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Why Develop a Fluid Reduced Order
Model (ROM)?

CFD modeling of unsteady
3D flows is expensive!

A Reduced Order Model (ROM) is a surrogate
numerical model that aims to capture the essential

dynamics of a full model but with far fewer dofs.

Applications in Fluid Dynamics:

Predictive modeling across a parameter space
(e.g., aeroelastic flutter analysis).

System modeling for active flow control.

Long-time unsteady flow analysis, e.g., fatigue of a
wind turbine blade under variable wind conditions.
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Motivation for Numerical Analysis of
ROMs

Use of ROMs in predictive applications raises
questions about their stability & convergence.

Projection ROM approach is an alternative discretization of the
governing PDEs.

Desired numerical properties of a ROM discretization:

I Consistency (with continuous PDEs):

loosely speaking, a ROM CAN be
consistent with respect to the full simulations used to generate it.

I Stability:

numerical stability is NOT in general guaranteed a priori for a
ROM!

I Convergence: requires consistency and stability.

This talk focuses on how it is possible to
construct a Galerkin ROM that is stable a priori
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Model Reduction Approach
High-Fidelity

CFD Simulations:

Snapshot 1

Snapshot 2

...

Snapshot K

Fluid Modal
Decomposition

(POD):

uM =
M∑
k=1

ak(t)φk(x)

Step 1
Galerkin Projection

of Fluid PDEs:

(φj , u̇M +∇ · F(uM )) = 0

“Small”
ROM
ODE

System:

ȧk = f(a1, ..., aM )

Step 2
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Step 1: Constructing the Modes
High-Fidelity

CFD Simulations:

Snapshot 1

Snapshot 2

...

Snapshot K

Fluid Modal
Decomposition

(POD):

uM =
M∑
k=1

ak(t)φk(x)

Step 1
Galerkin Projection

of Fluid PDEs:

(φj , u̇M +∇ · F(uM )) = 0

“Small”
ROM
ODE

System:

ȧk = f(a1, ..., aM )

Step 2

POD basis {φi}Mi=1 with M << K
maximizes the energy in the projection
of snapshots onto span{φi}.

POD eigenvalue problem:

Rφ = λφ

where Rφ ≡ 〈uk(uk,φ)〉.
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Step 2: Galerkin Projection
High-Fidelity

CFD Simulations:

Snapshot 1

Snapshot 2

...

Snapshot K

Fluid Modal
Decomposition

(POD):

uM =
M∑
k=1

ak(t)φk(x)

Step 1
Galerkin Projection

of Fluid PDEs:

(φj , u̇M +∇ · F(uM )) = 0

“Small”
ROM
ODE

System:

ȧk = f(a1, ..., aM )

Step 2

Galerkin projection of
continuous equations in
continuous inner product
onto reduced basis modes
{φi}Mi=1.
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Stability Definitions
Practical Definition: Numerical solution does not “blow up” in finite time.

More Precise Definition: Numerical discretization does not introduce any
spurious instabilities inconsistent with natural instability modes supported by the
governing continuous PDEs.

Numerical solutions must obey conservation laws
satisfied by solutions of continuous equations

Linearized Compressible
Euler Equations:

dE
dt
≤ 0

Non-increasing energy

duality

Compressible Navier-
Stokes Equations:

d
dt

∫
Ω
ρηdΩ ≥ 0

Clausius-Duhem Inequality
Non-decreasing entropy

Analyzed using the Energy Method: Uses an equation for the evolution of
numerical solution “energy” (or “entropy”) to determine stability.
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3D Linearized Compressible Euler
Equations

Useful for aero-elasticity, aero-acoustics, flow instability analysis.

Linearization of full compressible Euler equations:

qT (x, t) ≡
(
u1 u2 u3 ζ p

)
≡ q̄T (x)︸ ︷︷ ︸

mean

+q′T (x, t)︸ ︷︷ ︸
fluctuation

∈ R5

⇒ q′,t + Aiq
′
,i + Cq′ = 0

where

A1 =


ū1 0 0 0 ζ̄
0 ū1 0 0 0
0 0 ū1 0 0
−ζ̄ 0 0 ū1 0
γp̄ 0 0 0 ū1

 , A2 =


ū2 0 0 0 0
0 ū2 0 0 ζ̄
0 0 ū2 0 0
0 −ζ̄ 0 ū2 0
0 γp̄ 0 0 ū2



A3 =


ū3 0 0 0 0
0 ū3 0 0 0
0 0 ū3 0 ζ̄
0 0 −ζ̄ ū3 0
0 0 γp̄ 0 ū3

 , C =


ū1,1 ∂ū1,2 ū1,3 p̄,1 0
ū2,1 ū2,2 ū2,3 p̄,2 0
ū3,1 ū3,2 ū3,3 p̄,3 0
ζ̄,1 ζ̄,2 ζ̄,3 −∇ · ū 0
p̄,1 p̄,2 p̄,3 0 γ∇ · ū


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Symmetrized Compressible Euler
Equations & Symmetry Inner Product

Energy stability of the Galerkin ROM can be proven∗ following
a “symmetrization” of the linearized compressible Euler equations.

Linearized hyperbolic compressible Euler system is “symmetrizable”.

Pre-multiply equations by symmetric positive definite matrix:

H =


ρ̄ 0 0 0 0
0 ρ̄ 0 0 0
0 0 ρ̄ 0 0
0 0 0 α2γρ̄2p̄ ρ̄α2

0 0 0 ρ̄α2 1+α2

γp̄

 ⇒ Hq′,t + HAi q
′
,i + HCq′ = 0

H is called the “symmetrizer” of the system: HAi are all symmetric.

Define the “symmetry” inner product and “symmetry” norm:

(q′(1),q′(2))(H,Ω) ≡
∫

Ω

[q′(1)]THq′(2)dΩ, ||q′||(H,Ω) ≡ (q′,q′)(H,Ω)

∗M.F. Barone, D.J. Segalman, H. Thornquist, I. Kalashnikova. “Galerkin Reduced Order Models for Compressible Flow
with Structural Interaction”. AIAA Paper No. 2008-0612, 46th AIAA Aerospace Science Meeting and Exhibit, Reno, NV
(Jan. 2008); [2-4].
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A Stable Galerkin ROM
Stability analysis dictates that we use the symmetry inner product to compute the
POD modes and perform the Galerkin projection.

Energy estimate: ||q′M (x, t)||(H,Ω) ≤ eβt||q′M (x, 0)||(H,Ω).

Practical Implication:
Symmetry inner product ensures Galerkin projection

step of the ROM is stable for any basis!

Stability-Preserving Discrete Implementation:
I Define snapshots and POD modes using piecewise smooth finite elements.
I Apply Gauss quadrature rules of sufficient accuracy to compute exactly

inner products.
I Fairly general, works for any nodal mesh that can be represented using

finite elements.

A computer code was written that reads in the snapshot data written
by AERO-F∗, assembles the necessary finite element representation
of the snapshots, computes the numerical quadrature for evaluation
of the inner products, and projects the equations onto the modes.

∗AERO-F is an arbitrary Lagrangian–Eulerian code that can be used for high-fidelity aeroelastic analysis (Lieu, Farhat et al.).
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Numerical Study 1: Purely Random
Basis

Uniform base flow: physically stable to any linear disturbance.
Each mode is a random disturbance field that decays to 0 at the domain
boundaries.
Model problem for modes dominated by numerical error: extreme case of “bad”
modes.

To test a posteriori the stability of a ROM dynamical system ȧM = KaM , check
the Lyapunov condition:

maxiR{λi(K)} ≤ 0?
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Numerical Study 2: 2D Pressure Pulse

Reflection of cylindrical Gaussian pressure pulse in
uniform base flow, M∞ = 0.25.

Good qualitative agreement between CFD solution and 6
mode symmetry ROM (with BCs) on large scale.

Excellent agreement between CFD solution and 14 mode
symmetry ROM (with BCs).

Symmetry ROM (with BCs) is stable – vs. L2 ROM, which
experienced instability when more than 6 or 7 modes were
used.

Symmetry ROM with BCs is convergent (a priori [2] and a
posteriori).

CFD 6 mode ROM 14 mode ROM
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Full 3D Compressible Navier-Stokes
Equations

Required to describe satisfactorily compressible flows at transonic, supersonic
and hypersonic Mach numbers where non-linear effects are significant.

High accuracy simulations (DNS, LES) are required to capture correctly viscous
and nonlinear effects (e.g., boundary layers, shocks, turbulence).

Full compressible Navier-Stokes equations in the conservation variables:

UT (x, t) ≡
(
ρ ρu1 ρu2 ρu3 ρe

)
∈ R5

⇒ U,t + AiU,i − (KijU,j),i = 0

where
Fi,i = Fi,UU,i ≡ AiU,i, F

ν
i ≡ K

ν
ijU,j , F

h
i ≡ K

h
ijU,j

Kij ≡ K
ν
ij + K

h
ij .

with

Fi = uiU + p


0
δ1i
δ2i
δ3i
ui


︸ ︷︷ ︸

Euler flux

, F
ν
i =


0
τ1i
τ2i
τ3i
τijuj


︸ ︷︷ ︸

viscous flux

, F
h
i =


0
0
0
0
−qi


︸ ︷︷ ︸

heat flux

,
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Entropy Variables & Entropy Stability
Entropy stability of the Galerkin ROM can be proven following

a “symmetrization” of the compressible Navier-Stokes equations.

Parabolic-hyperbolic compressible Navier-Stokes system is “symmetrizable”.

Theorem (Mock) [6]
A parabolic-hyperbolic system of conservation laws that possesses a (convex)
generalized entropy function H(U) becomes symmetric under the change of
variables

VT = H,U

The variables V are known as the entropy variables.

Examples of entropy functions:

Scalar conservation law (e.g., Burgers’ equation): H(U) = u2

2
.

Shallow water equations: H(U) = 1
2
(gh2 + |u|2h) [8].

Compressible Euler equations: H(U) = Kpρ−γ [6].

Compressible Navier-Stokes equations: H(U) = −ρs [6, 9].
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Symmetrized Compressible
Navier-Stokes Equations

Compressible Navier-Stokes equations in the entropy variables:

VT (x, t) ≡
(
−U5 + ρı(γ + 1− s), U2, U3, U4, −U1

)
∈ R5

s = ln

[
(γ − 1)ρı

Uγ1

]
, ρı = U5 −

1

2U1
(U2

2 + U2
3 + U2

4 )

⇒ A0V,t + ÃiV,i − (K̃ijV,j),i = 0

where
A0 ≡ U,V, Ãi ≡ AiA0, K̃ij ≡ KijA0,

Equations in entropy variables are a symmetric parabolic system:

I The matrices A0 and Ãi are symmetric.

I The matrix K̃ ≡

 K̃11 K̃12 K̃13

K̃21 K̃22 K̃23

K̃31 K̃32 K̃33

 is symmetric positive semi-definite.

Numerical schemes for the compressible Navier-Stokes in the
physical entropy variables were studied extensively by Hughes et al. [9]
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−U5 + ρı(γ + 1− s), U2, U3, U4, −U1

)
∈ R5

s = ln

[
(γ − 1)ρı

Uγ1

]
, ρı = U5 −

1

2U1
(U2

2 + U2
3 + U2

4 )

⇒ A0V,t + ÃiV,i − (K̃ijV,j),i = 0

where
A0 ≡ U,V, Ãi ≡ AiA0, K̃ij ≡ KijA0,

Equations in entropy variables are a symmetric parabolic system:

I The matrices A0 and Ãi are symmetric.

I The matrix K̃ ≡

 K̃11 K̃12 K̃13

K̃21 K̃22 K̃23

K̃31 K̃32 K̃33

 is symmetric positive semi-definite.

Numerical schemes for the compressible Navier-Stokes in the
physical entropy variables were studied extensively by Hughes et al. [9]
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A Stable Galerkin ROM
Stability analysis dictates that we compute the POD modes and perform the
Galerkin projection in the entropy variables.

Entropy estimate (Clausius-Duhem inequality): d
dt

∫
Ω
ρNηNdΩ ≥ 0

Practical Implication:
Building ROM in entropy variables ensures a priori that stability

property possessed by solutions of the Navier-Stokes equations is
automatically inherited by discrete ROM solutions for any basis!

Galerkin projection performed in the entropy variables:

(φm,A0VM,t)−
(
φm, ÃiVM,i

)
+ (φm,i, K̃ijVM,j) = 0.

Substitute modal decomposition VM =
∑M
k=1 ak(t)φk(x) to obtain an

M ×M non-linear dynamical system of the form
M∑
n=1

(φm, [A0]Mφn) ȧn = −
(
φm, [Ãi]MVM,i

)
− (φm,i, [K̃ij ]MVM,j)

17/ 22



A Stable Galerkin ROM
Stability analysis dictates that we compute the POD modes and perform the
Galerkin projection in the entropy variables.

Entropy estimate (Clausius-Duhem inequality): d
dt

∫
Ω
ρNηNdΩ ≥ 0

Practical Implication:
Building ROM in entropy variables ensures a priori that stability

property possessed by solutions of the Navier-Stokes equations is
automatically inherited by discrete ROM solutions for any basis!

Galerkin projection performed in the entropy variables:

(φm,A0VM,t)−
(
φm, ÃiVM,i
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Efficiency:
Interpolation of Non-Linear Terms

Discrete non-linear ROM system is of the form:∑M
n=1 (φm, [f0(VM )]n) ȧn = − (φm, f1(VM )) −

∑3
i=1 (φm,i, fi+1(VM ))

where
fi(VM ) ≡ fi

(∑M
m=1 am(t)φm(x)

)
, i = 0, ..., 4.

Inner products cannot be pre-computed prior to time-integration of ROM system.

To recover efficiency, interpolate∗ non-linear terms:

fi(VM ) ≈
∑M
m=1 fi

(∑M
n=1 an(t)φn(xfim)

)
ψfi
m, i = 0, ..., 4s

xfi
m = interpolation points for fi, ψfi

m = “cardinal functions” computed for fi

ROM ODE system with interpolation:

MȧM +
∑4
i=1 G

fi fi(D
fiaM ) = 0

where M, Gfi , Dfi are pre-computed in the offline stage of ROM.
∗Computed via the “best points” interpolation procedure of Peraire, Nguyen et al. [5].
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Preliminary Numerical Study 1:
Viscous Burgers Equation

ut +
(
u2

2

)
x

= µuxx, −1 < x < 3, 0 < t < T,

u(−1, t) = u(3, t) = 0, 0 < t < T

Initial data: u(x, 0) =


0, x < 0,
1, 0 ≤ x < 1,
0, x ≥ 1,

Formation of rarefaction and shock in the µ→ 0 limit.

Results shown for µ = 0.01, M = 30 modes, computed from K = 101 snapshots
of ENO-LLF “high fidelity” finite volume solution.

t = 0.48 t = 0.99 t = 2.46 19/ 22
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Preliminary Numerical Study 2:
Buckley-Leverett Equation

ut +
(

u2

u2+(1−u)2

)
x

= µuxx, −1.5 < x < 1.5,

u(−1.5, t) = u(1.5, t) = 0

Used to model two-phase flow in porous media.

Highly non-linear, non-convex flux.

Gaussian initial condition: u(x, 0) = e−16x2

.

Results shown for µ = 0.05, M = 10 modes, computed from K = 50 snapshots
of ENO-LLF “high fidelity” finite volume solution.

t = 0.1 t = 0.2 t = 0.4
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Summary & Future Work
This Paper: Extension stable Galerkin ROM based on the
continuous projection method previously developed [2-4] for

linearized compressible flow equations to non-linear equations.

Implement the entropy stable compressible Navier-Stokes ROM
formulated in this paper; compare to other non-linear model reduction
techniques (e.g., discrete Galerkin projection approach).

Extend model reduction technique to allow incorporation of stabilization
and shock-capturing operators [9].

Extend model reduction technique to allow incorporation of turbulence
models (LES, RANS-LES).

Explore robustness of ROM with respect to parameter changes (reduced
basis interpolation techniques [7]).

Investigate the viability of the POD basis for non-linear problems: are
there “better” bases to employ (e.g., balanced POD)? (entropy
stability result is basis independent!)
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Symmetrizing Matrix A0

Introduce the notation:
γ̄ = γ − 1, k1 = 1

2V5
(V 2

2 + V 2
3 + V 2

4 ), k2 = k1 − γ,
k3 = k2

1 − 2γk1 + γ, k4 = k2 − γ̄, k5 = k2
2 − γ̄(k1 + k2),

c1 = γ̄V5 − V 2
2 , d1 = −V2V3, e1 = V2V5,

c2 = γ̄V5 − V 2
3 , d2 = −V2V4, e2 = V3V5,

c3 = γ̄V5 − V 2
4 , d3 = −V3V4, e3 = V4V5.

ρı =

[
γ − 1

(−V5)γ

]1/(γ−1)

exp

(
−s
γ − 1

)
.

Inverse transformation V→ U:

UT = ρı
(
−V5, V2, V3, V4, 1− 1

2V5
(V 2

2 + V 2
3 + V 2

4 )
)

Symmetrizing matrix A0:

A0 = U,V =
ρı

γ̄V5


−V 2

5 e1 e2 e3 V5(1− k1)
c1 d1 d2 V2k2

c2 d3 V3k2

c3 V4k2

symm. −k3


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Jacobians of Symmetrized
Euler Fluxes Ãi

Ã1 = F̃1,V =
ρı

γ̄V 2
5


e1V5 c1V5 d1V5 d2V5 k2e1

−(c1 + 2γ̄V5)V2 −c1V3 −c1V4 c1k2 + γ̄V 2
2

−c2V2 −d1V4 k4d1

−c3V2 k4d2

symm. k5V2

 ,

Ã2 = F̃2,V =
ρı

γ̄V 2
5


e2V5 d1V5 c2V5 d3V5 k2e2

−c1V3 −c2V2 −d1V4 k4d1

−(c2 + 2γ̄V5)V3 −c2V4 c2k2 + γ̄V 2
3

−c3V3 k4d3

symm. k5V3

 ,

Ã3 = F̃3,V =
ρı

γ̄V 2
5


e3V5 d2V57d3V5 c3V5 k2e3

−c1V4 −d2V3 −c3V2 k4d2

−c2V4 −c3V3 k4d3

−(c3 + 2γ̄V5)V4 c3k2 + γ̄V 2
4

symm. k5V4

 .
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Symmetrized Viscous and Heat
Fluxes K̃ij

K̃11 =
1

V 3
5


0 0 0 0 0
0 −(γ − 2µ)V 2

5 0 0 (λ+ 2µ)e1
0 0 −µV 2

5 0 µe2
0 0 0 −µV 2

5 µe3

0 (λ+ 2µ)e1 µe2 µe3 −
[
(λ+ 2µ)V 2

2 + µ(V 2
3 + V 2

4 )− γµV5
Pr

]
 ,

K̃12 =
1

V 3
5


0 0 0 0 0
0 0 −λV 2

5 0 λe2
0 −µV 2

5 0 0 µe1
0 0 0 0 0
0 µe2 λe1 0 (λ+ µ)d1

 ,

K̃13 =
1

V 3
5


0 0 0 0 0
0 0 0 −λV 2

5 λe3
0 0 0 0 0
0 −µV 2

5 0 0 µe1
0 µe3 0 λe1 (λ+ µ)d2

 ,
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Symmetrized Viscous and Heat
Fluxes K̃ij (Continued)

K̃22 =
1

V 3
5


0 0 0 0 0
0 −µV 2

5 0 0 µe1
0 0 −(λ+ 2µ)V 2

5 0 (λ+ 2µ)e2
0 0 0 −µV 2

5 µe3

0 µe1 (λ+ 2µ)e2 µe3 −
[
(λ+ 2µ)V 2

3 + µ(V 2
2 + V 2

4 )− γµV5
Pr

]
 ,

K̃23 =
1

V 3
5


0 0 0 0 0
0 0 0 0 0
0 0 0 −λV 2

5 λe3
0 0 −µV 2

5 0 µe2
0 0 µe3 λe2 (λ+ µ)d3

 ,

K̃33 =
1

V 3
5



0 0 0 0 0

0 −µV 2
5 0 0 µe1

0 0 −µV 2
5 0 µe2

0 0 0 − (λ + 2µ)V 2
5 (λ + 2µ)e3

0 µe1 µe2 (λ + 2µ)e3 −
[
(λ + 2µ)V 2

4 + µ(V 2
2 + V 2

3 ) − γµV5
Pr

]


,

K̃21 = K̃
T
12, K̃31 = K̃

T
13, K̃32 = K̃

T
23.
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Semi-Discrete ROM System
Matrices

Semi-discrete ROM ODE system following interpolation:

MȧM +
4∑
i=1

G
fi fi(D

fiaM ) = 0,

Gfi matrices:

G
f1
l,[5(m−1)+1:5m]

=

∫
Ω

(φ
1
lψ

f1
1
m , φ

2
lψ

f2
1
m , φ

3
lψ

f3
1
m , φ

4
lψ

f4
1
m , φ

5
lψ

f5
1
m )dΩ,

G
fi+1
l,[5(m−1)+1:5m]

=

∫
Ω

(φ
1
l,iψ

f1
i+1
m , φ

2
l,iψ

f2
i+1
m , φ

3
l,iψ

f3
i+1
m , φ

4
l,iψ

f4
i+1
m , φ

5
l,iψ

f5
i+1
m )dΩ, i = 1, 2, 3

for l,m = 1, ...M .
Mass matrix M: for k = 1, ...,M ,

M[1:M],k = G
[f0]k [f0]k

(
D

[f0]kaM
)
,

Dfi matrices:

D
fi ≡


φ1

(
x
fi
1

)
. . . φM

(
x
fi
1

)
...

. . .
...

φ1

(
x
fi
M

)
. . . φM

(
x
fi
M

)

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