q4 4.41 8600
v Q-16-4 5.19 570
*

10" 10" 10’
h

@ To achieve for this problem the relative error of 0.1% for Pe = 10°:
o Q-4-1 and Q-8-2 require ~ 4.5 x fewer dofs than Q; and Q»
respectively.
= 8 x less CPU time.
e -12-3 and Q-16-4 require =~ 15 x fewer dofs than Q; and Q4
respectively.
= 40 x less CPU time.




DEI  Enrichment Basis Numerical Results

Solution Plots for Homogeneous BVP

Figure 5: ¢ =4 =0, Pe = 10%, =~ 1600 dofs Figure 6: ¢ = /7, = 0, Pe = 10°, ~ 1600 dofs

v v x x Cﬁ
Q-12-3 Q-12-3 ;.; ]



Extension of Constant-Coefficient DEM Methodology Numerical Results

Extension to Variable-Coefficient Problems

@ Define VE within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.

a(x) ~ a® =constant inside each element Q° as h — 0:
{a(x)- Ve —kAc=f(x) in Q} ~U¥ {a° Vc—rAc=f(x) in Q.

yi+h
_y. — h / _y. _ h
a95< ij+ﬁ2 > a® E( X‘}’f+ﬂ2 )
G+ 2 G+ 2 a(j —y. x)T
Q° Q
Yi
X X+ h X; +2h

@ Enrichment in each element:

1a®]

cE (X ee) —e 2 ‘(cos $°+cos 07)(x—x7; )e 2 (sin ¢C+sin 07)(y—y7 ;) c V




Extension of Constant-Coefficient DEM Methodology Numerical Results

“Higher Order” Enrichment Function for

Variable-Coefficient Advection-Diffusion

@ Linearize a(x) to second order, instead of to first order:
a(x) ~ a(X®) + Va|xgze - (x — X°) inQ°
@ Enrich with free-space solutions to
[Ax +b] - VcF — kACcE =0 )
where A = Valx—ze, b = (a(X°®) — Va|x—xeX®).

@ Solutions to (2) are given by:

VX a2 05
cF(x) = / exp { U’;V + (v; - b)w} aw )
0

05

o; = eigenvalue of Va|y_ze
v; = eigenvector of Va|y_ze ’ .
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Extension of Constant-Coefficient DEM Methodology Numerical Results

Lid-Driven Cavity Flow Problem

@ Q=(0,1)x(0,1),f=0.
@ a(x) computed numerically by
solving the incompressible
Navier-Stokes equations for
lid-driven cavity flow problem
(stationary sides and bottom,
tangential movement of top).
Vi oo @ Advection field reconstructed using
=0 interpolation with bilinear shape
1 functions ¢7:

c=0 Q c—1 # nodes of Q°

a’(¢)= > a%f(€)

i=1

0 oc _qg 1 X @ c(x) represents temperature in
on cavity.




LidDrivenCavity_UnsteadyNS_Thesis.avi
Media File (video/avi)
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@ DEM elements without “higher order”
enrichment outperform Galerkin
comparables.
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@ DEM elements without “higher order”
enrichment outperform Galerkin
comparables.

@ Further improvement in computation by
adding “higher order” enrichment.




Extension of Steady DEM Methodology Numerical Results

DEM for the Unsteady Advection-Diffusion Equation

@ Unsteady advection-diffusion equation:

c+axt)-Ve—xAc=0
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DEM for the Unsteady Advection-Diffusion Equation

@ Unsteady advection-diffusion equation:
c+axt)-Ve—rAc=0

@ Semi-discrete form of PDE (with semi-implicit Euler) at time n:

i

c A—C"Jr a”(x) Vet — kAt =0




Extension of Steady DEM Methodology Numerical Results

DEM for the Unsteady Advection-Diffusion Equation

@ Unsteady advection-diffusion equation:
¢ +a(x,t)-Ve—kAc=0

@ Semi-discrete form of PDE (with semi-implicit Euler) at time n:
7%“& + a"(x)-Ve™! — kA =0

@ Enrichment functions inside each element at time step n are the
free-space solutions to steady version of the equation above:

Ve = span{c"(x) : a" ' (Xe) - V" — kAC" = 0, € Q°}
where

VE" = enrichment field inside element Q° at time step n

X = midpoint of element Q°




Extension of Steady DEM Methodology Numerical Results

Natural Convection in a Differentially-Heated Cavity

@ Incompressible Navier-Stokes equations with Boussinesq temperature
approximation.

V-u =0
Y +u-Vu— zsAu =-Vp+ Tep

where
u’ = (w(x, 1), w(x,t): fluid velocity vector
p=p(x,t): fluid pressure
T=T(x,t): fluidtemperature
@ Q=(0,1)% 7 o —,
@ No-slip boundary conditions on u on 1 u=0
sides of box.
@ Attime t = 0 begin to heat right wall; top T=0, T
walls of box are insulating (adiabatic). u=20 Q u
0 %;l]' =0, 1
u=20 16/ 19



Extension of Steady DEM Methodology Numerical Results

Natural Convection in a Differentially-Heated Cavity

@ Incompressible Navier-Stokes equations with Boussinesq temperature
approximation.

V-u =0
Y +u-Vu— zsAu =-Vp+ Tep

where
u’ = (w(x, 1), w(x,t): fluid velocity vector
p=p(x,t): fluid pressure
T=T(x,t): fluidtemperature
° Q=(0,1) 7 o —,
@ No-slip boundary conditions on u on 1 u=0
sides of box.
@ Attime t = 0 begin to heat right wall; top 7 —0o,| ¢ T
walls of box are insulating (adiabatic). u=20 Q j u
Temperature gradient induces
counterclockwise flow field 0 1




Extension of Steady DEM Methodology Numerical Results

Simulation: Galerkin T vs. DGM T (Ra = Gr = 1000)

u,v: Galerkin Q3
p: Galerkin Q>

T : Galerkin @ T: DGM Q-4-1




DifferentiallyHeatedCavity_UnsteadyNSTemp_Q1_Ra1000_20x20_2.avi
Media File (video/avi)


DifferentiallyHeatedCavity_UnsteadyNSTemp_Q-4-1_Ra1000_20x20_2.avi
Media File (video/avi)


Discontinuous Enrichment Method (DEM) =
efficient, competitive alternative to stabilized FEMs
for advection-dominated transport problems in CFD.

@ Parametrization of exponential basis enables systematic design of DEM
elements of arbitrary orders.

@ Augmentation of enrichment space with additional free-space solutions
can improve further the approximation.

@ For all test problems, enriched elements outperform their Galerkin and
stabilized Galerkin counterparts of comparable computational
complexity, sometimes by many orders of magnitude.

@ In a high Péclet regime, DGM and DEM solutions are almost completely
oscillation-free, in contrast with the Galerkin solutions.

@ Advection-diffusion work generalizable to more complex equations in
fluid mechanics (e.g., non-linear, 3D).

@ Future work: DEM for incompressible Navier-Stokes.
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irinak@stanford.edu




Appendix: Computational Complexities

Element Asymptotic _Stencil width for (# d(?fs)' x 12 convergence
# of dofs uniform n x nmesh | (stencil width) | rate (a posteriori)
Q4 Nel 9 9N 2
Q—4-1 20 7 14ng 2
Q 3ng 21 63ng; 3
DGM with n* = 2 4ng 14 56N, 3
DEM with n* = 1 3ng; 21 63ng 2-3
(@] 5ne; 33 165n,, 4
DGM with n* = 3 6ne; 21 126, 4
DEM with n* = 3 Sne; 33 165ng, 3—-4
Q4 Tne 45 315ng; 5
DEM with n* = 3 7nel 45 315ng, 4-5

P

L

Figure 7: @ stencil

Figure 8: 1st order DGM stencil
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