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For a projection-based reduced order model (ROM) of a fluid flow to be stable and 
accurate, the dynamics of the truncated subspace must be taken into account. This paper 
proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which 
truncated modes are accounted for a priori via a minimal rotation of the projection 
subspace. Attention is focused on the full non-linear compressible Navier–Stokes equations 
in specific volume form as a step toward a more general formulation for problems with 
generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling 
terms are required, and consistency between the ROM and the Navier–Stokes equation from 
which the ROM is derived is maintained. Mathematically, the approach is formulated as a 
trace minimization problem on the Stiefel manifold. The reproductive as well as predictive 
capabilities of the method are evaluated on several compressible flow problems, including 
a problem involving laminar flow over an airfoil with a high angle of attack, and a channel-
driven cavity flow problem.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The past several decades have seen an exponential growth of computer processing speed and memory capacity. The 
massive, complex simulations that run on supercomputers allow exploration of fields for which physical experiments are 
too impractical, hazardous, and/or costly. A striking number of these fields require computational fluid dynamics (CFD) 
models and simulations. Accurate and efficient CFD simulations are critical to many defense, climate and energy missions, 
e.g., simulations aimed to design and qualify nuclear weapons components carried within an aircraft weapons bay; global 
climate simulations aimed to predict anticipated twenty-first century sea-level rise; aero-elastic simulations for optimal 
design of wind systems for power generation.
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Unfortunately, even with the aid of massively parallel next-generation computers, CFD simulations for applications such 
as these are still too expensive for real-time and multi-query applications such as uncertainty quantification (UQ), opti-
mization and control design. Reduced order modeling is a promising tool for bridging the gap between high-fidelity, and 
real-time simulations/UQ. Reduced order models (ROMs) are derived from a sequence of high-fidelity simulations but have a 
much lower computational cost. Hence, ROMs can enable real-time simulations of complex systems for more rapid analysis, 
control and decision-making in the presence of uncertainty.

Most existing ROM approaches are based on projection. In projection-based reduced order modeling, the state variables 
are approximated in a low-dimensional subspace. There exist a number of approaches for calculating this low-dimensional 
subspace, e.g., Proper Orthogonal Decomposition (POD) [44,18], Dynamic Mode Decomposition (DMD) [37,41], balanced POD 
(BPOD) [34,49], balanced truncation [16,26], and the reduced basis method [38,47]. In all of these methods, a basis for the 
low-dimensional subspace is obtained from a basis for a higher-dimensional subspace through truncation – the removal 
of modes that are believed to be unimportant in representing a problem solution. Typically, the size of the reduced basis 
is chosen according to an energy criterion: modes with low energy are discarded, so that the reduced basis subspace is 
spanned by the highest energy modes. Although truncated modes are negligible from a data compression point of view, 
they are often crucial for representing solutions to the dynamical flow equations. Dynamics of the truncated orthogonal 
subspace must be taken into account for to ensure stability and accuracy of the ROM.

For linear systems, a variety of techniques for generating low-dimensional projection-based ROMs with rigorous stability 
guarantees and accuracy bounds are available [16,26,1,22]. Equivalent results are lacking for nonlinear systems. Tradition-
ally, low-dimensional ROMs of fluid flows have been stabilized and enhanced using empirical turbulence models. In this 
approach, the nonlinear dynamics of the truncated subspace are modeled using additional constant and linear terms in the 
ROM system of ordinary differential equations (ODEs) [2,33,11,13]. More recently, nonlinear eddy-viscosity models have also 
been proposed [29,27,19,31]. One downside of turbulence models is that they destroy consistency between the Navier–
Stokes partial differential equations (PDEs) and the ODE system of the ROM. Accurately identifying and matching free 
coefficients of the turbulence models is another challenge. Moreover, these methods are usually limited to the incom-
pressible Navier–Stokes equations.

Consider, for concreteness, the POD/Galerkin approach to model reduction applied to the incompressible Navier–Stokes 
equations. For these equations, the natural choice of inner product for the Galerkin projection step of the model reduction 
procedure is the L2 inner product. This is because, in these models, the solution vector is taken to be the velocity vector u, 
so that ||u||2 is a measure of the global kinetic energy in the domain, and the POD modes optimally represent the kinetic 
energy present in the ensemble from which they were generated. The same is not true for the compressible Navier–Stokes 
equations. Hence, if a compressible fluid ROM is constructed in the L2 inner product (a common choice of inner product 
in projection-based model reduction), the ROM solution may not satisfy the conservation relation implied by the governing 
equations, and may exhibit non-physical instabilities [36].

Unfortunately, ROM instability is a real problem for many compressible flow problems: as demonstrated in [8,6,21], a 
compressible fluid POD/Galerkin ROM might be stable for a given number of modes, but unstable for other choices of 
basis size. Several researchers have proposed ways to circumvent this difficulty through the careful construction of an 
energy-based inner product for the projection step of the model reduction. Rowley et al. [36] show that Galerkin projection 
preserves the stability of an equilibrium point at the origin if the ROM is constructed in an energy-based inner product. 
Barone et al. [6], Kalashnikova et al. [21] demonstrate that a symmetry transformation leads to a stable formulation for 
a Galerkin ROM for the linearized compressible Euler equations and nonlinear compressible Navier–Stokes equations with 
solid wall and far-field boundary conditions. Serre et al. [42] propose applying the stabilizing projection developed by Barone 
et al. [6], Kalashnikova et al. [21] to a skew-symmetric system constructed by augmenting a given linear system with its 
adjoint system. The downside to these methods is that they are inherently embedded methods: access to the governing 
PDEs and/or the code that discretizes these PDEs is required.

Other ROM approaches, e.g., the Gauss–Newton with Approximated Tensors (GNAT) method of Carlberg et al. [9], have 
better stability properties, as they formulate the ROM at the fully discrete level. The drawback of this approach is that an 
additional layer of approximation – usually called hyper-reduction — is required to gain computational speed-up. Moreover, 
the approach lacks stability guarantees for low-dimensional expansions.

In this paper, a stabilization and enhancement approach to ROMs for the compressible Navier–Stokes equations is devel-
oped. The approach is an extension of the methodology developed in [3,5] specifically for the incompressible Navier–Stokes 
equations. The specific volume (ζ -) form of the compressible Navier–Stokes equations is utilized. Since these equations have 
polynomial (quadratic) nonlinearities, the Galerkin projection can be computed offline, once and for all; no hyper-reduction 
is required [20]. Unlike traditional eddy-viscosity-based stabilization methods, the proposed approach requires no additional 
empirical turbulence modeling terms – truncated modes are accounted for a priori via a minimal rotation of projection sub-
space. The method is also non-intrusive, as it operates only on the matrices and tensors defining a ROM ODE system, which 
are stabilized through the offline solution of a small trace minimization problem on the Stiefel manifold. The proposed new 
approach can be interpreted as a combination of several previously developed ideas. Following Iollo et al. [20], we propose 
to stabilize and enhance projection-based ROMs by modifying the projection subspace in order to capture more of the low-
energy, but high dissipative scales of the flow solution. Similarly to Amsallem and Farhat [1], a rotation of the projection 
subspace is used to achieve this goal. Specifically, a larger set of basis is linearly superimposed to provide a smaller set 
of basis that generate a stable and accurate ROM. Finally, in the spirit of most previously proposed eddy-viscosity-based 
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turbulence models, the eigenvalues of the linear part of the Galerkin system of ODEs are used as a proxy to guide the 
stabilization algorithm.

The remainder of this paper is organized as follows. In § 2, the standard projection-based model reduction approach is 
outlined in the context of the specific volume form of the compressible Navier–Stokes equations. Also overviewed is the POD 
method for constructing an optimal reduced basis, and some eddy-viscosity based closure models used for accounting for 
modal truncation. The proposed methodology of “rotating” the projection subspace into a more dissipative regime to better 
resolve the small, energy dissipative scales of the flow is detailed in § 3. Here, the approach is formulated mathematically 
as a constrained optimization problem on the Stiefel manifold. In § 4, the performance of the proposed method is evaluated 
on several compressible flow problems, including a problem involving a laminar flow over an airfoil with a high angle of 
attack, and a channel-driven cavity flow problem. Finally, conclusions are offered in § 5.

2. Projection-based model reduction for nonlinear compressible flow

In this section the standard projection-based model reduction approach is laid out. In § 2.1 the approach for a general 
nonlinear system is presented while in § 2.2 the approach is applied to the compressible Navier–Stokes equations. The POD 
method for calculating a reduced basis using a set of snapshots from a high-fidelity simulation is outlined in § 2.3, followed 
by a brief overview of eddy-viscosity-based closure models that account for modes truncated in the application of the POD 
method (§ 2.4).

2.1. Nonlinear projection-based model order reduction

Consider a dynamical system of the form:

d

dt
w = F (w) , (1)

where F is the propagator in H , a Hilbert space. In fluid flows, the state variable w = w(x, t) ∈ H depends on space x ∈ �, 
� being the flow domain, and time t ∈ [0, T ], T representing the period of integration. Then, the propagator F contains 
spatial derivatives. The associated Hilbert space of square-integrable functions L2(�) is equipped with the standard inner 
product for its elements v, w ∈ L2(�), defined by:

(v, w)� :=
∫
�

v · w dx. (2)

In the Galerkin ROM approach, the governing variable, w(x, t) is discretized using basis functions (modes) {w i(x)}n
i=1 ∈ H

with corresponding mode coefficients {ai(t)}n
i=1

w(x, t) ≈ w0(x) + w [1..n](x, t) := w0(x) +
n∑

i=1

ai(t) w i(x), (3)

where w0(x) denotes the (steady) mean flow.
In the method of lines, the modes w i are known a priori and the goal is to find mode coefficients ai that satisfy the 

differential equation (1). In general, the modes w i can be chosen in a number of ways. In the context of spectral methods 
in CFD for example, the basis vectors are usually analytical functions, e.g. trigonometric functions or Chebyshev polynomials. 
The advantage of these functions is that their spatial derivatives have analytical representations and numerically efficient 
algorithms such as the Fast Fourier Transform (FFT) can be utilized. In the context of ROMs, the spatial basis functions are 
usually derived a posteriori from a snapshot of a solution data set, like the Proper Orthogonal Decomposition (POD) [18]
or Dynamic Mode Decomposition (DMD) [37,41]. Attention is restricted here to modes computed using the POD method 
(detailed in § 2.3), but it is noted that the methods proposed here hold for any choice of reduced basis. The reason for the 
choice of the POD reduced basis is two-fold. First, the POD is a widely used approach for computing efficient bases for fluid 
dynamical systems. Moreover, ROMs constructed via the POD/Galerkin method lack in general an a priori stability guarantee 
(meaning POD/Galerkin ROMs would benefit from ROM stabilization approaches such as the one developed herein).

The mode coefficients in (3) ai are chosen to minimize the residual of the Galerkin expansion(
w i,

d

dt
w[1..n]

)
�

−
(

w i, F
(

w0(x) + w[1..n]))
�

= 0, (4)

for i = 1, ..., n. This projection yields a set of evolution equations for the mode coefficients ai

d

dt
ai = f i(a), (5)

where a := (a1, . . . , an)T represents the state and f := ( f1, . . . , fn)
T its propagator. Given some initial conditions, the evolu-

tion equation (5) can be integrated using standard numerical integration techniques. The ROM system (5) is, by construction, 
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small, and can be integrated forward in time in real or near-real time unlike the high-fidelity CFD model from which it is 
derived.

2.2. Nonlinear reduction of the compressible Navier–Stokes equations

Consider the 2D compressible Navier–Stokes equations in primitive variables4:

ζt + uζx + vζy − uxζ − v yζ = 0, (6a)

ut + uux + vu y + ζ px = 1

Re
ζ

[(
4

3
ux − 2

3
v y

)
x
+ (vx + u y)y

]
, (6b)

vt + uvx + v v y + ζ p y = 1

Re
ζ

[(
4

3
v y − 2

3
ux

)
y
+ (vx + u y)x

]
, (6c)

pt + upx + vp y + γ p(vx + u y) = γ

Re Pr

[
(pζ )xx + (pζ )yy

]
+ 1 − γ

Re

[
ux

(
4

3
ux − 2

3
v y

)
+ v y

(
4

3
v y − 2

3
ux

)
+ (u y + vx)

2
]

.

(6d)

Here, ζ(x, t) = 1/ρ(x, t) is the specific volume (the inverse of the density, ρ(x, t)), u(x, t) and v(x, t) are the Cartesian 
components of the flow velocity, p(x, t) is the pressure, γ is the specific heat ratio, Re is the Reynolds number, Pr is the 
Prandtl number, and the subscripts denote partial derivatives. A Galerkin projection yields a system of coupled quadratic 
ODEs whose constant coefficients are calculated off-line and once and for all (see Appendix A and Iollo et al. [20] for details). 
This system has the form:

da

dt
= C + La + [

aT Q (1)a aT Q (2)a · · · aT Q (n)a
]T

, (7)

where C ∈ R
n , L ∈R

n×n and Q (i) ∈ R
n×n, ∀i = 1, . . . , n.

Remark 1. The compressible Navier–Stokes equations are typically expressed in conservative form. This form is conve-
nient for many applications including CFD. The conservative form contains rational functions of the unknowns and it is 
therefore not possible to pre-compute ROMs using standard Galerkin projection; to attain any computational speed-up a 
hyper-reduction step is necessary. Hyper-reduction is not always desirable, as it can destroy energy conservation properties 
and/or symplectic time-evolution maps [10,21]. On the other hand, if the equations are expressed in primitive variables, 
hyper-reduction can be avoided because all nonlinearities that appear are polynomial. It is for this reason that, in our 
approach, we base the ROM on the equations (6). It is possible to extend our proposed approach to the conservative formu-
lation of the compressible Navier–Stokes equations; see Remark 2.

2.3. Construction of optimal reduced-order basis via the POD

As discussed earlier, there exist a number of methods for calculating a reduced basis {w i(x)}n
i=1 ∈ H , e.g., proper orthog-

onal decomposition (POD) [44,18], Dynamic Mode Decomposition (DMD) [37,41], balanced POD (BPOD) [34,49], balanced 
truncation [16,26], and the reduced basis method [38,47]. In this paper, attention is restricted to reduced bases constructed 
using the first of these approaches, namely the POD method. This method is reviewed succinctly below.

Discussed in detail in Lumley [24] and Holmes et al. [18], POD is a mathematical procedure that, given an ensemble of 
data and an inner product, constructs a basis for the ensemble. The POD basis is optimal in the sense that it describes more 
energy (on average) of the ensemble in the chosen inner product than any other linear basis of the same dimension n. Let 
wn ∈R

N denote a snapshot vector, computed as the solution of the fully discretized version of Eq. (6), for some instance of 
its parameters — that is, for some specific time t , some specific value of the set of flow parameters, or some boundary/initial 
conditions underlying this governing equation. Suppose a total of K ∈ N snapshots are collected from a high-fidelity simu-
lation. A snapshot matrix is defined as a matrix M ∈ R

N×K whose columns are individual snapshots. The main focus of this 
paper is on unsteady flows and on snapshots associated with different time-instances. Hence, M:,i := w i for i = 1, . . . , K . 
Mathematically, POD seeks an n-dimensional (n � K and n � N) subspace spanned by the set {w i(x)}n

i=1 such that the 
difference between the ensemble {w i}K

i=1 and its projection onto the reduced subspace is minimized on average. That is, 
a POD basis is obtained by solving the following low-rank matrix approximation problem:

For a given snapshot matrix M ∈ R
N×K , find a lower rank matrix M̃ ∈ R

N×K that solves the minimization problem

4 Presented in two-dimensions for the sake of brevity only. Extension to the three-dimensional equations is straightforward.
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min
rank(M̃)=n

‖M − M̃‖F , (8)

where n � N., and || · ||F is the Frobenius norm.

In this problem, the rank constraint can be taken care of by representing the unknown matrix as M̃ = Ũ Ṽ , where 
Ũ ∈ R

N×n and Ṽ ∈ R
n×K , so that problem (8) becomes

min
Ũ∈RN×n,Ṽ ∈Rn×K

‖M − Ũ Ṽ ‖F . (9)

It is well-known that the solution of the above low-rank approximation problem is given by the Eckart–Young–Mirsky 
[12,25] theorem via the Singular Value Decomposition (SVD) of M . Specifically, Ũ = U :,1:n and Ṽ = (�V T)1:n,: where X =
U�V T. This is the so-called “method of snapshots” for computing a POD basis [44].

2.4. Accounting for modal truncation: eddy-viscosity based closure models

In the Kolmogorov description of the turbulence cascade, the large, energy-carrying flow scales transfer energy to succes-
sively smaller scales where finally dissipative forces can dissipate their energy [46,30]. The large, energy-carrying scales are 
associated with the large singular values of the snapshot matrix M , while the smaller, energy-dissipative scales of the flow 
are associated with the smaller singular values. Since low order POD-based ROMs remove modes corresponding to small 
singular values, these ROMs are, by construction, not endowed with the dissipative dynamics of the flow.

Many of the popular methods for accounting for truncated modes fall in to the family of eddy-viscosity based closure 
models.5 In this family of methods, dynamics of the truncated modes are modeled by modifying the coefficients of the 
Galerkin model. For example, in the linear eddy-viscosity approach, the linear term of the Galerkin system is modified. 
Equation (7) is replaced with

da

dt
= C + (L + L̂)a + [

aT Q (1)a aT Q (2)a · · · aT Q (n)a
]T

(10)

Here, L̂ is an additional linear term whose role is to modify the overall eigenvalue distribution of the linear operator (L + L̂), 
i.e., decrease the magnitude of this operator’s real positive eigenvalues and increase the magnitude of its real negative 
eigenvalues. This amounts to decreasing energy production and increasing energy dissipation, respectively. In general the 
appropriate eigenvalue distribution is not known a priori and must be identified via a solution matching procedure. For a 
detailed review of the performance of the various methods based on this approach, the reader is referred to Wang et al. 
[48], Rempfer and Fasel [33].

Although the approach described above has been applied successfully to a large number of Galerkin models of complex, 
high-Reynolds number flows, it has a significant drawback, namely the loss of consistency between the Navier–Stokes equa-
tions and the Galerkin system. Since the Galerkin system is modified empirically, the resulting quadratic system of ODEs no 
longer corresponds to a Galerkin projection of the Navier–Stokes equations.

In the following section, a novel stabilization and enhancement approach that retains consistency is introduced.

3. Stabilization and enhancement of compressible flow ROMs via subspace rotation

In this section the new proposed stabilization and enhancement approach for ROMs is outlined. In this method the pro-
jection subspace is “rotated” into a more dissipative regime by modifying the eigenvalue distribution of the linear operator. 
This new approach may be interpreted as an a priori implementation of a traditional eddy-viscosity based closure model.

The modes w i(x), i = 1, 2 . . . , n are constructed via linear-superposition of n + p (with p > 0) most energetic POD modes. 
Mathematically this can be expressed as:

w̃ i =
n+p∑
j=1

X ji w j i = 1, · · · ,n, (11)

where X ∈ R
(n+p)×n is the orthonormal (XT X = In×n) “rotation” matrix. The Galerkin system tensors associated with these 

new modes are expressed as a function of X as follows:

5 Other ROM stabilization approaches, developed independently from the “modal constant eddy-viscosity” approach and for a broader range of applica-
tions than fluid mechanics, e.g., the method of Kalashnikova et al. [22] for stabilizing generic linear ROMs via optimization-based eigenvalue reassignment, 
give rise to a similar modification to the linear term.
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Q̃ (i)
jk =

n+p∑
s,q,r=1

Xsi Q (s)
qr Xqj Xrk i, j,k = 1, · · · ,n, (12a)

L̃ = XT L X, (12b)

C̃ = X T C∗, (12c)

where C ∈ R
n+p , L ∈ R

(n+p)×(n+p) and Q (i) ∈ R
(n+p)×(n+p) , ∀i = 1, · · · , (n + p) are the Galerkin system coefficients corre-

sponding to the first n + p most energetic POD modes. The new Galerkin system is of the form

da

dt
= C̃ + L̃a +

[
aT Q̃

(1)
a aT Q̃

(2)
a · · · aT Q̃

(n)
a

]T
, (13)

where the matrices Q̃
(i)

, L̃ and C̃ are given by (12).
The goal of the proposed approach is to find X such that 1.) the new modes w̃ i remain good approximations of the flow, 

and 2.) the new Galerkin ROM is stable and accurate. To ensure that these properties are satisfied, a constrained optimization 
problem is formulated for X . To guarantee that the new modes remain good approximations of the flow, the distance 
||X − In+p,n||F is minimized, where In+p,n are the first n columns of an n + p identity matrix. To ensure that the ROM is 
stable and accurate, the traditional linear eddy-viscosity closure ansatz is used as a constraint. Specifically, the constraint 
involves the overall balance between linear energy production and dissipation via the trace of the modified linear operator 
tr(L̃) = tr(XT L X) = ∑n

i λ̃i = η where λ̃i are eigenvalues of XT L X . Although this constraint alone does not guarantee any 
particular eigenvalue distribution, the objective function promotes minimal rotations and thus minimal modifications of the 
eigenvalue distribution. Some alternative candidate constraint and objective functions are outlined in Appendix B.

Mathematically, the constrained optimization problem for X outlined above reads as follows:

minimize
X∈V(n+p),n

− tr
(

XT In+p,n

)
subject to tr(XT L X) = η

(14)

where η ∈ R and

V(n+p),n ∈ {X ∈R
(n+p)×n : XT X = In , p > 0}. (15)

In (15), V(n+p),n is the Stiefel manifold, defined as the set of (n + p) ×n matrices satisfying the orthonormality condition 
XT X = In , where In is the n ×n identity matrix [32,45]. In Equation (14) the objective function is simplified by utilizing the 
property that for a real matrix ||A||2F = tr(AT A). Thus, minimizing ||X − In+p,n||F is equivalent to minimizing −tr(XT In+p,n).

The appropriate eigenvalue distribution η must be identified using a solution matching procedure. Discussion of an 
approach for selecting η is deferred until § 3.2.

Remark 2. In this paper, we assume that the ROM advanced forward in time during the online time-integration step of the 
model reduction is a system of the form (10), which arises when projecting the compressible Navier–Stokes equations in 
primitive specific volume form (6) onto the reduced basis modes. As suggested in Remark 1, the method described here can 
be applied in the case the ROM is based on the compressible Navier–Stokes equations in conservative form (with or without 
hyper–reduction). In this case, the model reduction would proceed as follows:

Step 1: Run a high-fidelity code to generate snapshots from which the POD basis will be constructed.
Step 2: Construct from the snapshots collected in Step 1 a POD basis {w i(x)}n+p

i=1 for the primitive variables.
Step 3: Project the compressible Navier–Stokes equations in primitive specific-volume form (6) onto the modes from Step 2 

to obtain a system of the form (10).
Step 4: Use the Galerkin matrices C, L and Q(i) to obtain from the original basis {w i(x)}n+p

i=1 a stabilized basis w̃ i =∑n+p
j=1 X ji w j, i = 1, · · · , n, where X is the solution to (14).

Step 5: Transform the stabilized basis 
{

w̃ i(x)
}n

i=1 into conservative variables, and use it in a ROM code that projects the 
compressible Navier–Stokes equations in conservative form (with or without hyper–reduction).

To apply this procedure, two ROM codes are required: a ROM code that projects the compressible Navier–Stokes 
equations in primitive specific-volume form, and a ROM code that projects the compressible Navier–Stokes equations in 
conservative form. The former code is only needed to calculate the C, L and Q(i) matrices, which are used for the basis 
stabilization.
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3.1. Solution of constrained optimization problem

A common method for solving constrained optimization problems of the form (14) is the method of Lagrange multipliers 
[28]. In this method, the Lagrangian of the optimization problem is computed, and its stationary points are sought, yielding 
necessary optimality conditions for local maxima and minima. The reader can verify that the Lagrangian for Eq. (14) is

L(X,�1,�2) := −tr(XT In+p,n) + tr(�1(XT L X − η
n In)) + tr(�2(XT X − In)), (16)

where �1 and �2 are diagonal matrices of Lagrange multipliers.
Suppose that X is a local maximizer of problem (14). Then X satisfies the first-order optimality condition LX =

−In+p,n + �1(L + LT)X + 2�2 X = 0, tr(XT L X − η
n In) = 0, and XT X − In = 0. Solving Eq. (14) using Lagrange multipliers 

is possible; however, it is inefficient. Significant speed-ups are possible by satisfying the orthonormality constraint directly 
via optimization on the Stiefel matrix manifold. In this method, with the help of the augmented Lagrange method, the 
constrained optimization problem is reduced to an unconstrained optimization problem on the Stiefel manifold as follows:

minimize
X∈V(n+p),n

− tr(XT In+p,n) + μk

2
tr(XT L X − η

n In)
2 − λLtr(XT L X − η

n In), (17)

where μk is increased until the constraint is satisfied to some desired precision. The variable λL is an estimate of the 
Lagrange multiplier and is updated according to the rule

λL ← λL − μktr(X (k)T
L X (k) − η

n In), (18)

where X (k) is the solution of the unconstrained problem at the kth step. In this work, the Manopt MATLAB toolbox [7]
is used to solve (17). The algorithm is initialized with X (0) = In+p,n that corresponds to the standard Galerkin ROM. All 
derivatives in the optimization algorithm are calculated analytically.

3.2. Solution matching procedure for η

In this section a solution matching procedure for the appropriate eigenvalue distribution, η is outlined. The relative error 
of the solution delivered by a ROM is defined as

e(η) = 〈EC F D〉T − 〈E R O M〉T

〈EC F D〉T
× 100 (19)

where E(t) = ∑n
i a2

i (t) is the solution “energy” and 〈·〉T is the mean value (temporal average). The solution matching proce-
dure consists of identifying the root e(η) = 0 using the bisection method as summarized in Algorithm 1. For all numerical 
experiments the endpoint values are set to ηb = tr((X (0)T

L(X (0)) = tr(L1:n,1:n), ηa = ηb − 5|ηb|, where ηb corresponds to the 
standard n-order Galerkin ROM. The convergence tolerance, T O L and the maximum number of iterations, N M A X are set to 
0.1% and 100, respectively.

Remark 3. Here, we provide some general guidelines and remarks pertaining to the proposed stabilization and fine-tuning 
algorithm.

• Our numerical experiments suggest n = p provides best performance; however the optimal choice of p remains an open 
question.

• The proposed algorithm requires that p ≥ 1. For p = 0, the rotation matrix X is square and therefore corresponds to a 
coordinate transformation that, by definition, can have no effect on the dynamics of the system.

• Uniqueness results for the solution to (14) are not provided in this work. We have found the results to be insensitive to 
the initial conditions, and the solutions to (14) to be unique for a large number of random initial conditions.

• For some choices of n, p and η the optimization problem (17) does not have feasible solutions. Consider the constraint 
tr(XT L X) = η. Since the trace is invariant under cyclic permutations, we have that tr(XT L X) = tr(L X XT). The rectan-
gular matrix X is orthonormal XT X = In so the product X XT is positive semidefinite. It was proved in [39] that for an 
arbitrary matrix A, and positive semidefinite matrix B

tr(A B) ≤ |tr(A B)| ≤ |A|2tr(B) (20)

where |A|2 = σmax(A) is the spectral norm, i.e., the largest singular value of A. Setting A = L and B = X XT, and 
utilizing the fact that the trace of a projection matrix is equal to its rank, | ηn | ≤ σmax(A) is a necessary condition for the 
existence of a solution to (14).
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Algorithm 1: Stabilization algorithm for compressible Navier–Stokes equations.
input : endpoint values [ηa, ηb] (where ηa < ηb ), convergence tolerance T O L, maximum iterations, N M A X , ROM size n and p ≥ 1, and Galerkin 

system matrices associated with the first n + p most energetic POD modes, C ∈R
n+p , L ∈R

(n+p)×(n+p) and 
Q (i) ∈R

(n+p)×(n+p), i = 1, · · · , n + p
output: stabilizing rotation matrix X , and eigenvalue distribution η

1 while N ≤ N M A X do
2 set new midpoint to ηc = (ηa + ηb)/2
3 solve constrained optimization problem on Stiefel manifold:

minimize
X∈V(n+p),n

− tr
(

XT In+p,n

)
subject to tr(XT L X) = ηc

4 construct new Galerkin matrices using (12)
5 integrate numerically new Galerkin system
6 calculate relative ROM error e(ηc)

7 if |e(ηc)| < T O L then
8 η := ηc

9 output X , and η
10 terminate the algorithm
11 end
12 if sign(e(ηc)) = sign(e(ηa)) then
13 ηa = ηc

14 else
15 ηa = ηb

16 end
17 end
18 output (“Method failed, maximum number of iterations exceeded”)

4. Numerical experiments

In this section, we evaluate the performance of Algorithm 1 for stabilizing compressible flow ROMs on several 2D prob-
lems: a problem involving a laminar flow around an inclined airfoil, and a channel-driven cavity problem at two Reynolds 
numbers. In all cases, the flow is governed by the full compressible Navier–Stokes equations with constant viscosity. Direct 
Numerical Simulations (DNS) are performed and POD basis functions are derived from snapshots collected during these sim-
ulations. ROMs are derived by projecting the fully compressible Navier–Stokes equations in specific volume (ζ -) form onto 
the first n most energetic basis modes. The projection is performed off-line, and once and for all, resulting in a system of n
coupled quadratic ODEs in the form of (7). From this point forward, such ROMs are referred to as “standard POD-Galerkin 
ROMs”, where “standard” refers to the fact that no model is used to account for the dynamics of the truncated modes, 
n + 1, n + 2, · · · , ∞. ROMs derived using the stabilization approach proposed in this paper are referred to as “stabilized 
POD-Galerkin ROMs”.

4.1. High angle of attack laminar airfoil

The first test case involves the 2D flow around an inclined NACA0012 airfoil at Mach 0.7, and Re = 500 at 25 degrees 
angle of attack. The Reynolds number is based on the chord of the airfoil, c. At this Reynolds number and angle of attack, the 
flow is separated and the solution corresponds to a stable limit cycle. High-fidelity simulation snapshots are generated using 
a second-order, finite-difference, embedded boundary (EB) solver. The no-slip adiabatic boundary conditions are satisfied 
using a first-order ghost fluid method. For a detailed description of the scheme the reader is referred to Balajewicz and 
Farhat [4]. The snapshots correspond to a DNS of the compressible Navier–Stokes equations. The viscosity of the fluid inside 
the domain is assumed constant. The computational domain extends 20c in all directions and a sponge zone of thickness 
2c is used to help absorb waves entering and leaving the domain. The domain is discretized using a non-uniform 300 × 300
cartesian grid. The flow is initialized by setting the solution at all grid points to the free stream values. Time integration 
is performed using the second-order BDF scheme and a constant time step corresponding to a CFL = 1 is used. Snapshot 
collection begins after 5000 time steps to ensure the solution has reached the limit cycle. A total of K = 500 snapshots are 
collected every 5 simulation time steps. The first four basis functions capture approximately 86% of the snapshot energy.

Fig. 1 illustrates the performance of a stabilized n, p = 4 ROM of the laminar airfoil using η = −3.513 × 10−1. The 
stabilization algorithm terminated after 19 iterations with a relative error e(η) = 0.017%. In Fig. 1(a), the global energy 
of the high-fidelity CFD model, and standard (i.e., unstabilized) and stabilized ROMs are illustrated. The stabilized ROM is 
shown to track very accurately the mean of the fluctuating energy of the CFD solution while the standard ROM overpredicts 
the mean by an order of magnitude. To investigate the long term stability of the stabilized ROM, the system was numerically 
integrated 100× the duration of the original snapshots. No change or drift in trajectory was observed during this long 
integration period. In Fig. 1(b) the trajectories of the first and second temporal coefficient, a1(t), and a2(t) respectively, 
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Fig. 1. Nonlinear model reduction of the laminar airfoil. Evolution of modal energy (a), and phase plot of the first and second temporal basis, a1(t) and 
a2(t) (b); CFD (thick gray line), standard n = 4 ROM (dashed blue line), stabilized n, p = 4 ROM (solid black line). Stabilizing rotation matrix, X (c). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

are illustrated. The stabilized ROM accurately reproduces the closed orbit of the stable limit cycle while the standard ROM 
predicts an unstable spiral. Figs. 1(a) and 1(b) demonstrate how the stabilized ROM reproduces reliably both the global mean 
and fluctuating components of the CFD solution. The stabilizing transformation matrix X for this problem is illustrated in
Fig. 1(c). As expected the rotation of the projection subspace is small as demonstrated by the fact that X ≈ In+p,n . For this 
configuration, the normalized error defined as ||X − In+p,n||F /n is 0.083.

Finally, the predicted velocity magnitude at the final snapshot is illustrated in Fig. 2. The stabilized ROM (Fig. 2(a)) 
reproduces the velocity contours of the original high-fidelity CFD solution (Fig. 2(c)) remarkably well, in contrast to the 
standard ROM (Fig. 2(b)). This demonstrates the effectiveness of the proposed model reduction approach.

4.2. Channel driven laminar cavity

For the results presented in this section, the high-fidelity fluid simulation data are generated using a Sandia National 
Laboratories’ in-house finite volume flow solver known as SIGMA CFD. This code is derived from LESLIE3D [40], a Large Eddy 
Simulations (LES) flow solver originally developed in the Computational Combustion Laboratory at the Georgia Institute of 
Technology. The code has LES as well as DNS capabilities. For the channel-driven laminar cavity problem considered here, 
the code was run in DNS mode. For a detailed description of the schemes and models implemented within LESLIE3D, the 
reader is referred to [14,15].

ROMs for the channel-driven laminar cavity problem are constructed using a Sandia in-house parallel C++ model re-
duction code known as Spirit, which constructs ROMs for compressible flow problems using the POD and continuous 
projection method. This code, detailed in [21], reads in the snapshot and mesh data written by a high-fidelity flow solver, 
creates a finite element representation of the snapshots and computes the numerical quadrature necessary for evaluation of 
the inner products arising in the Galerkin projection step of the model reduction. All calculations are performed in parallel 
using distributed matrix and vector data structures and parallel eigensolvers from the Trilinos project [17], which allows for 
large data sets and a relatively large number of POD modes. The libmesh finite element library [23] is used to compute 
the element quadratures.

In the discussion that follows, two variants of the 2D channel-driven laminar cavity problem are considered: a low 
Reynolds number variant (Re ≈ 1500) and a moderate Reynolds number variant (Re ≈ 5500). Both tests cases involve a 
Mach 0.6 viscous laminar flow over a cavity in a T -shaped domain (Fig. 3). The flow conditions for both tests are similar 
to case L2 in [35]. The free stream pressure is 25 Pa, the free stream temperature is 300 K, and the free stream velocity 
is 208.8 m/s. The viscosity μ is spatially constant and calculated such that the above Reynolds numbers are achieved. The 
thermal conductivity κ is also constant, calculated such that the Prandtl number is Pr = 0.72. At the inflow boundary, a value 
of the velocity and temperature that is above the free stream values is specified. The flow at the cavity walls is assumed 
to be adiabatic and to satisfy a no-slip condition. The remaining outflow boundaries are open, and a far-field boundary 
condition that suppresses the reflection of waves into the computational domain is implemented here. The high-fidelity 
simulation is initialized by setting the flow in the cavity to have a zero velocity, free stream pressure, and temperature. The 
region above the cavity is initialized to free stream conditions and the flow is allowed to evolve. As both SIGMA CFD and
Spirit are 3D codes, a 2D mesh of the domain � is converted to a 3D mesh by extruding the 2D mesh in the z-direction 
by one element. Finally, it is noted that SIGMA CFD and Spirit work with different meshes. The former code requires a 
structured hexahedral discretization, whereas the latter assumes a tetrahedral discretization. To overcome this difference, 
the hexahedral high-fidelity meshes associated with the snapshots are converted to tetrahedral meshes prior to constructing 
the ROMs. This is accomplished by breaking up each hexahedral element into six tetrahedral elements.

4.2.1. Low Reynolds number (Re ≈ 1500)

For the first, low Reynolds number variant of the channel-driven laminar cavity problem, the free-stream viscosity is set 
to μ∞ = 3.17 × 10−6 kg/(m·s), so that Re = 1453.9. The discretized domain, illustrated in Fig. 3, consists of 98,408 nodes, 
cast as 292,500 tetrahedral finite elements within the ROM code, Spirit. The 2D extent of the domain is: [(−6.42, 10) ×
(−1, 10)]\[(−6.42, 10) × (−1, 0) ∪ (2, 10) × (−1, 0)] m. The reader can observe that the mesh is structured but non-uniform.



M. Balajewicz et al. / Journal of Computational Physics 321 (2016) 224–241 233
Fig. 2. Snapshot of high angle of attack airfoil at final snapshot; contours of velocity magnitude. CFD (a), standard n = 4 ROM (b), and stabilized n, p = 4
ROM (c).

The high-fidelity solver, SIGMA CFD, is initiated with the conditions described above and allowed to run until a statis-
tically stationary flow regime is reached. At this point, a total of K = 500 snapshots are collected from SIGMA CFD, taken 
every 
tsnap = 1 × 10−4 seconds. The snapshots are used to construct a POD basis of size 4 modes in the L2 inner product. 
This basis captured about 91% of the snapshot energy. For more details on this test case, the reader is referred to [21].
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Fig. 3. Domain and mesh for viscous channel-driven cavity problem.

Fig. 4. Nonlinear model reduction of channel-driven cavity at Re ≈ 1500. Evolution of modal energy (a) and phase plot of the first and second temporal 
basis, a1(t) and a2(t) (b); CFD (thick gray line), standard n = 4 ROM (dashed blue line), stabilized n, p = 4 ROM (solid black line). Stabilizing rotation matrix, 
X (c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. PSD of p(x, t) where x = (2,−1) of channel-driven cavity Re ≈ 1500. CFD (thick gray line), stabilized n, p = 4 ROM (black line).

Fig. 4 illustrates the performance of a stabilized n, p = 4 ROM of the low Reynolds number cavity using η = −3.330 ×
10−3. The stabilization algorithm terminated after 18 iterations with a relative error e(η) = −0.012%. In Fig. 4(b), the modal 
energy of the CFD, standard, and stabilized ROMs are illustrated. The stabilized ROM is shown to track very accurately the 
energy of the original CFD solution while the standard ROM is unable to reproduce this trajectory. The long term stability 
of the stabilized ROM was validated by numerically integrating the system 100× the duration of the original snapshots. No 
change or drift in trajectory was observed during this long integration period. In Fig. 4(b) the trajectories of the first and 
second temporal coefficient, a1(t), and a2(t) respectively, are illustrated. The stabilized ROM predicts correctly the closed 
orbit of the stable limit cycle while the standard ROM predicts an unstable spiral. The stabilizing transformation matrix X
for this problem is illustrated in Fig. 4(c). As before, the rotation of the projection subspace is small as demonstrated by the 
fact that X ≈ In+p,n . For this configuration, the normalized error defined as ||X − In+p,n||F /n is 0.1182.

Fig. 5 shows the Power Spectral Density (PSD) of the predicted pressure fluctuations at the bottom right corner of 
the cavity, x = (2, −1). Both the fundamental and first harmonic of the response is accurately predicted by the stabilized 
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Fig. 6. Snapshot of channel-driven cavity Re ≈ 1500; contours of u-velocity magnitude at the final snapshot. CFD (a), standard n = 4 ROM (b) and stabilized 
n, p = 4 ROM (c).

n, p = 4 ROM. The PSD of the CFD signal was computed using all available snapshots from t = 0 to t = 380 where t is 
non-dimensional. On the other hand, the PSD of the stabilized ROM was computed from the signal 100× past the duration 
of the original snapshots; i.e. t = (38000 − 380) = 37620 to t = 38000.

Finally, a snapshot of the predicted velocity magnitude at the final snapshot is illustrated in Fig. 6. The stabilized ROM 
(Fig. 6(a)) reproduces the velocity contours of the original high-fidelity CFD simulation (Fig. 6(c)) remarkably well. In con-
trast, the standard ROM (Fig. 6(c)) is unstable and inaccurate.

4.2.2. Moderate Reynolds number (Re ≈ 5500)

The next test case considered is also a channel-driven laminar cavity problem, but at a higher Reynolds number. The 
only parameter that is different is the free-stream viscosity, now set to μ∞ = 8.46 × 10−7 kg/(m·s), so that Re = 5452.1. 
Also changed is the size of the geometry extent, which has a larger sponge region near the outflow regions. This is needed 
to suppress adequately the reflection of waves into the computational domain for this problem. Toward this effect, the 2D 
extent of the domain is: [(−6.42, 30) × (−1, 30)]\[(−6.42, 30) × (−1, 0) ∪ (2, 30) × (−1, 0)] m. The geometry is discretized 
by 117,328 nodes, cast as 345,900 tetrahedral elements in Spirit. As before, the mesh is structured but non-uniform. The 
flow is significantly more chaotic than the Re ≈ 1500 case considered in Section 4.2.1.

A total of K = 500 snapshots are collected from SIGMA CFD at increments 
tsnap = 1 × 10−5 seconds. As before, snap-
shots collection does not begin until a statistically stationary flow regime has been reached. From these snapshots, a POD 
basis of size 20 modes is constructed in the L2 inner product. This basis captures about 72% of the snapshot energy. Typ-
ically, n would be selected such that the POD basis captures a greater percentage of the snapshot ensemble energy (e.g., 
≈ 90% or more). We choose a basis that captures less energy of the snapshot set to highlight the effectiveness of our 
approach for low-dimensional POD expansions.

Fig. 7 illustrates the performance of a stabilized n, p = 20 ROM of the higher Reynolds number cavity problem using η =
−5.679 × 10−1. The stabilization algorithm terminated after 25 iterations with a relative error e(η) = −0.065%. In Fig. 7(a), 
the modal energy of the CFD, standard, and stabilized ROMs are illustrated. The standard ROM is shown to overpredict the 
energy of the original CFD solution by an order of magnitude. The predictive power of the stabilized ROM is demonstrated 
by numerically integrating the ROM 10× the duration of the original snapshots. The stabilizing transformation matrix X for 
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Fig. 7. Nonlinear model reduction of channel-driven cavity at Re ≈ 5500. Evolution of modal energy (a); CFD (thick gray line), standard n = 20 ROM (dashed 
blue line), stabilized n, p = 20 ROM (solid black line). Stabilizing rotation matrix, X (b). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 8. PSD of p(x1, t) where x1 = (2,−0.5) of channel-driven cavity at Re ≈ 5500. CFD (thick gray line), stabilized n, p = 20 ROM (black line).

Fig. 9. PSD of p(x2, t) where x2 = (0,−0.5) of channel-driven cavity at Re ≈ 5500. CFD (thick gray line), stabilized n, p = 20 ROM (black line).

this problem is illustrated in Fig. 7(b). As before, the rotation of the projection subspace is small as demonstrated by the 
fact that X ≈ In+p,n . For this configuration, the normalized error defined as ||X − In+p,n||F /n is 0.0384.

Figs. 8 and 9 show the PSDs of the predicted pressure fluctuations at locations x1 = (2, −0.5) and x2 = (2, 0.5), re-
spectively. The PSD of the CFD signal was computed using all available snapshots from t = 0 to t = 67 where t is 
non-dimensional. On the other hand, the PSD of the stabilized ROM was computed from the signal 10× past the dura-
tion of the original snapshots; i.e. t = (670 − 67) = 603 to t = 670. The stabilized ROM accurately predicts the chaotic 
pressure fluctuations at both locations. Fig. 10 illustrates the Cross Power Spectral Density (CPSD) for pressure fluctuations 
at x1 and x2. Both the power and phase lag at the fundamental frequency, and the first two super harmonics (normalized 
frequency (×π rad/sample) ≈ 0.18, 0.35, and 0.53) are predicted accurately using the stabilized ROM. The phase lag at these 
three frequencies in Fig. 10 as predicted by the CFD and the stabilized ROM is identified by red squares and blue triangles, 
respectively. As expected, the low-dimensional ROM is unable to reproduce the phase lag of low-amplitude frequencies or 
higher-order super harmonics.

Finally, a snapshot of the predicted velocity and pressure magnitudes at the final snapshot are illustrated in Fig. 11
and 12. Since the flow at this higher Reynolds number is chaotic, the low-dimensional model can not be expected to track 
the original snapshots exactly. However, the snapshot demonstrates that the stabilized ROMs faithfully reproduce the large 
features of the flow. The same cannot be said of the standard ROMs.
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Fig. 10. CPSD of p(x1, t) and p(x2, t) where x1 = (2, −0.5) and x2 = (0, −0.5) of channel-driven cavity at Re ≈ 5500. CFD (thick gray line), stabilized 
n, p = 20 ROM (black line). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 11. Snapshot of channel-driven cavity Re ≈ 5500; contours of u-velocity magnitude at the final snapshot. CFD (top), standard n = 20 ROM (middle), and 
stabilized n, p = 20 ROM (bottom).

4.3. Computational speed-up

For each problem considered, the speed-up factor delivered by its ROM for the online computations is reported in Table 1. 
All ROMs are solved in MATLAB using ODE45s. For more details on this algorithm, the reader is referred to Shampine and 
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Fig. 12. Snapshot of channel-driven cavity Re ≈ 5500; contours of pressure at the final snapshot. CFD (top), standard n = 20 ROM (middle), and stabilized 
n, p = 20 ROM (bottom).

Table 1
CPU times for off-line and on-line computations.

Procedure Numerical experiment

Airfoil Cavity, 
low-Re

Cavity, 
moderate-Re

CFD # of DOF 360,000 288,250 243,750
Time-integration of CFD 7.8 hrs 72 hrs 179 hrs
Basis construction (size n + p ROM) 0.16 hrs 0.88 hrs 3.44 hrs
Galerkin projection (size n + p ROM) 0.74 hrs 5.44 hrs 14.8 hrs
Stabilization 28 sec 14 sec 170 sec
ROM # of DOF 4 4 20
Time-integration of ROM 0.31 sec 0.16 sec 0.83 sec

Online computational speed-up 9.1 × 104 1.6 × 106 7.8 × 105

Reichelt [43]. All online time-integration CPU times were measured using the tic-toc function on a single computational 
thread via the -singleCompThread start-up option. The CFD time-integration, basis construction and Galerkin projection 
times given in the table are reported in CPU-hours, calculated as the product of the number of processors used in the 
computation and the mean CPU time over all processors. The number of processors employed varied between 1 and 128. 
The online speed-up is calculated by evaluating the ratio between the time-integration of the CFD and the time-integration 
of the ROM. The reader can observe that the ROM online speedup is on the order of at least 104 for all three problems 
considered. Moreover, the stabilization step takes very little time (on the order of seconds/minutes).
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5. Conclusions

In this paper, an approach for stabilizing and enhancing projection-based fluid ROMs of the compressible Navier–Stokes 
equations is developed. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consis-
tency between the ROM and the CFD model from which the ROM is derived is maintained. Mathematically, the approach 
is formulated as a trace minimization on the Stiefel manifold. The method is shown to yield both stable and accurate low-
dimensional models of several representative compressible flow problems. In particular, the method is demonstrated on 
flows at higher Reynolds number where the dynamics are chaotic. Future work will include the extension of the proposed 
approach to problems with generic non-linearities, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy 
POD) following the procedure described in Remark 2, as well as to predictive applications with varying Reynolds number 
and geometry.
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Appendix A. Construction of Galerkin matrices for the compressible Navier–Stokes equations

In this section the construction of Galerkin matrices for the compressible Navier–Stokes equations (6) is outlined. Con-
sider the standard orthonormal POD vectors ui , vi , ζ i , and pi , i = 0, · · · , n where i = 0 identifies the constant mean flow. 
The following products are generated for j, k = 0, · · · , n:

φ
( j,k)
1 = u j � ζ k

x + v j � ζ k
y − ux � ζ k − v j

y � ζ k, (A.1a)
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(A.1d)

where subscripts identify partial spatial derivatives, and � is the Hadamard element-by-element product. A standard L2

Galerkin projection for i, j, k = 0, · · · , n is performed as follows:

b(i)( j,k) =
N∑

m=0

[
h �

(
ζ i � φ

( j,k)
1 + ui � φ

( j,k)
2 + vi � φ

( j,k)
3 + pi � φ

( j,k)
4

)]
m

, (A.2)

where h is a vector of element volumes. Finally, the standard Galerkin matrices for i, j, k = 1, · · · , n with a0 = 1, are given 
by

Ci = b(i)(0,0), (A.3a)

Li, j = b(i)( j,0) + b(i)(0, j), (A.3b)

Q (i)
j,k = b(i)( j,k). (A.3c)

Appendix B. Alternative formulations of the constrained optimization problem

In this section some alternative formulations of the proposed stabilization algorithm are laid out. In the current imple-
mentation, i.e. Eq. (14), the eddy-viscosity closure ansatz appears in the form of the trace of the modified linear operator. 
This alone does not place any guarantees on the eigenvalues of the linear operator. Indeed there are an infinite number of 
matrices, and thus eigenvalue distributions, with the same trace. It is straight forward to modify our approach to include a 
constrain for each individual eigenvalue
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λ̃i = αi, i = 1, . . . ,n (B.1)

where λ̃i are eigenvalues L̃ = XT L X . Since the subspace rotation modifies all terms of the Galerkin system, the most general 
constraint would include the complete Galerkin system

XTC − �C = 0 (B.2a)

XT L X − �L = 0 (B.2b)
n+p∑

s,q,r=1

Xsi Q (s)
qr Xqj Xrk − �

(s)
Q = 0, s = 1, . . . ,n (B.2c)

where �C , �L , and �(s)
Q are of appropriate dimension. Such fine grained control would in principle yield better performing 

ROMs. Unfortunately since αi , �C , �L , and �(s)
Q are not known a priori, the solution matching algorithm would be very high 

dimensional.
There are also opportunities for exploring alternative objective functions. For example, one may be interested in mini-

mizing the rotation based on some weighted norm

||W (
X − In+p,n

) ||F . (B.3)

One natural choice for a weighted might be the POD eigenvalues, � but in principle arbitrary weightings can be imple-
mented.
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