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Motivation

The Finite Element Method (FEM) in Fluid Mechanics

m Galerkin Finite Element Method (FEM) has a
number of attractions in fluid mechanics:

m Flexibility in handling complex geometries.
m Ability to handle different forms of
boundary conditions.

m FEM is quasi-optimal optimal for elliptic
(diffusion-dominated) PDEs.
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Motivation

The Finite Element Method (FEM) in Fluid Mechanics

m Galerkin Finite Element Method (FEM) has a
number of attractions in fluid mechanics:

m Flexibility in handling complex geometries.
m Ability to handle different forms of
boundary conditions.

m FEM is quasi-optimal optimal for elliptic
(diffusion-dominated) PDEs.

However:
FEM can yield “unstable” solutions
when flow is advection-dominated

Significant mesh refinement typically
needed to capture boundary layer region

EXPENSIVE!

m Goal: build an efficient method that can accurately capture boundary layers
m Approach: start with simple canonical problem; then generalize.
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Advection-Diffusion Equation

2D Scalar Advection-Diffusion Equation

Lu=—rkAu+a-Vu = f
—_—— —
diffusion  advection

= Advection velocity:
a = (a1,a2)” =|a|(cos ¢,sin¢)T.

® ¢ = advection direction.

m x = diffusivity.

m Describes many transport phenomena in fluid mechanics:
m Heat transfer.
m Semiconductor device modeling.
m Usual scalar model for the more challenging Navier-Stokes
equations.
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Advection-Diffusion Equation

2D Scalar Advection-Diffusion Equation

Lu=—-kAu+a-Vu =f
—— =
diffusion  advection

= Advection velocity:

a = (a1,a2)” = |a|(cos ¢,sin¢)T.
® ¢ = advection direction.

m x = diffusivity.

m Describes many transport phenomena in fluid mechanics:
m Heat transfer.
m Semiconductor device modeling.
m Usual scalar model for the more challenging Navier-Stokes
equations.

m Global Péclet number (L = length scale associated with Q):

_ rate of advection  Lla] Re - Pr  (thermal diffusion)
~ rate of diffusion & Sc  (mass diffusion)
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Advection-Diffusion Equation

Advection-Dominated Regime

m Typical applications: flow is
advection dominated.

Pe=10

Figure 1: Galerkin @1 solution
(color) vs. exact solution (black) as
Pet (Pe =10 — 150)
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Advection-Dominated
(High Pe) Regime
I

Sharp gradients in exact solution

Galerkin FEM inadequate:
spurious oscillations (Fig. 1)

m Some classical remedies:

m Stabilized FEMs (SUPG, GLS,
USFEM): add weighted residual
(numerical diffusion) to
variational equation.

m RFB, VMS, PUM: construct
conforming spaces that
incorporate knowledge of
local behavior of solution.
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Advection-Diffusion Equation

Advection-Dominated Regime

m Typical applications: flow is
advection dominated.

Pe=30

Figure 1: Galerkin @1 solution
(color) vs. exact solution (black) as
Pet (Pe =10 — 150)
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Advection-Diffusion Equation

Advection-Dominated Regime

m Typical applications: flow is
advection dominated.

Pe=50

Figure 1: Galerkin @1 solution
(color) vs. exact solution (black) as
Pet (Pe =10 — 150)
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Advection-Dominated
(High Pe) Regime
I

Sharp gradients in exact solution
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USFEM): add weighted residual
(numerical diffusion) to
variational equation.
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Advection-Diffusion Equation

Advection-Dominated Regime

m Typical applications: flow is
advection dominated.

Pe=90

Figure 1: Galerkin @1 solution
(color) vs. exact solution (black) as
Pet (Pe =10 — 150)
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Advection-Diffusion Equation

Advection-Dominated Regime

m Typical applications: flow is
advection dominated.

Pe=110

Figure 1: Galerkin @1 solution
(color) vs. exact solution (black) as
Pet (Pe =10 — 150)
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Advection-Dominated
(High Pe) Regime
I

Sharp gradients in exact solution

Galerkin FEM inadequate:
spurious oscillations (Fig. 1)

m Some classical remedies:

m Stabilized FEMs (SUPG, GLS,
USFEM): add weighted residual
(numerical diffusion) to
variational equation.

m RFB, VMS, PUM: construct
conforming spaces that
incorporate knowledge of
local behavior of solution.
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Advection-Diffusion Equation

Advection-Dominated Regime

m Typical applications: flow is
advection dominated.

Pe=130

Figure 1: Galerkin @1 solution
(color) vs. exact solution (black) as
Pet (Pe =10 — 150)
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Advection-Dominated
(High Pe) Regime
I

Sharp gradients in exact solution
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m Some classical remedies:

m Stabilized FEMs (SUPG, GLS,
USFEM): add weighted residual
(numerical diffusion) to
variational equation.

m RFB, VMS, PUM: construct
conforming spaces that
incorporate knowledge of
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Advection-Diffusion Equation

Advection-Dominated Regime

m Typical applications: flow is
advection dominated.

Pe=150

Figure 1: Galerkin @1 solution
(color) vs. exact solution (black) as
Pet (Pe =10 — 150)
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Advection-Dominated
(High Pe) Regime
I

Sharp gradients in exact solution

Galerkin FEM inadequate:
spurious oscillations (Fig. 1)

m Some classical remedies:

m Stabilized FEMs (SUPG, GLS,
USFEM): add weighted residual
(numerical diffusion) to
variational equation.

m RFB, VMS, PUM: construct
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incorporate knowledge of
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Discontinuous Enrichment M

The Discontinuous Enrichment Method (DEM)

m First developed by Farhat et. al. in 2000 for the Helmholtz equation.

Idea of DEM:

“Enrich” the usual Galerkin polynomial field V' by the free-space solutions to

the governing homogeneous PDE Lu = 0.
u" = o +uf e VP o (VE\VP)
where
V¥ = span{u : Lu = 0}
= Simple 1D Example:

Ug —Uze = 1+ 2z, x€(0,1)
u(0) =0,u(l) =1

m Enrichments: uf — uZ, =0 = uf = C1 + Cae® =
VE = span{1,¢e”}
m Galerkin FEM polynomials: Vie_ . .., = span {W, =%
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Discontinuous Enrichment M

Two Variants of DEM

m Two variants of DEM: “pure DGM” vs. “true DEM”

| [[ DGM | DEM |
VET VE T vP e vE\WVP)
ul uE o +uf
— )
Enrichment-Only “Pure DGM”: Genuine or “Full” DEM:
Contribution of the standard Splitting of the approximation
polynomial field is dropped into coarse (polynomial) and
entirely from the approximation. fine (enrichment) scales.

m Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries
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Discontinuous Enrichment M

Two Variants of DEM

m Two variants of DEM: “pure DGM” vs. “true DEM”

| [[ DGM | DEM |
VET VE T vP e vE\WVP)
ul uE o +uf
— )
Enrichment-Only “Pure DGM”: Genuine or “Full” DEM:
Contribution of the standard Splitting of the approximation
polynomial field is dropped into coarse (polynomial) and
entirely from the approximation. fine (enrichment) scales.

m Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries =- DEM is discontinuous by
construction!

DEM = DGM with Lagrange Multipliers
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Discontinuous Enrichment M

What about Inter-Element Continuity?

m Continuity across element boundaries is enforced weakly using

Lagrange multipliers A" € W":

N~ Vul  n® =~V -n®  onre¢
but making sure we uphold the...

m Discrete Babuska-Brezzi inf-sup condition':

# Lagrange multiplier < # enrichment
constraint equations —  equations

Rule of thumb to satisfy the Babuska-Brezzi inf-sup condition is to limit:

E B
nt = VZL J Emax{nEZ\ng %}

n® = # Lagrange multipliers per edge
n” = # enrichment functions

"Necessary condition for generating a non-singular global discrete problem.
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Discontinuous Enrichment M

Hybrid Variational Formulation of DEM

m Strong form:

N~/
Find u € H' () such that <& \
(S) —kAu+a-Vu = f, inQ ‘
’ u = g, onl'=90

Ue — U = 0 onIDM ’

m Weak hybrid variational form: I Q

Find (u, A) € ¥V x W such that:

a(v,u) + bAv) = r()
w):
WY bnw) = —ral)
holds Vv € V,Vu € W. Notation:
Q=ure 0
where = ure, T
a(v,u) = (kVv +va, Vu)g re¢ =renr¢
I = Ug oo Ul {TN T
0,0 =% [ A [ ar <e Vet {
e e'<e r
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Discontinuous Enrichment M

Discretization & Implementation

m Element matrix problem (uncondensed):

kPP kPE kPC uP I'P
kEP kEE kEC uE _
kCP kCE 0 A h rC
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Discontinuous Enrichment M

Discretization & Implementation

m Element matrix problem (uncondensed):

kPP kPE kPC uP rP
kEP kEE kEC uE — I'E
kCP kCE 0 A h I‘C

Due to the discontinuous nature of V¥, u® can be
eliminated at the element level by a static condensation
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Discontinuous Enrichment M

Discretization & Implementation

m Element matrix problem (uncondensed):

kPP kPE kPC uP I'P
kEP kEE kEC uE — I‘E
kCP kCE 0 A h I,C

Due to the discontinuous nature of V, uf can be
eliminated at the element level by a static condensation

m Statically-condensed True DEM Element:
l~(PP RPC uP =
(G e ) (30)=(5)

m Statically-condensed Pure DGM Element:
—kCE(kEE)_lkECAh — rc _ kCE(kEE)—lrE

L=y

A DEM for Advection-Diffusion
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Discontinuous Enrichment M

Discretization & Implementation

m Element matrix problem (uncondensed):

KPP KPE KPC of P Computational
KEP  KEE  REC £l = complexity
X KE o ! € depends on dimwW"
B
not on dimy

Due to the discontinuous nature of V¥, u® can be /
eliminated at the element level by a static condensation

m Statically-condensed True DEM Element:
IEPP RPC uP =
(G e ) (30)=(5)

m Statically-condensed Pure DGM Element:
—kCE(kEE)_lkECAh — rc _ kCE(kEE)—lrE

L=y

A DEM for Advection-Diffusion
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Outline

B Advection-Diffusion DEM

m Enrichment Bases
Lagrange Multiplier Approximations
Element Design
Variable-Coefficient Problems
3D Advection-Diffusion
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Angle-Parametrized Enrichment Functions for 2D

Advection-Diffusion

m Derived by solving £Lu” = a- Vu” — kAu” = 0 analytically (e.g.,
separation of variables).

UE(X; 02) _ 6(%)0&_1”06(%)@_@/“” (1)

" = {Qi}?fl € [0,27) = set of angles specifying V*

(i, yr:) = reference point for u;’

a’ =( a1, a2 )= advection velocity vector

The parametrization with respect to 6; in (1) is non-trivial!

m Enrichment functions are now specified by a set of “flow directions”.

m Without this parametrization, systematic element design would not be
possible!
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Plots of Enrichment Functions for Some Angles
0, € [O, 27T)
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

What about the Lagrange Multiplier Approximations?

Figure 3: Straight edge I'**" oriented at angle a**" € [0, 2)

m Trivial to compute given exponential enrichments:

N (8) perer = VP ‘nlr,

=C-e % [COS(¢7ae,€/)+CQS(6k7(16’8/)] (S,S:,e/)}
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

What about the Lagrange Multiplier Approximations?

Figure 3: Straight edge re¢ oriented at angle a*¢" € [0, 27)

m Trivial to compute given exponential enrichments:

)\h(s)|re,e/ ~ VuFf -n|re’E,

—C. 6{% [COS(¢—O€E’E,)+COS(6)C—O¢E’E,)] (s—si'e,)}

Non-trivial to satisfy inf-sup condition:
the set © that defines VZ typically leads to
too many Lagrange multiplier dofs!
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Lagrange Multiplier Selection

’ ’
e,e e,e
A'n’zin Ama:c
Y N2 N N
™ ™ ’T‘e o ’T\e o
A& A& A& AS
1 2 3 4

Illustration of Lagrange Multiplier selection for n* = 4

m Define:
A = lal [cos(qzﬁ - ae’el) + cos(0r — ae‘el)]
¢ 2K

¢

’ e e’
A"|pe.r = Span {eAi’ (=) 0<s < h}

nE

m Determine # Lagrange multipliers allowed: card{Af’e’} = {TJ

m Sample Af’e/ uniformly in the interval [Ae’e, Af,;fl'z] to span space of all

min’

. ee! ’ ’ ’
exponentials of the form {e®™ *: A%S < AP® < ASS, ).

min
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Mesh Independent Element Design Procedure

Algorithm 1. “Build your own DEM element”

Fix n¥ € N (the desired number of angles defining V7).
Select a set of n distinct angles {ek};;fl between [0, 27).

Let ©% = ¢ + {0,}70,.
Define the enrichment functions by:

aj+|a| cr)sG~)“)<ac 5 ) (a2+|a\ sin@“)( .
s - i D Y-y )
WP (x; ©%) = e( 2% 52 2r i

Determine n* = {%J

for each edge ¢ € T
Compute max and min of 12 [cos(¢ — ") + cos(8) — ae*e/)] call them A% | A<’

min’  max”
Sample {Af’E :i=1,...,n} uniformly in the mterval [Amm, Afneaw
Define the Lagrange multlpllers approximations on I"®’ e by:

e,e!

e,e!
)‘hlre,e’ = span {eAi =) 0<s< h}

end for
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Some DGM/DEM Elements

DGM Element: Q — n? —n*
DEM Element: Q — n? —n* = [Q — n? — | U[Q4]

'Q’: Quadrilateral

n¥: Number of Enrichment Functions

n*: Number of Lagrange Multipliers per Edge
Q1: Galerkin Bilinear Quadrilateral Element

y [ Name [n"] TR [ n*]
Q—-4-1 4 ¢+ {7 :m=0,..,3} 1
Q—-8-2 8 p+{™:m=0,..,7T} 2

DGMelements || v 15 3 | 12 ¢+{"§f;m:0,...,11} 3
Q-16—4 | 16 | ¢+{=":m=0,..,15} | 4
Q-5-17 | 5 [ o+ {*=:m=0,..,4} | 1
Q-9-2" 9 | ¢+ {T:m=0,..,8} | 2

DEMelements || 5" 13 3+ | 13 | ¢+ %:mzo, 12Y | 3
Q-17—4" |17 | ¢+ {*" :m=0,..,16 4
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

[llustration of the Sets ©* for the True DEM Elements
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Computational Properties

Stencil width for

‘ Element ‘ Asymptotic # of dofs ‘ uniform n x n mesh Figure 4: @, stencil
Q1 Nel 9
Q2 3nel 21 L
Qs 5ney 33
Qa e 45 1
Q—-4-1 2n¢; 7
Q—-8-2 dng; 14
Q—-12-3 6ne; 21 =/
Q—16—4 Snes 28
Q-5—17 3nel 21 )
Q—9—2T 5Nes 33 Figure 5: Q — 4 — 1 stencil
Q—13-3" Tnel 45
Q—17—47 Iy 57 —% —%—

m Exponential enrichments = integrations computed

analytically. - % %
m LuP = 0 = convert volume integrals to boundary

integrals:

a(® u”) :/_(KVUE'VUE-Fa'VUE’l}E)dQ:[VUE-H’UEdF.
) r
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

DEM for Variable-Coefficient Advection-Diffusion

m Define VZ within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.

B a(x) =~ a® =constant inside each element Q° as h — 0:
{a(x) - Vu — kAu = f(x) in Q}=uge{a®  Vu—rAu= f(x) in Q°}

Yy +h

o
Il

()| =t )
LA R
Q¢ Q¢

Yi

T z; + h z; + 2h
m Enrichment in each element:

|ac] |ac]

uf(x; Gf) — ¢ 2m (cos ¢°+cos 91-6)(17717%’1-)6 T3 (sin¢€+sin9§3)(y7y$’i) c VeE
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Enrichment Bases Lagrange Multiplier Approximations Element Desig

Extension to 3D Advection-Diffusion

m Advection direction: specified by two angles (0, ¢) € [0,27) x [0, 7)

m Advection velocity vector: a7 = ( singcosf, singsinf, cos¢ )
m Enrichment functions for 3D advection-diffusion:

1. . 1 s . : . 1
E s O+sin ¢; cos 0;]z S [s sin 6+s i sin 6]y ok [cos ¢+ ;
u ( s b, 91) 5 [sin ¢ cos sin ¢; cos Z]z 5 [sin ¢ sin sin ¢; sin ,L]y 5 [cos ¢p+cos d),]z

& x 0= {(6;,6:)}101 €[0,2m) x [0,7) = set of angles specifying V*
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Homogeneous Boundary Layer Problem Double Ramp Problem on an I

Outline

H Numerical Experiments
m Homogeneous Boundary Layer Problem
m Double Ramp Problem on an L-Shaped Domain
m Inhomogeneous Rotating Field Problem on an L-shaped
Domain
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Homogeneous Boundary Layer Problem Double Ramp Problem on an

Homogeneous Boundary Layer Problem
Figure 6: ¢ =y =0

mQ=(0,1)x(0,1), f=0.

ma=(cos¢ sing ).

m Dirichlet boundary conditions are specified on ul \
I" such that the exact solution to the BVP is L
given by e w

o 25 {[cos d+cos P](z—1)+[sin o+sin v](y—1)} _ |
uem(x; d’v 1!’) =

e ﬁ [cos ¢+cos sin psiny] _ |

m ¢ € [0,27) : some flow direction (not
necessarily aligned with ¢).

m Solution exhibits a sharp exponential
boundary layer in the advection direction ¢,
whose gradient is a function of the Péclet
number. §
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Homogeneous Boundary Layer Problem Double Ramp Problem on an

Homogeneous Boundary Layer Problem

Figure 6: ¢ =y =0
= Q=(0,1)x (0,1), f = 0. gurebre=v

] a:( cos¢ sin¢g )

m Dirichlet boundary conditions are specified on
I" such that the exact solution to the BVP is

given by
o2 {[cos g+cos ] (w—1)+[sin ¢sin $](y—1)} _ { a
Uew (X5 ¢, ) = o g [cos o-tcos potsin ptsin p] _ ot
m ¢ € [0,27) : some flow direction (not Figure 7: ¢ = =/7.p = 0

necessarily aligned with ¢).
m Solution exhibits a sharp exponential "

boundary layer in the advection direction ¢,
whose gradient is a function of the Péclet N
number. o
Homogeneous problem = B ———— B

pure DGM elements sufficient
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Homogeneous Boundary Layer Problem Double Ramp Problem on an

Flow Aligned with Advection Direction (¢ = 1))

m u., € VP for all DGM elements, for all advection directions ¢
here.
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Homogeneous Boundary Layer Problem Double Ramp Problem on an

Flow Aligned with Advection Direction (¢ = 1))

m u., € VP for all DGM elements, for all advection directions ¢
here.

m Therefore one would expect these elements to capture the exact
solution to machine precision
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Homogeneous Boundary Layer Problem Double Ramp Problem on an I

Flow Aligned with Advection Direction (¢ = 1))

m u., € VP for all DGM elements, for all advection directions ¢
here.

m Therefore one would expect these elements to capture the exact
solution to machine precision — but only provided V., - n € W".

Table 1: Relative L?(2) errors, ~ 400 dofs, Pe = 10, uniform mesh: Galerkin vs. DGM elts.

¢/m Q1 Q-4-1 Q2 Q—-8-2
0 577 x 1071 | 343 x 107 | 433 x 107 T || 2.22x 10710
1/6 || 253 x 1072 | 1.24 x 107 | 1.49x 1072 || 838 x 10~*
1/4 || 2.62x1072 | 3.19x 107 | 1.53x 1072 || 5.62 x 1076
P/ Qs Q—-12-3 Qa4 Q—-16—-4
0 3.68x 1071 [ 5.78 x 107 [ 244 x 10~ T [[ 9.75 x 10~ 17
1/6 || 1.21x1072 | 550x107°% | 9.47x 1072 || 3.31 x 107¢
1/4 || 1.24x1072 | 4.36 x 1071 | 9.81 x 1072 || 1.27 x 1072
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Homogeneous Boundary Layer Problem Double Ramp Problem on an

Flow not Aligned with Advection Direction (¢ # )

m Fix ¢ = /7, vary 1.
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Homogeneous Boundary Layer Problem Double Ramp Problem on an

Flow not Aligned with Advection Direction (¢ # )

m Fix ¢ = /7, vary 1.
m Can show that u., ¢ VF for any DGM elements and advection
directions tested here.

Table 2: Relative L2(2) errors, ~ 1600 dofs, unstructured mesh, ¢ = 7 /7, Pe = 10°: Galerkin

vs. DGM elts.

Y/ Q1 Q—-4-1 Qo Q—-8-2

0 145 x 1072 | 1.65 x 1072 || 5.92x 1072 | 1.79 x 1073
1/4 || 1.52x 1072 | 9.38 x 107* || 6.06 x 1072 | 2.54 x 1074
172 || 1.51x 1072 | 9.23x107* || 597 x 1072 | 2.12x 1074
o/ Qs Q-12-3 Q. Q-16—14

0 434x107° | 1.10x 107* || 3.23x 1073 | 2.30 x 107°
1/4 || 4.46 x 1072 | 1.23 x 107° || 3.20 x 1072 | 8.82 x 10~ 7
1/2 || 4.36 x 1073 | 1.11 x107° || 3.18 x 1072 | 1.59 x 10~
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Homogeneous Boundary Layer Problem Double Ramp Problem on an

Solution Plots for Homogeneous BVP

Figure 8: ¢ = ¢ = 0, Pe = 10, = 1600 dofs Figure 9: ¢ = n/7, ¢ = 0, Pe = 10°, = 1600 dofs
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Homogeneous Boundary Layer Problem Double Ramp Problem on an

Convergence Analysis

510 r ——— Q64 T 1
@ - -
a // -~
E /// ///
Z 40" | - -~ i
//
//
!
. NG
(IS ! i
-10
10* 10" 10°
h
Figure 10: Convergence Rates (¢ = 7/7,v¢ = 0, Pe = 10%, unstructured

mesh)
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Homogeneous Boundary Layer Problem Double Ramp Problem on an

Double Ramp Problem on an L—Shaped Domain

Y,
1 u=0
u=>0
Q
0.5 —u="0 u=0
u=20 aT:(17 0)

Figure 11: L-shaped domain for double
ramp problem

m Homogeneous Dirichlet boundary
conditions are prescribed on all six
sides of L—shaped domain 2

m Advection direction: ¢ =0
m Source: f=1

m Strong outflow boundary layer along
thelinez =1

m Two crosswind boundary layers
alongy=0andy =1
m A crosswind internal layer along

y=0.5 (3
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Homogeneous Boundary Layer Problem Double Ramp Problem on an

Solutions Plots: Galerkin vs. DGM vs. DEM Elements

Figure 12: L-shaped double ramp problem solutions: Pe = 103, 7600 dofs

08
08

Q3 Q—-12-3 Q—-13-3*t

m No oscillations can be seen in the computed DGM and DEM
solutions.

m Would expect: DEM elements to outperform DGM elements for
this inhomogeneous problem.

m In fact: DGM elements experience some difficulty along the
y = 0.5 line, the location of the crosswind internal layer.
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Homogeneous Boundary Layer Problem Double Ramp Problem on an

Cross Sectional Solution Plots

Figure 13: Solution along the line = = 0.9 with 7600 dofs

x10® x10* e

Galerkin DGM DEM

Figure 14: Solution along the line y = 0.5 with 7600 dofs

x10® xi10® x10®
(x10 0




Relative Errors

Homogeneous Boundary Layer Problem

Double Ramp Problem on an

Table 3: L*(Q) errors relative to a reference solution*: uniform mesh,

Pe =103

* Since an analytical solution to this problem is not available, in computing the relative error,
we use in place of the exact solution a reference solution, computed using a Galerkin Q¢

# dofs Q2 Q—-8-2 Q—-9—27
900 272x 10" | 1.19x 10° ¢ | 7.22x 102
3600 1.23x 107! | 6.07x 1072 | 1.51x 1072
14, 400 5.26 x 1072 | 2.81 x 1072 | 3.10 x 1073
32,400 || 2.92x 1072 | 1.54 x 1072 | 1.80 x 1073
# dofs Qs Q—-12—-3 | Q—13—-3TF
1500 1.49 x 10~ [ 1.11x 107 | 5.62 x 1072
6000 6.57 x 1072 | 5.00 x 1072 | 6.90 x 1073
24, 000 2.36 x 1072 | 1.02x 1072 | 8.45 x 10~*
54,000 || 1.08 x 1072 | 4.54 x 1072 | 2.48 x 10~
# dofs Q4 Q—-16—4 | Q—17—4T
2100 9.58 x 1072 | 8.32x 10°2 | 4.66 x 10~ 2
8400 3.78 x 1072 | 1.33x 1072 | 3.08 x 1072
33,600 1.03x 1072 | 9.17x 1072 | 2.04 x 10~
75, 600 3.70 x 1072 | 4.92 x 107* | 4.16 x 107°

polynomial element on a 43,200 = 3 - (120 x 120) element mesh.
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Homogeneous Boundary Layer Problem Double Ramp Problem on an I

Inhomogeneous Rotating Advection Problem on an

L—-Shaped Domain

m Homogeneous Dirichlet
boundary conditions are
prescribed on all six sides of
L—shaped domain Q

malx)=(1-y z)

m Source: f=1

m Outflow boundary layer along the
liney =1

m Second boundary layer that

terminates in the vicinity of the

Figure 15: L-shaped domain and re-entr_an'(()c;r()ngr (3
rotating velocity field (curved lines (z,y) = (0.5,0.5). »,.J‘
indicate streamlines)
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Homogeneous Boundary Layer Problem Double Ramp Problem on an I

Solutions Plots for Pe = 103 with ~ 3000 dofs

y " .
E : i
1 |
|
r E -l
o} Stabilized Q1 Q2
il i
| |
" !
Q-5—-1% Q-9-2t

* “Stabilized Q1" is upwind stabilized bilinear finite element proposed by Harari et al.
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Homogeneous Boundary Layer Problem Double Ramp Problem on an I

Convergence Analysis & Results

| L-shaped rotating field, inhomogeneous problem, Pe = 1000

o

Stabilized G

a —— a5t E

O,

e

0y

it o
—aq,

relative error

i S F

m To achieve for this problem the relative error of 0.1%:

m Q —5— 17 requires 6.4 times fewer dofs than Q;.
m Q — 9 — 27" requires 8.3 times fewer dofs than Q-.
B Q — 13 — 37 requires 5.7 times fewer dofs than Qs.
m Q — 17 — 47 requires 4.3 times fewer dofs than Q..

* “Stabilized Q1" is upwind stabilized bilinear finite element proposed by Harari et al.
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B Summary
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Summary

Discontinuous Enrichment Method (DEM) =
efficient, competitive alternative to stabilized FEMs
for advection diffusion in a high Péclet regime.

m Parametrization makes possible systematic design of DEM elements of
arbitrary orders.

m For all test problems, the enriched elements outperform their Galerkin
and stabilized Galerkin counterparts of comparable computational
complexity by at least one (and sometimes many) orders of magnitude
difference

m In a high Péclet regime, DGM and DEM solutions are almost completely
oscillation-free, in contrast with the Galerkin solutions.

m Advection-diffusion work generalizable to more complex equations in
fluid mechanics (e.g., 3D, non-linear, unsteady).

m Future work: projection-method based DEM for incompressible Navier
Stokes.
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