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Motivation Advection-Diffusion Equation High Péclet Regim

2D Scalar Advection-Diffusion Equation

Scalar Advection-Diffusion Equation = Advection velocity:
a= (a1, a)" = |a|(cos,sing)”.
fu— =Ny a o —f m ¢ = advection direction.

diffusion  advection

m s = 1 = diffusivity.

m Why advection-diffusion?
m Why a special finite element method (FEM)?




Motivation Advection-Diffusion Equation High Péclet Regim

2D Scalar Advection-Diffusion Equation

Scalar Advection-Diffusion Equation m Advection velocity:
a=(ai,a)" = |a|(cos p,sing).
Lu=—-rAu+a-Vu = f m ¢ = advection direction.
S——— N

diffusion  advection m k= 1 = diffusivity.

m Describes many transport phenomena in fluid mechanics.
m Usual scalar model for the more challenging Navier-Stokes equations.

m Global Péclet number (L = length scale associated with Q):

rate of diffusion &

rate of advection  L|a| Pr (thermal diffusion)
Poe= ———M— = Re - e
Sc (mass diffusion)




Motivation Advection-Diffusion Equation High Péclet Regime

Advection-Dominated Regime

m Typical applications: flow

is advection dominated. vEerantMarninated

(High Pe) Regime
1
Sharp gradients in exact solution

I
Galerkin FEM inadequate:

spurious oscillations (Fig. 1)

m Some classical remedies:
m Stabilized FEM methods (SUPG,
GLS, USFEM): add weighted
residual (numerical diffusion) to

Figure 1: Galerkin @ solution variational equatic?n.
(color) vs. exact solution (black) = RFB, VMS, PUM: construct

as Pe 1 (Pe = 10 — 150) conforming spaces that
incorporate knowledge of local

behavior of solution.
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Discontinuous Enrichment Method (DEM)

|dea of DEM

m First developed by Farhat et. al. in 2000 for the Helmholtz equation.

“Enrich” the usual Galerkin polynomial field V by the free-space solutions to
the governing homogeneous PDE Lu = 0.

u" ="+ ufF e VP o (VEWVD)

where
VE = span{u: Lu =0}

m Simple 1D Example:

Uy — U =14+x, x€(0,1)
{ u(0)=0,u(l)=1

» Enrichments: uf — uf =0 = uf = G + Ge* = VE =span{1,e*}

17X XX
h 7 h

m Galerkin FEM polynomials: Vge:()%xjﬂ) = span {



Discontinuous Enrichment Method (DEM)

More on DEM

m Two variants of DEM: “pure DGM" vs. “true DEM"

\ | DGM | DEM \
Vil vE ] Ve (WVE\WP)
u” uf u” + uf

< \y

Enrichment-only “pure DGM": Genuine or “full” DEM:

Contribution of the standard Splitting of the approximation
polynomial field is dropped into coarse (polynomial) and
from the approximation entirely fine (enrichment) scales.

m Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries




Discontinuous Enrichment Method (DEM)

More on DEM

m Two variants of DEM: “pure DGM" vs. “true DEM"

\ | DGM | DEM \
Vil vE ] Ve (WVE\WP)
u” uf u” + uf

4 \y

Enrichment-only “pure DGM": Genuine or “full” DEM:

Contribution of the standard Splitting of the approximation
polynomial field is dropped into coarse (polynomial) and
from the approximation entirely fine (enrichment) scales.

m Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries = DEM is discontinuous by construction!

DEM = DGM with Lagrange Multipliers




Discontinuous Enrichment Method (DEM)

What about Inter-Element Continuity?

m Continuity across element boundaries is enforced weakly using Lagrange
multipliers A" € W":

M vulon®=-vub -n®  onre
but making sure we uphold the...

m Discrete Babugka-Brezzi inf-sup condition’:

constraint equations equations

{ # Lagrange multiplier _ 4 enrichment }

Rule of thumb to satisfy the Babuska-Brezzi inf-sup condition is to limit:

E E

A n n
=|—| = Zln < —

n {4J max{ne |n_4}

## Lagrange multipliers per edge,
# enrichment functions

SHS
m >
[

INecessary condition for generating a non-singular global discrete problem.



Discontinuous Enrichment Method (DEM)

Hybrid Variational Formulation of DEM

m Strong form:

Find u € H'(Q) such that

(S): —Au+a-Vu = f, inQ
‘ u = g, on I'_: 12,9]
Ue—Uy = 0 onl™

m Weak hybrid variational form:

Find (u,A) € V x W such that: Figure 2: Discretization of domain
(W) - a(v,u) + b(A,v) = r(v) into elements Q°
] b ) = —ra(n)
holds Vv € V,Vu € W. Notation-
where 9 =U.2,Q°
r=ug,re

a(v U) = (Vv + va VU)" I—e,e’ —TIe N re,

b(X, v) ZZ/N/ Vi —Ve dr+/r>\v dr | M =Uece U, {renre’}

e e'<e

7/ 31



Discontinuous Enrichment Method (DEM)

Implementation & Computational Complexity

m Element matrix problem (uncondensed):

kPP kPE kPC uP rP
kEP kEE kEC UE — rE
kCP kCE 0 Ah rC




Discontinuous Enrichment Method (DEM)

Implementation & Computational Complexity

m Element matrix problem (uncondensed):

kPP kPE kPC uP rP
kEP kEE kEC uE — rE
kCP kCE 0 )\h r.C

Due to the discontinuous nature of VE, uF can be
eliminated at the element level by a static condensation.




Discontinuous Enrichment Method (DEM)

Implementation & Computational Complexity

m Element matrix problem (uncondensed):

kPP kPE kPC UP I’P
kEP kEE kEC uE — rE
kCP kCE 0 )\h r.C

Due to the discontinuous nature of VE, uF can be
eliminated at the element level by a static condensation.

m Statically-condensed True DEM Element:
KPP kPC uP ”
(fer e ) (%)= (5)

m Statically-condensed Pure DGM Element:

- =

—kCE(kEE)_lkECAh _ r,C _ kCE(kEE)—lrE7




Discontinuous Enrichment Method (DEM)

Implementation & Computational Complexity

m Element matrix problem (uncondensed):

kPP kPE kPC UP I’P
kEP kEE kEC uE — rE
kCP kCE 0 )\h r.C

Due to the discontinuous nature of VE, uF can be
eliminated at the element level by a static condensation.

m Statically-condensed True DEM Element:
KPP kPC uP ”
(r(cp ﬁcc)()‘h>:(~

m Statically-condensed Pure DGM Element:

- =

—kCE(kEE)_lkECAh _ r,C _ kCE(kEE)—lrE7

Computational complexity
depends on dim{W"},
not dim{VE}

=)




DEM for 2D Adve Enrichment Bases Lagrange Multipliers Variable-Coefficient Problems El

Angle-Parametrized Enrichment Functions for 2D

Advection-Diffusion

m Derived by solving Luf = a- Vuf — Auf = 0 analytically (e.g., separation
of variables).

uE(X; 91) _ epe(cosd::#;:osei)(Xixryf)epe(sin qH;in 9;)(}/7}/,”.) (1)

o' = {9,-}7:51 € [0,27) = set of angles specifying V&

. E
(Xr,i, yr,i) = reference point for u;

¢ € [0,27) = advection direction

The parametrization with respect to 6; in (2) is non-trivial!

m Enrichment functions are now specified by a set of “flow directions”.

m Without this parametrization, systematic element design would not be
possible!




DEM for 2D Adve,  Enrichment Bases

Plots of Enrichment Functions for Some Angles 6; € [0, 27)




Enrichment Bases Lagrange Multipliers Variable-Coefficient Problems El

DEM for 2D Adve

What about the Lagrange Multiplier Approximations?

m Trivial to compute given exponential enrichments:

)\h(S)h-fj ~ VUE . l'l|re o
_ e{%[cos(¢—aij)+cos(0k—a”)](s—sg)}

o
Qe m Non-trivial to satisfy inf-sup condition: the set @
that defines VE typically leads to too many
Lagrange multiplier dofs!

(x5 ¥0)

Figure 4: Straight edge '
oriented at angle o/ € [0, 27)




Enrichment Bases Lagrange Multipliers Variable-Coefficient Problems El

DEM for 2D Adve

What about the Lagrange Multiplier Approximations?

m Trivial to compute given exponential enrichments:

M(s)|rs =~ VuE - nlr, .,
_ e{%[cos(d)fa"j)Jrcos(Q?704'7)](575;‘1—)}

o
(s m Non-trivial to satisfy inf-sup condition: the set ©
that defines VE typically leads to too many
Lagrange multiplier dofs!

Figure 4: Straight edge ' :

oriented at angle o € [0,2r) m Select ©* ¢ ©" (set to define W") independently
of ©“, with card{®*} = n* = [%J

(XC’)J’ytlii)

e* = {Hﬁ}ﬂil = set of angles that specifies the Lagrange multipliers




DEM for 2D Adve

Enrichment Bases Lagr

e Multipliers Variable-Coefficient Problems

Extension to the Variable-Coefficient Advection-Diffusion

Equation

m a(x) =~ a° =constant inside each element Q¢ as h — 0:

{a(x) - Vu— kAu = f(x) in

yj+h

3 3
Az Ay
a‘=a| I i a’ = al 3 ]
T TheExptgy=ytr = =yt 3 y=y+4
4 2|54 2
A, Y U , AS
Q° Q°
1 1
Ae Ag
X; Xj+ h X;+ 2h

a(y

m Define VE within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.

Q} ~ U{a® - Vu— kAu = f(x) in Q}

12°] e ) (x—x° ;
uE(x; 05) = ezn (cos 0 Heos b= 1) g

a®|
2K

(sin ¢€+sin 67)(y—vy7 ;) c Vf, VE — Uevf

!
W:’e/ = span {Vcﬁe,(x; 9,-)‘” Nre.er nee card{@i‘ye/} = {*

nE
4

)

12/ 31
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DEM for 2D Adve Enrichment Bases Lagrange Multipliers Variable-Coefficient Problems El

Mesh Independent Element Design Procedure

Algorithm 1. “Build your own DEM element”

Fix nf € N (the desired number of angles defining VE).
Select a set of nf distinct angles {Hk}z; between [0, 27).
Let ©Y = ¢ + {0},

Define the enrichment functions by:

UE(X; eu) _ e%(cos ¢+-cos @")(x—x,,,-)e%(sin @+sin ©Y)(y—yr,i)

Let n* = {’L—EJ

Choose a set of n* distinct angles {ﬁk}k 1 between [0, 7).
for each edge 'V € '™ having slope o/
Define the Lagrange multipliers approximations on € by:

( )|ru —e 2\ [cos(¢ o )+cosﬂk](s Se.k) Cﬁ

end for (-—j



DEM for 2D Adve Enrichment Bases Lagrange Multipliers Variable-Coefficient Problems El

Some DGM/DEM Elements

DGM Element: Q@ — nf — n*
DEM Element: @ — nf — n** = [Q — nf — | U[@]

‘Q’: Quadrilateral

nE: Number of Enrichment Functions

n”: Number of Lagrange Multipliers per Edge
Q1: Galerkin Bilinear Quadrilateral Element

‘ Name ‘ nt H SN ‘ n H o> ‘
Q-4-1 | 4 ¢+{§:m:0,...,3} 1 ] ¢ )
Q-8-2 | 8 ¢+{g:m:0,...,7} 2 ,ajt{o;%
Q-12-3 | 12| ¢+ {7 :m=0..11} | 3 | o’+{F 3 7}
8_;6_111 16 i+§£?:m:06...,15}} 411 a’+{2,z,577}

—_5_— 5 +17r:im=0,..4 -7
Q-9 _2++ 9 || ¢+ {;:T: :m=0,..,8} | 2 ,aij +ﬂ{0;§3ﬁ
Q_13_3+ 13 ¢+{F:m:0,...,12} 3 a’+{z,§,73}
Q174" | 17 | ¢+ {%" :m=0,..,16} | 4 | o/ +{0,7, 7,37}




DEM for 2D Adve nrichment Base: e Multipliers Variable-Coefficient Problems

lllustration of the ©“ and ©* for the DGM @ — 8 — 2

Element

4 A

(a) Enrichment basis (b) Lagrange multiplier dofs

Figure 5: lllustration of the sets © and ©* that define the Q@ — 8 — 2 element
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Computational Complexity

Table 1: Computational complexities of some DGM, DEM and Galerkin

elements.
Element Asymptotic # of dofs u,ﬁ;ﬁfﬁ InWde;hnioersh

@1 Mel 9

@2 3nel 21

Qs 5nel 33

Q4 nel had
Q—4-1 2N 7
Q-8-2 4ne 14
Q-12-3 6/ 21
Q—-16—4 8ner 28
Q-5-17 3ne 21
Q-9-2F 50e 33
Q_13_3" el 45
Q_17—4" 9N 57




Example 1 Example 2 Example 3

Homogeneous Boundary Layer Problem

Figure 6: ¢ =y =0
= Q=(0,1)x(0,1), f =0.
m Homogeneous problem = pure DGM elements
sufficient.
ma= Pe( cos¢p sing )
m Dirichlet boundary conditions are specified on
" such that the exact solution to the BVP is

given by
e%{[cos ¢+cos P](x—1)+[sin p+sin P](y—1)} _ 1
Uex (X; d)’ w) = e %[cos ¢p-+cos Pp+tsin dptsin ] 1
m ¢ € [0,27) : some flow direction (not

necessarily aligned with ¢).

m Solution exhibits a sharp exponential boundary o2
layer in the advection direction ¢, whose ¢
gradient is a function of the Péclet number. e




Example 1 Example 2 Example 3

Flow Aligned with Advection Direction (¢ = 1))

B U € VE for all DGM elements, for all advection directions ¢ here.



Example 1 Example 2 Example 3

Flow Aligned with Advection Direction (¢ = 1)

B U € VE for all DGM elements, for all advection directions ¢ here.

m Therefore one would expect these elements to capture the exact
solution to machine precision




Example 1 Example 2 Example 3

Flow Aligned with Advection Direction (¢ = 1)

B U € VE for all DGM elements, for all advection directions ¢ here.

m Therefore one would expect these elements to capture the exact
solution to machine precision — but only provided Vuey - n € W".

Table 2: Relative LZ(Q) errors, & 400 dofs, Pe = 10%, uniform mesh: Galerkin vs. DGM elts.

o/m @ QR—-4-1 Q@ Q—-8-2
0 577x1071 [ 3.43x 107" || 433 x 107" | 222 x 1077
1/6 || 253 x 1072 | 1.24 x 107" || 1.49 x 1072 | 8.38 x 107*
1/4 || 262x 1072 | 3.19x 107" || 1.53 x 107% | 5.62 x 107°
¢/W Q3 Q—12—3 Q4 Q—16—4
0 [[368x1071[578x10° " || 244x107" | 9.75 x 10~
1/6 || 1.21x 1072 | 550 x 107° || 9.47 x107* | 3.31x 107°
1/4 || 1.24x 1072 | 436 x 107 || 9.81 x 107 | 1.27 x 107 %




Example 1 Example 2 Example 3

Flow not Aligned with Advection Direction (¢ # )

m Fix ¢ = 7/7, vary 1.



Example 1 Example 2 Example 3

Flow not Aligned with Advection Direction (¢ # )

m Fix ¢ = 7/7, vary 1.
m Can show that ue, ¢ VE for any DGM elements and advection
directions tested here.

Table 3: Relative L2(2) errors, ~ 1600 dofs, unstructured mesh, ¢ = 7/7, Pe = 10%: Galerkin

vs. DGM elts.

Y/ e} Q—4-1 Q Q-8-2

0 1.45x107% | 165 x 1077 || 5.92x 107> | 1.79 x 10~
1/4 || 1.52x107% | 9.38 x 10™* || 6.06 x 107% | 2.54 x 10~*
1/2 || 1.51x 1072 | 9.23 x 10™* || 5.97 x 107® | 2.12 x 10~*
p/T Qs Q-12-3 Q Q—-16—4

0 434x107° | 1.10x107* || 3.23x 1073 | 230 x 10>
1/4 || 446 x107% | 1.23 x 107 || 3.29 x 107% | 8.82 x 107
1/2 || 436 x107% | 1.11 x 107 || 3.18 x 107% | 1.59 x 107°




Example 1 Example 2 Example 3

Solution Plots

Figure 8: ¢ =+ =0, Pe = 10°, ~ 1600 dofs Figure 9: ¢ = n/7, ¥ = 0, Pe = 10°, & 1600 dofs




Example 1 Example 2 Example 3

Convergence Analysis

10' 10
log(1/n)

Figure 10: Convergence Rates (¢ = 7/7,1 = 0, Pe = 10?, unstructured mesh)

21/ 31



Example 1 Example 2 Example 3

Double Ramp Problem on an [—Shaped Domain

m Homogeneous Dirichlet boundary

‘ conditions are prescribed on all six
1 u=0 sides of L—shaped domain Q
0 m Advection direction: ¢ =0
u =
m Source: f=1
_ m Strong outflow boundary layer along
u= 0 u= O .
0.5 the line x =1
m Two crosswind boundary layers along
u=20 Q y=0andy=1
m A crosswind internal layer along
u=0 1 i y=205



Example 1 Example 2 Example 3

Solutions Plots: Galerkin vs. DGM vs. DEM Elements

Figure 11: L-shaped double ramp problem solutions: Pe = 10°, 1200 elts.

Q3 Q—-12-3 Q—-13—3*

m No oscillations can be seen in the computed DGM and DEM
solutions.

m Would expect: DEM elements to outperform DGM elements for this
inhomogeneous problem.

m In fact: DGM elements experience some difficulty along the y = 0.5
line, the location of the crosswind internal layer.




Example 1 Example 2 Example 3

Cross Sectional Solution Plots

Figure 12: Solution along the line x = 0.9 with 1200 elts.

08 f \
07| Q92
o 23] |
o ]
04 oo
o
n‘l 02 04 08 08 1
Galerkin DGM DEM
Figure 13: Solution along the line y = 0.5 with 1200 elts.
x0’ i x0® x0°

o9 s oot [0t

ol (2o o 5
o
o
o
02/ P
nﬂ 02 04 06 08 1

Galerkin DGM DEM



Relative Errors

Example 1 Example 2 Example 3

Table 4: L?(Q) errors relative to a reference solution™: uniform mesh, Pe = 103

# elements Q2 Q—-—8-2 Q—9-—2F
300 272x 1071 | 1.19x 107! | 411 x10°?
1200 1.23x 107! | 6.07x 1072 | 8.47 x 1073
4800 5.26 x 1072 | 2.81x 1072 | 1.65 x 1073

10, 800 2.92x1072 | 1.564 x 1072 | 7.43x107*

# elements Qs Q—-12-3 Q—13—-37
300 149 x 1071 [ 1.11 x 1071 | 2.80 x 1072
1200 6.57 x 1072 | 5.00 x 1072 | 4.71 x 1073
4800 236 x 1072 | 1.02x 1072 | 8.24 x 1074

10, 800 1.08 x 1072 | 454 x10° | 9.75 x 10~°

# elements Q4 Q—16—4 Q—17—47
300 958 x 1072 | 8.32x 1072 | 2.16 x 10 °
1200 378 x 1072 | 1.33x 1072 | 2.94 x 1073
4800 1.03x 1072 | 9.17x 1073 | 1.26 x 107*

10, 800 370 x 1073 | 492 x107% | 2.12x107°

* Since an analytical solution to this problem is not available, in computing the relative error,
we use in place of the exact solution a reference solution, computed using a Galerkin Qg
polynomial element on a 43,200 = 3 - (120 x 120) element mesh.




Example 1 Example 2 Example 3

Variable-Coefficient Numerical Example: Thermal

Boundary Layer Problem

Q=(0,1) x (0,1), f =0. X
a'(x)=Pe(y 0)
u(x) represents temperature. 1

Model for formation of a pair of )
thermal boundary layers along the
lower and outflow boundaries of a

fully developed shear flow between v =1 u=y
two parallel plates, with the upper
plate moving to the right, and the

lower plate fixed.

m Main difficulties: ~

m Outflow boundary layer at x = 1. u=20 1 L)
m Parabolic layer along y = 0. (




Solution Plots for Pe = 10%,

Views)

Example 1 Example 2 Example 3

uniform 30 x 30 mesh (Front

N‘”‘“ SRR
;\\W\\\\\\! i

“m“‘

W‘




Solution Plots for Pe = 10*, uniform 30 x 30 mesh (Rear
Views)




Relative Errors

Example 1 Example 2 Example 3

Table 5: L2(Q) errors relative to a reference solution* for Pe < 10*

Pe n Ql Q—4—1 Qz Q—8—2
103 | 18 || 117 % 1071 [ 1.83x 1072 || 5.14 x 1072 | 1.62 x 102
30 || 5,79 x 1072 | 8.77 x 1073 || 2.22 x 1072 | 7.64 x 1073
10t | 15| 261 10° [ 213x 1072 || 593 x 10T | 2.59 x 102
30 || 461 x107! | 1.09 x 1072 || 1.10 x 10~! | 1.09 x 1072

Table 6: L?(Q) errors relative to a reference solution® for Pe > 10° with ~ 800

dofs
Pe || Q Q-4-1
10° || 5.71 x 10° | 456 x 1072
10° || 5.40 x 10! | 1.47 x 107!

* Since an analytical solution to this problem is not available, in computing the relative error,
we use in place of the exact solution a reference solution, computed using a Galerkin Qg
polynomial element on a 60 X 60 element mesh.




Conclusions & Ongoing Work

m For all test problems, the enriched elements outperform their
Galerkin and stabilized Galerkin counterparts of comparable
computational complexity by at least one (and sometimes many)
orders of magnitude difference on unstructured meshes.

m For Pe = 103, to achieve a 0.1% level of relative error:

B Q—-8—-2and Q —9— 2" elements: reduce the dof requirement of
the @, element by a factor between 4.5 and 5.

B Q—12—3and Q@ — 13 — 3" elements: reduce the dof requirement
of the @3 element by a factor of between 14 and 15.

B Q—16—4and Q —17 — 4" elements: reduce the dof requirement
of the Q4 element by a factor of between 15 and 15.2.

m In a high Péclet regime, DGM and DEM solutions are almost
completely oscillation-free, in contrast with the Galerkin solutions.
m Ongoing/future work:

m DEM for non-linear unsteady problems (e.g., viscous Burgers
equation).
m Projection method-based DEM for incompressible Navier-Stokes.




Questions?

Recent publications (www.stanford.edu/~irinak/pubs.html):

m C. Farhat, I. Kalashnikova, R. Tezaur. A Higher-Order
Discontinuous Enrichment Method for the Solution of High Péclet
Advection-Diffusion Problems on Unstructured Meshes. Int. J.
Numer. Meth. Engng. (accepted June 2009).

m |. Kalashnikova, C. Farhat, R. Tezaur. A Discontinuous Enrichment
Method for the Solution of Advection-Diffusion Problems in high
Péclet Number Regimes. Fin. El. Anal. Des. 45 (2009) 238-250.

Thank you!



www.stanford.edu/~irinak/pubs.html

DEM for the Viscous Burgers Equation (“Hot off the

Processor!")

m Non-linear version of advection-diffusion equation = viscous Burgers
equation:
us + Ul — KUy =0

m Semi-discrete form of PDE (with Euler scheme) at time n:

un+1 _ un
Ay Tt =gt =0 ()



DEM for the Viscous Burgers Equation (“Hot off the

Processor!")

m Non-linear version of advection-diffusion equation = viscous Burgers
equation:
Us + Uty — Ky, =0

m Semi-discrete form of PDE (with Euler scheme) at time n:

un+1 _
" +lu" e — kUt =0 (2)

m Enrichment functions inside each element at time step n are the
free-space solutions to steady analogs of (2):

VE" — span{u"(x) : u" (Xe)u? — kul, = 0,x € Q°}

where (3

VE:" — enrichment field inside element Q° at time step n

Xe = midpoint of element Q¢



Matrix Problem and Implementation for Unsteady

Non-Linear DEM (Pure DGM Element)

m Element-level semi-discrete matrix problem:

mEE 0 UE N kEE(uE) kEC UE B 0

0 o A k“E 0 AP0

m Apply time-integration scheme to obtain fully-discrete, element-level
problem:

mEE + AtkEE(uE,n) AtkEc uE,n+l B mEE 0 uE,n
AtkCE 0 )\h,n+1 - 0 0 Ah’"

m Eliminate enrichment dofs uf"*!

condensation:

at the element-level by a static

AtkCE[mEE+AtkEE(uE,n)]71kEC)\h,IH>1 _ kCE[mEE+AtkEE(uE,n)]7lmEEuE,n



A Non-Linear BVP with a Weak Shock

Uy + uuy — kU =0, in Q=(0,1)
u(0,t)=u(l,t)=0 (3)
u(x,0) =sin(27x), in Q=(0,1)

m Can show using method of characteristics that solution to (3)
exhibits a weak shock at the point x; = 0.5 at time T, = % in the
limit as k — 0 (Pe — o0).

m Standard finite elements run into trouble in the vicinity of the shock:
produce central-difference type spurious, non-physical oscillations
(next slide).

m DGM/DEM elements to be tested:

Element \ Enrichment Functions
R-3-1 uf’" — et (Re)—x7) uf’" =1, u\f’" = sin(27x) (3
Q—-2— 1t ulE7" — eun_l()-(e)(xfxre)' u2E’n = x? &



Preliminary Numerical Results (k = 1073 T =0.5,
At = 0.05, 20 x 20 uniform mesh)

Q-3-1 Q—-2-1%

Very promising: DEM solutions are oscillation free!
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