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The Finite Element Method (FEM) in Fluid Mechanics

Galerkin Finite Element Method (FEM) has a
number of attractions in fluid mechanics:

Flexibility in handling complex geometries.
Ability to handle different forms of
boundary conditions.

FEM is quasi-optimal optimal for elliptic
(diffusion-dominated) PDEs.
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The Finite Element Method (FEM) in Fluid Mechanics
Galerkin Finite Element Method (FEM) has a
number of attractions in fluid mechanics:

Flexibility in handling complex geometries.
Ability to handle different forms of
boundary conditions.

FEM is quasi-optimal optimal for elliptic
(diffusion-dominated) PDEs.

However:
FEM can yield “unstable” solutions
when flow is advection-dominated

Significant mesh refinement typically
needed to capture boundary layer region

EXPENSIVE!

Goal: build an efficient method that can accurately capture boundary layers
Approach: start with simple canonical problem; then generalize.
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2D Scalar Advection-Diffusion Equation

Lu = −κ∆u︸ ︷︷ ︸
diffusion

+ a · ∇u︸ ︷︷ ︸
advection

= f

Advection velocity:
a = (a1, a2)T = |a|(cosφ, sinφ)T .

φ = advection direction.

κ = diffusivity.

Describes many transport phenomena in fluid mechanics:
Heat transfer.
Semiconductor device modeling.
Usual scalar model for the more challenging Navier-Stokes
equations.
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2D Scalar Advection-Diffusion Equation

Lu = −κ∆u︸ ︷︷ ︸
diffusion

+ a · ∇u︸ ︷︷ ︸
advection

= f

Advection velocity:
a = (a1, a2)T = |a|(cosφ, sinφ)T .

φ = advection direction.

κ = diffusivity.

Describes many transport phenomena in fluid mechanics:
Heat transfer.
Semiconductor device modeling.
Usual scalar model for the more challenging Navier-Stokes
equations.

Global Péclet number (L = length scale associated with Ω):

Pe =
rate of advection
rate of diffusion

=
L|a|
κ

= Re ·
{
Pr (thermal diffusion)
Sc (mass diffusion)
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Advection-Dominated Regime

Typical applications: flow is
advection dominated.

Figure 1: Galerkin Q1 solution
(color) vs. exact solution (black) as
Pe ↑ (Pe = 10→ 150 )

Some classical remedies:

Stabilized FEMs (SUPG, GLS,
USFEM): add weighted residual
(numerical diffusion) to
variational equation.
RFB, VMS, PUM: construct
conforming spaces that
incorporate knowledge of
local behavior of solution.
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The Discontinuous Enrichment Method (DEM)

First developed by Farhat et. al. in 2000 for the Helmholtz equation.

Idea of DEM:

“Enrich” the usual Galerkin polynomial field VP by the free-space solutions to
the governing homogeneous PDE Lu = 0.

uh = uP + uE ∈ VP ⊕ (VE\VP )

where
VE = span{u : Lu = 0}

Simple 1D Example:{
ux − uxx = 1 + x, x ∈ (0, 1)
u(0) = 0, u(1) = 1

Enrichments: uEx − uExx = 0⇒ uE = C1 + C2e
x ⇒

VE = span{1, ex}
Galerkin FEM polynomials: VPΩe=(xj ,xj+1) = span

{
xj+1−x

h
,
x−xj
h

}
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Two Variants of DEM

Two variants of DEM: “pure DGM” vs. “true DEM”

DGM DEM

Vh VE VP ⊕ (VE\VP )

uh uE uP + uE

Enrichment-Only “Pure DGM”:
Contribution of the standard
polynomial field is dropped

entirely from the approximation.

Genuine or “Full” DEM:
Splitting of the approximation
into coarse (polynomial) and

fine (enrichment) scales.

Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries

⇒ DEM is discontinuous by
construction!

DEM = DGM with Lagrange Multipliers
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What about Inter-Element Continuity?
Continuity across element boundaries is enforced weakly using
Lagrange multipliers λh ∈ Wh:

λh ≈ ∇uEe · ne = −∇uEe′ · ne
′

on Γe,e
′

but making sure we uphold the...

Discrete Babuška-Brezzi inf-sup condition1:{
# Lagrange multiplier
constraint equations ≤ # enrichment

equations

}

Rule of thumb to satisfy the Babuška-Brezzi inf-sup condition is to limit:

nλ =

⌊
nE

4

⌋
≡ max

{
n ∈ Z|n ≤ nE

4

}
nλ = # Lagrange multipliers per edge
nE = # enrichment functions

1Necessary condition for generating a non-singular global discrete problem.
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Hybrid Variational Formulation of DEM

Strong form:

(S) :


Find u ∈ H1(Ω) such that
−κ∆u+ a · ∇u = f, in Ω

u = g, on Γ = ∂Ω

ue − ue′ = 0 on Γint

Weak hybrid variational form:

(W ) :


Find (u, λ) ∈ V ×W such that:
a(v, u) + b(λ, v) = r(v)
b(µ, u) = −rd(µ)

holds ∀v ∈ V, ∀µ ∈ W.

where

a(v, u) = (κ∇v + va,∇u)Ω̃

b(λ, v) =
∑
e

∑
e′<e

∫
Γe,e
′
λ(ve′−ve)dΓ+

∫
Γ

λv dΓ

Ω

Ωe
Γe

Notation:
Ω̃ = ∪nele=1Ωe

Γ̃ = ∪nele=1Γe

Γe,e
′

= Γe ∩ Γe
′

Γint = ∪e′<e ∪nele=1 {Γe ∩ Γe
′
}
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Discretization & Implementation

Element matrix problem (uncondensed): kPP kPE kPC

kEP kEE kEC

kCP kCE 0

 uP

uE

λh

 =

 rP

rE

rC


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Due to the discontinuous nature of VE , uE can be
eliminated at the element level by a static condensation
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Discretization & Implementation
Element matrix problem (uncondensed): kPP kPE kPC

kEP kEE kEC

kCP kCE 0

 uP

uE

λh

 =

 rP

rE

rC



Due to the discontinuous nature of VE , uE can be
eliminated at the element level by a static condensation

Statically-condensed True DEM Element:(
k̃PP k̃PC

k̃CP k̃CC

)(
uP

λh

)
=

(
r̃P

r̃C

)

Statically-condensed Pure DGM Element:

−kCE(kEE)−1kECλh = rC − kCE(kEE)−1rE,
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Computational
complexity
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not on dimVE
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Angle-Parametrized Enrichment Functions for 2D
Advection-Diffusion

Derived by solving LuE = a · ∇uE − κ∆uE = 0 analytically (e.g.,
separation of variables).

uE(x; θi) = e

(
a1+|a| cos θi

2κ

)
(x−xr,i)e

(
a2+|a| sin θi

2κ

)
(y−yr,i) (1)

Θu ≡ {θi}n
E

i=1 ∈ [0, 2π) = set of angles specifying VE

(xr,i, yr,i) = reference point for uEi

aT ≡
(
a1, a2

)
= advection velocity vector

The parametrization with respect to θi in (1) is non-trivial!

Enrichment functions are now specified by a set of “flow directions”.

Without this parametrization, systematic element design would not be
possible!
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Plots of Enrichment Functions for Some Angles
θi ∈ [0, 2π)

φ = 0, θi = 0 φ = 0, θi = π
2

φ = π
2

, θi = 3π
4

φ = 0, θi = π φ = 3π
2

, θi = 5π
4

φ = 0, θi = 3π
2

Figure 2: Plots of enrichment function uE(x; θi) for several values of θi (Pe = 20)
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What about the Lagrange Multiplier Approximations?

�
�
�
�
�
�

@@R
ne,e

′
s

q
q

s = 0

s = hΩe

Ωe
′Γe,e

′

αe,e
′

�
�
�
��

��
Figure 3: Straight edge Γe,e

′
oriented at angle αe,e

′
∈ [0, 2π)

Trivial to compute given exponential enrichments:

λh(s)|Γe,e′ ≈ ∇uE · n|Γe,e′
= C · e

{
|a|
2κ

[
cos(φ−αe,e

′
)+cos(θk−αe,e

′
)
]
(s−se,e

′
r )

}
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Trivial to compute given exponential enrichments:

λh(s)|Γe,e′ ≈ ∇uE · n|Γe,e′
= C · e

{
|a|
2κ

[
cos(φ−αe,e

′
)+cos(θk−αe,e

′
)
]
(s−se,e

′
r )

}

Non-trivial to satisfy inf-sup condition:
the set Θu that defines VE typically leads to

too many Lagrange multiplier dofs!
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Lagrange Multiplier Selection

q q q q× × ××
Λe,e

′

min Λe,e
′

max

Λe,e
′

2 Λe,e
′

3Λe,e
′

1 Λe,e
′

4

Illustration of Lagrange Multiplier selection for nλ = 4

Define:
Λe,e

′

i ≡ |a|
2κ

[
cos(φ− αe,e

′
) + cos(θk − αe,e

′
)
]

⇓

λh|Γe,e′ = span
{
eΛ
e,e′
i (s−se,e

′
r,i ), 0 ≤ s ≤ h

}

Determine # Lagrange multipliers allowed: card{Λe,e
′

i } =
⌊
nE

4

⌋
.

Sample Λe,e
′

i uniformly in the interval [Λe,e
′

min,Λ
e,e′
max] to span space of all

exponentials of the form {eΛ
e,e′
i s : Λe,e

′

min ≤ Λe,e
′

i ≤ Λe,e
′

max}.
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Mesh Independent Element Design Procedure

Algorithm 1. “Build your own DEM element”

Fix nE ∈ N (the desired number of angles defining VE ).

Select a set of nE distinct angles {θk}n
E

k=1 between [0, 2π).

Let Θu = φ+ {θi}n
E

i=1.
Define the enrichment functions by:

u
E

(x; Θ
u

) = e

(
a1+|a| cos Θu

2κ

)
(x−xr,i)

e

(
a2+|a| sin Θu

2κ

)
(y−yr,i)

Determine nλ =
⌊
nE

4

⌋
.

for each edge Γe,e
′
∈ Γint

Compute max and min of |a|2κ

[
cos(φ− αe,e

′
) + cos(θk − αe,e

′
)
]
, call them Λe,e

′
min,Λ

e,e′
max.

Sample {Λe,e
′

i : i = 1, ..., nλ} uniformly in the interval [Λe,e
′

min,Λ
e,e′
max].

Define the Lagrange multipliers approximations on Γe,e
′

by:

λ
h|

Γe,e
′ = span

{
e
Λ
e,e′
i

(s−se,e
′

r,i
)
, 0 ≤ s ≤ h

}
end for
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Some DGM/DEM Elements

Notation

DGM Element: Q− nE − nλ
DEM Element: Q− nE − nλ+ ≡ [Q− nE − nλ] ∪ [Q1]

′Q′: Quadrilateral
nE : Number of Enrichment Functions
nλ: Number of Lagrange Multipliers per Edge
Q1: Galerkin Bilinear Quadrilateral Element

Name nE Θu nλ

DGM elements

Q− 4− 1 4 φ+
{
mπ
2

: m = 0, ..., 3
}

1
Q− 8− 2 8 φ+

{
mπ
4

: m = 0, ..., 7
}

2
Q− 12− 3 12 φ+

{
mπ
6

: m = 0, ..., 11
}

3
Q− 16− 4 16 φ+

{
mπ
8

: m = 0, ..., 15
}

4

DEM elements

Q− 5− 1+ 5 φ+
{

2mπ
5

: m = 0, ..., 4
}

1
Q− 9− 2+ 9 φ+

{
2mπ

9
: m = 0, ..., 8

}
2

Q− 13− 3+ 13 φ+
{

2mπ
13

: m = 0, ..., 12
}

3
Q− 17− 4+ 17 φ+

{
2mπ
17

: m = 0, ..., 16
}

4
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Illustration of the Sets Θu for the True DEM Elements

Q− 5− 1+ Q− 9− 2+

Q− 13− 3+ Q− 17− 4+
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Computational Properties
Element Asymptotic # of dofs Stencil width for

uniform n× n mesh
Q1 nel 9
Q2 3nel 21
Q3 5nel 33
Q4 7nel 45

Q− 4− 1 2nel 7
Q− 8− 2 4nel 14
Q− 12− 3 6nel 21
Q− 16− 4 8nel 28

Q− 5− 1+ 3nel 21
Q− 9− 2+ 5nel 33
Q− 13− 3+ 7nel 45
Q− 17− 4+ 9nel 57

Exponential enrichments⇒ integrations computed
analytically.

LuE = 0⇒ convert volume integrals to boundary
integrals:

a(vE , uE) =

∫
Ω̃

(κ∇vE ·∇uE+a·∇uEvE) dΩ =

∫
Γ̃

∇uE ·nvEdΓ.

Figure 4: Q1 stencil

Figure 5: Q− 4− 1 stencil
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DEM for Variable-Coefficient Advection-Diffusion
Define VE within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.
a(x) ≈ ae =constant inside each element Ωe as h→ 0:

{a(x) · ∇u− κ∆u = f(x) in Ω} ≈ ∪nele {ae · ∇u− κ∆u = f(x) in Ωe}

ae ≡
(
−yj − h

2
xj + h

2

)

Ωe

ae
′
≡
(
−yj − h

2
xj + 3h

2

)

Ωe
′

xj xj + h xj + 2h

yj

yj + h

�6a(x) =
(
−y, x

)T

Enrichment in each element:

uEe (x; θei ) = e
|ae|
2κ

(cosφe+cos θei )(x−xer,i)e
|ae|
2κ

(sinφe+sin θei )(y−yer,i) ∈ VEe
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Extension to 3D Advection-Diffusion

Advection direction: specified by two angles (θ, φ) ∈ [0, 2π)× [0, π)

�
��

��
�*

HHHθ

φ

z

x

y

a

Advection velocity vector: aT =
(

sinφ cos θ, sinφ sin θ, cosφ
)

Enrichment functions for 3D advection-diffusion:

u
E

(x;φi, θi) = e
1

2κ
[sinφ cos θ+sinφi cos θi]xe

1
2κ

[sinφ sin θ+sinφi sin θi]ye
1

2κ
[cosφ+cosφi]z

Φ×Θ ≡ {(θi, φi)}n
E

i=1 ∈ [0, 2π)× [0, π) = set of angles specifying VE
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Outline

1 Motivation

2 Advection-Diffusion Equation

3 Discontinuous Enrichment Method (DEM)

4 Advection-Diffusion DEM
Enrichment Bases
Lagrange Multiplier Approximations
Element Design
Variable-Coefficient Problems
3D Advection-Diffusion

5 Numerical Experiments
Homogeneous Boundary Layer Problem
Double Ramp Problem on an L–Shaped Domain
Inhomogeneous Rotating Field Problem on an L-shaped
Domain

6 Summary
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Homogeneous Boundary Layer Problem

Ω = (0, 1)× (0, 1), f = 0.

a =
(

cosφ sinφ
)
.

Dirichlet boundary conditions are specified on
Γ such that the exact solution to the BVP is
given by

uex(x;φ, ψ) =
e

1
2κ
{[cosφ+cosψ](x−1)+[sinφ+sinψ](y−1)} − 1

e−
1

2κ
[cosφ+cosψ+sinφ+sinψ] − 1

ψ ∈ [0, 2π) : some flow direction (not
necessarily aligned with φ).

Solution exhibits a sharp exponential
boundary layer in the advection direction φ,
whose gradient is a function of the Péclet
number.

Figure 6: φ = ψ = 0

Figure 7: φ = π/7,ψ = 0
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Homogeneous Boundary Layer Problem

Ω = (0, 1)× (0, 1), f = 0.

a =
(

cosφ sinφ
)
.

Dirichlet boundary conditions are specified on
Γ such that the exact solution to the BVP is
given by

uex(x;φ, ψ) =
e

1
2κ
{[cosφ+cosψ](x−1)+[sinφ+sinψ](y−1)} − 1

e−
1

2κ
[cosφ+cosψ+sinφ+sinψ] − 1

ψ ∈ [0, 2π) : some flow direction (not
necessarily aligned with φ).

Solution exhibits a sharp exponential
boundary layer in the advection direction φ,
whose gradient is a function of the Péclet
number.

Homogeneous problem⇒
pure DGM elements sufficient

Figure 6: φ = ψ = 0

Figure 7: φ = π/7,ψ = 0
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Flow Aligned with Advection Direction (φ = ψ)

uex ∈ VE for all DGM elements, for all advection directions φ
here.

Therefore one would expect these elements to capture the exact
solution to machine precision – but only provided ∇uex · n ∈ Wh.

Table 1: Relative L2(Ω) errors, ≈ 400 dofs, Pe = 103, uniform mesh: Galerkin vs. DGM elts.

φ/π Q1 Q− 4− 1 Q2 Q− 8− 2

0 5.77× 10−1 3.43× 10−14 4.33× 10−1 2.22× 10−10

1/6 2.53× 10−2 1.24× 10−15 1.49× 10−2 8.38× 10−4

1/4 2.62× 10−2 3.19× 10−14 1.53× 10−2 5.62× 10−6

φ/π Q3 Q− 12− 3 Q4 Q− 16− 4

0 3.68× 10−1 5.78× 10−13 2.44× 10−1 9.75× 10−10

1/6 1.21× 10−2 5.50× 10−6 9.47× 10−3 3.31× 10−6

1/4 1.24× 10−2 4.36× 10−14 9.81× 10−3 1.27× 10−12
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Flow not Aligned with Advection Direction (φ 6= ψ)

Fix φ = π/7, vary ψ.

Can show that uex /∈ VE for any DGM elements and advection
directions tested here.

Table 2: Relative L2(Ω) errors, ≈ 1600 dofs, unstructured mesh, φ = π/7, Pe = 103: Galerkin

vs. DGM elts.

ψ/π Q1 Q− 4− 1 Q2 Q− 8− 2

0 1.45× 10−2 1.65× 10−3 5.92× 10−3 1.79× 10−3

1/4 1.52× 10−2 9.38× 10−4 6.06× 10−3 2.54× 10−4

1/2 1.51× 10−2 9.23× 10−4 5.97× 10−3 2.12× 10−4

ψ/π Q3 Q− 12− 3 Q4 Q− 16− 4

0 4.34× 10−3 1.10× 10−4 3.23× 10−3 2.30× 10−5

1/4 4.46× 10−3 1.23× 10−5 3.29× 10−3 8.82× 10−7

1/2 4.36× 10−3 1.11× 10−5 3.18× 10−3 1.59× 10−6
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Solution Plots for Homogeneous BVP
Figure 8: φ = ψ = 0, Pe = 103, ≈ 1600 dofs

Q3

Q− 12− 3

Figure 9: φ = π/7, ψ = 0, Pe = 105, ≈ 1600 dofs

Q3

Q− 12− 3
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Convergence Analysis

Figure 10: Convergence Rates (φ = π/7, ψ = 0, Pe = 102, unstructured
mesh)
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Double Ramp Problem on an L–Shaped Domain

-

6

Ω

u = 0

u = 0

u = 0

u = 0

u = 0

u = 0u = 0

aT =
(

1, 0
)

1 x

1

y

0.5

0

Figure 11: L-shaped domain for double
ramp problem

Homogeneous Dirichlet boundary
conditions are prescribed on all six
sides of L–shaped domain Ω

Advection direction: φ = 0

Source: f = 1

Strong outflow boundary layer along
the line x = 1

Two crosswind boundary layers
along y = 0 and y = 1

A crosswind internal layer along
y = 0.5

Irina Kalashnikova∗ Ph.D. Candidate Institute for Computational & Mathematical Engineering (iCME) Farhat Research Group (FRG) Stanford UniversityA DEM for Advection-Diffusion 33/ 42



Motivation Advection-Diffusion Equation Discontinuous Enrichment Method (DEM) Advection-Diffusion DEM Numerical Experiments SummaryHomogeneous Boundary Layer Problem Double Ramp Problem on anL–Shaped Domain Inhomogeneous Rotating Field Problem on anL-shaped Domain

Solutions Plots: Galerkin vs. DGM vs. DEM Elements

Figure 12: L–shaped double ramp problem solutions: Pe = 103, 7600 dofs

Q3 Q− 12− 3 Q− 13− 3+

No oscillations can be seen in the computed DGM and DEM
solutions.
Would expect: DEM elements to outperform DGM elements for
this inhomogeneous problem.
In fact: DGM elements experience some difficulty along the
y = 0.5 line, the location of the crosswind internal layer.
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Cross Sectional Solution Plots

Figure 13: Solution along the line x = 0.9 with 7600 dofs

Galerkin DGM DEM

Figure 14: Solution along the line y = 0.5 with 7600 dofs

Galerkin DGM DEM
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Relative Errors

Table 3: L2(Ω) errors relative to a reference solution∗: uniform mesh,
Pe = 103

# dofs Q2 Q− 8− 2 Q− 9− 2+

900 2.72× 10−1 1.19× 10−1 7.22× 10−2

3600 1.23× 10−1 6.07× 10−2 1.51× 10−2

14, 400 5.26× 10−2 2.81× 10−2 3.10× 10−3

32, 400 2.92× 10−2 1.54× 10−2 1.80× 10−3

# dofs Q3 Q− 12− 3 Q− 13− 3+

1500 1.49× 10−1 1.11× 10−1 5.62× 10−2

6000 6.57× 10−2 5.00× 10−2 6.90× 10−3

24, 000 2.36× 10−2 1.02× 10−2 8.45× 10−4

54, 000 1.08× 10−2 4.54× 10−3 2.48× 10−4

# dofs Q4 Q− 16− 4 Q− 17− 4+

2100 9.58× 10−2 8.32× 10−2 4.66× 10−2

8400 3.78× 10−2 1.33× 10−2 3.08× 10−3

33, 600 1.03× 10−2 9.17× 10−3 2.04× 10−4

75, 600 3.70× 10−3 4.92× 10−4 4.16× 10−5

* Since an analytical solution to this problem is not available, in computing the relative error,
we use in place of the exact solution a reference solution, computed using a Galerkin Q6

polynomial element on a 43, 200 = 3 · (120× 120) element mesh.
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Inhomogeneous Rotating Advection Problem on an
L–Shaped Domain

-

6

Ω

u = 0

u = 0

u = 0

u = 0

u = 0

u = 0u = 0

aT =
(

1− y, x
)
1 x

1

y

0.5

0

Figure 15: L-shaped domain and
rotating velocity field (curved lines
indicate streamlines)

Homogeneous Dirichlet
boundary conditions are
prescribed on all six sides of
L–shaped domain Ω

aT (x) =
(

1− y x
)

Source: f = 1

Outflow boundary layer along the
line y = 1

Second boundary layer that
terminates in the vicinity of the
re-entrant corner
(x, y) = (0.5, 0.5).
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Solutions Plots for Pe = 103 with ≈ 3000 dofs

Q1 Stabilized Q1 Q2

Q− 5− 1+ Q− 9− 2+

* “Stabilized Q1” is upwind stabilized bilinear finite element proposed by Harari et al.
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Convergence Analysis & Results

To achieve for this problem the relative error of 0.1%:
Q− 5− 1+ requires 6.4 times fewer dofs than Q1.
Q− 9− 2+ requires 8.3 times fewer dofs than Q2.
Q− 13− 3+ requires 5.7 times fewer dofs than Q3.
Q− 17− 4+ requires 4.3 times fewer dofs than Q4.

* “Stabilized Q1” is upwind stabilized bilinear finite element proposed by Harari et al.
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Summary

Discontinuous Enrichment Method (DEM) =
efficient, competitive alternative to stabilized FEMs

for advection diffusion in a high Péclet regime.

Parametrization makes possible systematic design of DEM elements of
arbitrary orders.

For all test problems, the enriched elements outperform their Galerkin
and stabilized Galerkin counterparts of comparable computational
complexity by at least one (and sometimes many) orders of magnitude
difference

In a high Péclet regime, DGM and DEM solutions are almost completely
oscillation-free, in contrast with the Galerkin solutions.

Advection-diffusion work generalizable to more complex equations in
fluid mechanics (e.g., 3D, non-linear, unsteady).

Future work: projection-method based DEM for incompressible Navier
Stokes.
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