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SUMMARY

A discontinuous Galerkin method with Lagrange multipliers is presented for the solution of variable-
coefficient advection–diffusion problems at high Péclet number. In this method, the standard finite
element polynomial approximation is enriched within each element with free-space solutions of a local,
constant-coefficient, homogeneous counterpart of the governing partial differential equation. Hence in
the two-dimensional case, the enrichment functions are exponentials, each exhibiting a sharp gradient
in a carefully chosen flow direction. The continuity of the enriched approximation across the element
interfaces is enforced weakly by the aforementioned Lagrange multipliers. Numerical results obtained for
two benchmark problems demonstrate that elements based on the proposed discretization method are far
more competitive for variable-coefficient advection–diffusion analysis in the high Péclet number regime
than their standard Galerkin and stabilized finite element comparables. Copyright � 2010 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The steady advection–diffusion equation

−��c(x)︸ ︷︷ ︸
diffusion

+a ·∇c(x)︸ ︷︷ ︸
advection

= f (x), x∈�⊂Rd , d =1,2,3, (1)

is a linear partial differential equation (PDE) whose non-linear version arises in the modeling
and simulation of many transport problems. It is of primary importance to fields such as heat
transfer, fluid mechanics, and semiconductor device modeling. The primal unknown c(x) in (1)
can represent, for example, the concentration of a passive scalar embedded in a fluid, advected by
a velocity field a=a(x) and diffusing with some diffusivity �>0. Arguably, the real importance of
the generic transport equation (1) lies in its resemblance to the linearized Navier–Stokes equations.
In the incompressible case, (1) arises in the momentum equation. In the compressible case, (1)
appears in the energy equation as well.
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Associated with the advection–diffusion equation (1) is a dimensionless parameter known as
the Péclet number (Pe) defined by

Pe≡ rate of advection

rate of diffusion
= l� maxx∈� |a(x)|2

�
= Re ·

{
Pr (thermal diffusion),

Sc (mass diffusion),
(2)

where Re, Pr and Sc are the Reynolds, Prandtl and Schmidt numbers, respectively, l� is a
characteristic length scale of the domain � and |·|2 is the usual discrete l2 vector norm. The
character of the solutions of (1) depends on the magnitude of this parameter. At low values of Pe,
diffusion dominates and the equation is close to the elliptic Laplace equation. The Galerkin finite
element method (FEM), in which the solution of a PDE is approximated by continuous, piecewise
polynomial basis functions, is quasi-optimal for elliptic PDEs such as (1) in the low Pe, or diffusion-
dominated, regime. For these problems, the FEM solution differs from the ‘best approximation’
in the underlying finite element space by a constant factor C , which assures good performance
of the computation at any mesh resolution. When the FEM is applied to advection-dominated
transport problems, however, it can yield ‘unstable’ solutions, that is, solutions that exhibit central-
difference-type approximations characterized by spurious, non-physical spatial oscillations in the
boundary layer regions that form. As �→0 (Pe→∞), the exact solutions of boundary value
problems (BVPs) based on (1) exhibit boundary layers—that is, very narrow regions, typically
near a physical boundary or corner, where the solution and its derivatives change abruptly. In order
to resolve these boundary layers using standard Galerkin piecewise polynomial finite elements, the
mesh size would have to be of the same size as the ratio between the diffusion and convection [1].
In many applications, this requirement leads to a huge number of degrees of freedom (dofs),
making the FEM not only inefficient, but sometimes simply unfeasible.

A number of different finite element approaches have been proposed for addressing the challenge
of solving (1) accurately and efficiently in the high Pe regime. One popular class of alternatives to
the standard FEM for (1) are the so-called stabilized FEMs, which include the streamline upwind
Petrov–Galerkin (SUPG, or streamline diffusion) method [2–5], spotted Petrov–Galerkin (SPG) [6],
Galerkin least-squares (GLS) [7, 8], the unusual stabilized finite element method (USFEM) [9, 10]
and, more recently, the conformal Petrov–Galerkin (CPG) method [11, 12]. The basic idea of these
methods is to add weighted residual terms to the standard weak formulation of the problem in
order to enhance stability without losing consistency. The modification to the standard Galerkin
FEM is in the variational formulation only, as all of these methods rely on the same polynomial
basis functions as those employed in the standard FEM.

The discontinuous enrichment method (DEM) [13–20] falls into another class of alternatives
for the finite element solution of (1) in an advection-dominated regime: those in which non-
standard finite element bases are constructed for approximating the solution. The main idea of
DEM is to enrich the standard piecewise polynomial approximations by the non-conforming and
non-polynomial space of free-space solutions of the homogeneous form of the governing PDE,
obtained in an analytical form using standard techniques such as separation of variables. Since
these functions are related to the problem being solved, they have a natural potential for effectively
resolving sharp gradients and rapid oscillations when these are present in the computational domain.
The enrichment in DEM is not constrained to vanish at the element boundaries like the ‘bubble’
functions of the method of residual-free bubbles (RFB) [1, 21, 22]. Consequently, continuity of the
solution across element interfaces in DEM is no longer automatic; rather, it is enforced weakly
using Lagrange multipliers. The weak enforcement of continuity through Lagrange multipliers
introduced at the element edges, in addition to the fact that the enrichment in DEM is typically non-
polynomial, is what distinguishes DEM from the classical discontinuous Galerkin methods (DGMs)
[23–26] and other non-conforming FEMs with non-standard approximation spaces [27, 28]. The
result is a formulation in which the enrichment dofs can be eliminated at the element-level by
static condensation, which reduces the computational complexity and results in a system matrix
that is better conditioned than those arising from related methods such as the partition of unity
method (PUM) [29–33].
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Since it was first proposed in [13, 17, 34] by Farhat et al. for the Helmholtz equation and
acoustics applications, DEM has shown tremendous potential for solving BVPs for which the
standard Galerkin FEM is inadequate, including acoustic scattering [17, 34], wave propagation in
elastic media [18] and fluid–structure interaction [19, 20] applications. In recent years, the method
has begun to be applied to the equations of fluid mechanics. DEMs have been developed for the one-
dimensional (1D) advection–diffusion equation [13], two-dimensional (2D) advection–diffusion
equation [15, 16] and the Stokes equations [35]. For non-trivial transport problems exhibiting severe
boundary and internal layers, 2D quadrilateral DEM elements with conveniently parameterized
exponential enrichment functions were shown [15, 16] to deliver numerical solutions with relative
errors that are at least two, and in some cases, many orders of magnitude lower than those
associated with the standard Galerkin solutions. Remarkably, whereas spurious oscillations polluted
the standard Galerkin solutions to these problems—unless a very fine mesh was employed in
the boundary layer region—the DEM solutions delivered an impressive accuracy at a low mesh
resolution and were entirely oscillation free even for very challenging problems possessing multiple
boundary, internal and crosswind layers.

So far, DEM has only been developed and demonstrated for constant-coefficient problems. In the
present work, attention is turned to the 2D variable-coefficient advection–diffusion equation—that
is, (1) with d =2 and the advection field a(x) no longer assumed to be spatially constant as was the
case in [15, 16]. The diffusivity � is assumed to be spatially constant, but, as shown in Section 3.2,
there is no loss of generality in the formulation of the method by making this assumption. When
a(x) is spatially varying, the enrichment field within each element is defined as the set of free-space
solutions of the homogeneous counterpart of the governing PDE with a locally frozen advection
field, fixed within each element to some constant value associated with that element. Defining
the enrichment field in this way enables the natural extension of the methodology developed in
[15, 16] for the specific case of the constant-coefficient advection–diffusion equation. In particular,
the convenient parameterization of the exponential enrichment functions with respect to an angle
parameter �i , which made possible the systematic design and implementation of DEM elements
of arbitrary orders on unstructured meshes of quadrilateral elements [15], can be utilized.

The remainder of this paper is organized as follows. The hybrid variational formulation of
problem (1) and its discretization by DEM are reviewed in Section 2. The angle-parameterized
enrichment functions derived in [15, 16] for 2D constant-coefficient advection–diffusion prob-
lems are recalled in Section 3.1 and extended to the case of variable coefficients in Section 3.2.
Given a primal space of enrichment functions, a corresponding dual space of Lagrange multiplier
approximations related to the normal traces of these enrichment functions is constructed in
Section 4. Low- and higher-order enriched elements for solving 2D variable-coefficient advection–
diffusion problems at high Péclet numbers are designed in Section 5. Their performances are
assessed in Section 6 for two popular benchmark problems. A summary of this work and appropriate
conclusions are finally given in Section 7.

2. HYBRID VARIATIONAL FORMULATION AND DEM DISCRETIZATION

For simplicity, but without any loss of generality, consider the following all-Dirichlet trans-
port problem defined in an open bounded domain �⊂R2 with smooth, Lipschitz contin-
uous boundary �.

Given g :�→R (a function of Dirichlet data), f :�→R2 (a source term), �>0 (the diffusivity)
and aT(x)≡ (a1(x),a2(x)) (the vector of advection-coefficients, which is not necessarily constant),
find c(x)∈ H1(�) (the usual Sobolev space) such that

Lc(x) ≡ a(x) ·∇c(x)−��c(x)= f (x), x∈�,

c(x) = g(x), x∈�.
(3)

The diffusivity � is assumed to be constant and positive, and the advection field a(x) is assumed
to be continuous over the entire domain �.
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Ω

Ωe

Γe

Figure 1. Decomposition of domain � into elements �e.

To construct a triangulation Th , begin by partitioning � into nel disjoint element domains �e,
each with a boundary �e ≡��e (Figure 1), so that

�=
nel⋃

e=1
�e with

nel⋂
e=1

�e =∅. (4)

Let

V≡{v∈ L2(�̃) :v|�e ∈ H1(�e)} (5)

denote the space of element approximations of the solution, which is allowed to be discontinuous
between elements, and let

W=�e�e′<e H−1/2(�e,e′
)× H−1/2(�) (6)

denote the space of Lagrange multipliers introduced to enforce weakly the continuity of the solution
across the element boundaries. Here,

�̃=
nel⋃

e=1
�e, �̃=

nel⋃
e=1

�e (7)

denote the unions of element interiors and element boundaries, respectively, and

�e,e′ =�e ∩�e′
(8)

denotes the intersection between two adjacent element boundaries �e and �e′
.

2.1. Hybrid variational formulation

As the space of element approximations—that is, the discrete analog of V (5)—is allowed to be
discontinuous in DEM, the following inter-element continuity constraint is added to the BVP (3)
and is meant to be enforced weakly using Lagrange multipliers

[[c(y)]]≡
∣∣∣∣∣ lim
[x∈�e]→y

c(x)− lim
[x∈�e′ ]→y

c(x)

∣∣∣∣∣=0, y∈�e,e′
, (9)

for all edges �e,e′ ∈�int ≡ �̃\�.
It is straightforward to obtain the following weak formulation of (3) with the inter-element

continuity constraint (9): given g, f , � and a(x) as specified in (3), find (c,�)∈V×W such that
(abbreviating ve ≡v|�e )

a(v,c)+b(�,v) = r (v) ∀v∈V,

b(�,c) = −rd (�) ∀�∈W,
(10)
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where

a(v,c) ≡ (�∇v+va,∇c
)
�̃ =

∫
�̃

(�∇v ·∇c+va(x) ·∇c)d�, (11)

b(�,v) ≡∑
e

∑
e′<e

∫
�e,e′

�(ve′ −ve)d�+
∫

�
�v d� (12)

are two bilinear forms defined on V×V and W×V, respectively, and

r (v)≡ ( f,v)=
∫

�
f v d�, rd (�)≡

∫
�

�g d� (13)

are two linear forms.
The finite-dimensional analog of the hybrid DEM formulation (10) is obtained by selecting

finite-dimensional solution spaces for the primal unknown and dual Lagrange multiplier fields,
denoted respectively by

Vh ⊂V, Wh ⊂W, (14)

where h denotes the generic size of a typical element �e. Once the approximation spaces Vh

and Wh are constructed, an approximate solution (ch,�h)∈ (Vh,Wh) of the Galerkin problem
corresponding to (10) is sought.

2.2. Construction of the primal approximation space Vh

In DEM [13–20], the primal unknown ch that defines the approximation space Vh has one of the
following two forms:

ch =
{

cP +cE if f 
=0 in (3) (‘true DEM’ element),

cE if f ≡0 in (3) (‘pure DGM’ element).
(15)

cP ∈VP ⊂ H1(�) are standard, continuous, piecewise polynomial finite element shape functions
and cE ∈VE are the so-called enrichment functions. Weak enforcement of continuity through the
constraint (9) permits VE to be defined as the space of free-space solutions of the homogeneous
PDE to be solved that are not represented in VP. Hence,

VE ⊂{LcE =0 in Rd} (16)

for a generic linear PDE Lc= f in d =1,2 or 3 spatial dimensions. In variational multiscale
(VMS) terminology, the splitting of the approximation into polynomials and enrichment functions,
as done in the first line of (15), can be viewed as a decomposition of the numerical solution into
coarse (polynomial) and fine (enrichment) scales. Elements for which the solution space Vh is
constructed as a direct sum of VP and VE are termed genuine or ‘full’ DEM elements. The
general rule of thumb is to employ these elements when solving inhomogeneous problems, as the
enrichment field defined by (16) is not guaranteed to span the particular solutions to these PDEs.
If the PDE to be solved is homogeneous to begin with, however, the enrichment field (16) may
entirely capture the solution to the problem, rather than merely enhance the polynomial field. This
motivates the construction of the so-called ‘pure discontinuous Galerkin method’, or ‘pure DGM’,
elements (second line of (15)), for which the contribution of the standard polynomial field VP is
dropped from Vh, resulting in improved computational efficiency without a loss of accuracy.

The careful reader may observe that in defining the enrichment space VE as in (16), it has been
assumed that the homogeneous free-space solutions to Lc=0 are available in closed analytical
form for the given operator L. However, it is possible in general only to obtain these solutions
analytically primarily for linear PDEs with constant coefficients. As discussed in detail in Section 3,
since the enrichment functions in DEM are to be employed at the element level, it is natural to
use the solutions of the constant-coefficient version of the PDE of interest—that is, use a fixed
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value of the advection field a(x)≡a in (1) inside each element—to define the enrichment field
VE in the more general variable-coefficient context (illustrated for an example advection field
aT(x)= (−y, x) in Figure 4).

2.3. Construction of the dual space of Lagrange multiplier approximations Wh

An extensive survey of techniques for approximating the Lagrange multipliers of a hybrid FEM
can be found in Section III.3 of [36]. Most if not all of these techniques and their corresponding
theoretical results, however, have been established for standard polynomial approximations of the
solution ch. As noted earlier, in DEM, the enrichment field cE is, for many equations including the
advection–diffusion equation (1), non-polynomial. An appropriate space of Lagrange multiplier
approximations can be deduced from the variational formulation (10). Consider the bilinear form
a(·, ·) (11) over a single element �e. Integrating the first term on the right hand side of (11) by
parts yields

a(c,v)�e =
∫

�e
[a(x) ·∇c−��c]v d�+�

∫
�e

∇ce ·neve d�. (17)

Summing (17) over all the elements gives

a(c,v)=∑
e

∫
�e

[a(x) ·∇c−��c]v d�+�
∑
e

∑
e′<e

∫
�e,e′

{∇ce ·neve +∇ce′ ·ne′
ve′ }d�. (18)

Substituting (18) into the first line of (10) leads to

�=
{∇ce ·ne

−∇ce′ ·ne′ on �e,e′
. (19)

Equation (19) suggests that the Lagrange multiplier approximations comprising the space Wh for
the transport equation (1) (and any second-order PDE) should be related to the normal derivatives
of the enrichment functions in VE ⊂Vh. Given a non-polynomial enrichment field, if the Lagrange
multiplier approximations are taken as approximate normal derivatives of the enrichment functions
as suggested by (19) above, the Lagrange multiplier approximations themselves will be non-
polynomial as well.

As DEM is a hybrid method, care must be taken to design the space Wh such that the well-known
Babuška–Brezzi inf–sup condition [36–38], which is a necessary condition for ensuring that a
non-singular global interface problem from the discrete form of (10), is upheld. It is straightforward
to show [15, 16] that on a regular mesh of nel quadrilateral elements, this condition implies the
asymptotic bound on the number of Lagrange multipliers per edge (n�) given by

n��nE

2
, (20)

almost everywhere in the mesh, where nE ≡dimVE. In practice, fewer than n� =nE/2 Lagrange
multipliers per edge are employed. Numerical tests [15, 16] show that the general rule of thumb
is to limit

n� =
⌊

nE

4

⌋
, (21)

where �x�≡max{n ∈Z|n�x} for any x ∈R. In Section 4, a space of Lagrange multiplier approx-
imations for the variable-coefficient advection—diffusion equation that is related to the normal
derivatives (19) of the enrichment functions cE on the element edges in a well-defined way is
constructed, taking care to limit its cardinality to avoid violating the inf–sup condition (20).
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2.4. Element-level static condensation

The discretization of Equations (10) by DEM yields the following matrix problem:⎛
⎜⎝

kPP kPE kPC

kEP kEE kEC

kCP kCE 0

⎞
⎟⎠
⎛
⎜⎝

cP

cE

kh

⎞
⎟⎠=

⎛
⎜⎝

rP

rE

rC

⎞
⎟⎠ , (22)

where cE, cP and kh are vectors containing the dofs cE, cP and �h, respectively. The superscript C
refers to the continuity constraints enforced weakly by the Lagrange multipliers.

As the space VE is discontinuous across element interfaces, the primal unknowns cE can be
eliminated at the element-level by a static condensation to yield a reduced global system for (cP,kh)
(or system for kh in the case of a pure DGM element).‡ The eliminated enrichment field cE is
then obtained through a post processing within each element. It follows that the cost of solving the
interface problem is not directly determined by the dimension of VE, but by the number of unknown
Lagrange multiplier dofs which, because of the stability related constraint (20), is necessarily less
than dim{VE} (Table III). For this reason, DEM can be expected to be more computationally
efficient than PUM [29, 30] whose complexity depends on the number of enrichment function
dofs.

3. ENRICHMENT SPACE VE FOR VARIABLE-COEFFICIENT
ADVECTION–DIFFUSION PROBLEMS

As outlined in Section 2.2, the enrichment field for the generic, variable-coefficient advection–
diffusion BVP (3) is proposed as the set of free-space solutions of its constant coefficient analog,
in which a(x)=ae = constant inside element �e ⊂ �̃ (Figure 4). To this effect and in order to keep
this paper as self-contained as possible, the enrichment field for the case of the constant-coefficient
advection–diffusion equation (1) is first overviewed. For further details on this topic, the reader is
referred to [15, 16].

3.1. Space of angle-parameterized exponential free-space solutions

Consider the constant-coefficient, homogeneous counterpart of the advection–diffusion equation
(1) with d =2 (two dimensions)

Lc(x)=a ·∇c(x)−��c(x)=0, (23)

where a= (a1, a2)T, a1 ∈R and a2 ∈R denote the advection-coefficients assumed here to be
constant and �>0 denotes the constant diffusivity. Let � denote the advection-direction defined by

a1 =|a|cos�, a2 =|a|sin�, (24)

where |a|2 ≡a2
1 +a2

2 is the discrete two-norm of the advection velocity vector. Let

a� ≡|a|(cos�, sin�)T, a�i ≡|a|(cos�i , sin�i )
T. (25)

The reader may verify that the following functions are free-space solutions of (23):

cE(x;�i )=exp

{
1

2�
(a�+a�i )(x−xe

r,i )

}
. (26)

The functions are identical to those derived and parametrized in [15, 16]. Here, the point xe
r,i ≡

(xe
r,i , ye

r,i ) is an arbitrary reference point for the i th enrichment function cE(x;�i ), introduced within

‡The reader is referred to [15, 16] for a more detailed discussion of static condensation in the context of DEM.
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s θi

c θi

aφ

aθ
aφ + aθ

a1

a2 c(θi) = a1 + a cosθi

s(θi) = a2 + a sinθi

Figure 2. Graphical representation of enrichment arguments (28) as a circle of
radius |a| centered at a∈R2.

each element �e to avoid floating point overflow. Each parameter �i ∈ [0,2�) appearing in (26) is
an angle parameter characterizing an enrichment function cE(x;�i ). The set of nE angles �i needed
for constructing a DGM or DEM element is selected a priori and denoted by

�c ≡{ set of angles {�i ∈ [0,2�)}nE

i=1 defining VE}. (27)

For transport problems, each angle �i defines a function possessing a sharp gradient in some flow
direction relative to the advection-direction �.

Figure 2 displays a graphical representation of the argument of the exponential in (26), namely

a�+a�i ≡
(

a1 +|a|cos�i

a2 +|a|sin�i

)
∈R2. (28)

For �i ∈ [0,2�), the vectors (28) can be represented by a circle of radius |a| centered at (a1,a2) in
the Euclidian plane. Each exponential enrichment function (26) specified by an angle �i ∈ [0,2�)
(27) exhibits a boundary layer in the direction of the vector (28) (Figure 3).

Note that a constant is a free-space solution of the advection–diffusion equation (1) and

cE(x;�+�)=1. (29)

For this reason, �i =�+� will always be included in the set �c characterizing a DGM element.
However, because a constant is already represented in VP, �i =�+� will never be included in
the set �c characterizing a DEM element (see Section 5.1).

3.2. Extension to variable-coefficient transport problems

Even if a=a(x) in �—that is, the advection-direction varies in the spatial domain—a≡
ae ≈ constant within each element �e ⊂ �̃ when the mesh is refined. In other words, the
variable-coefficient PDE (3) over � can be approximated by the following set of local constant-
coefficient PDEs over the elements �e comprising �

{a(x) ·∇c−��c= f (x) in �}≈
nel⋃

e=1
{ae ·∇c−��c= f (x) in �e}. (30)

Here, ae is a spatially constant value of the advection field associated with the element �e, e.g.

ae≡a(x̄e), x̄e = center point of �e. (31)

Hence in the variable-coefficient case, the enrichment field of DEM is chosen as

VE =
nel⋃

e=1
{VE

e }, (32)
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Figure 3. Plots of the generic enrichment function cE(x;�i ) for several values of �i (�= 1
20 ,�=0): (a)

�i =0; (b) �i =�/2; (c) �i =�; and (d) �i =3�/2.

where

VE
e ⊂{cE

e ∈ L2(R2) :LcE
e =ae ·∇cE

e −��cE
e =0}, (33)

for elements �e ⊂ �̃. By analogy with (26), the free-space solutions of the local, constant-coefficient
equations (33) are

cE
e (x;�e

i )=exp

{
1

2�
(ae

�+ae
�e

i
)(x−xe

r,i )

}
∈VE

e , (34)

where �e is the advection-direction local to element �e defined by

ae
1 =|ae|cos�e, ae

2 =|ae|sin�e, (35)

and

ae
� ≡|ae|(cos�e, sin�e)T, ae

�e
i
≡|ae|(cos�e

i , sin�e
i )T. (36)

�e
i is the angle parameter defining the i th enrichment function inside element �e and (xe

r,i , ye
r,i ) is,

as before, an arbitrary reference point for the i th enrichment function inside element �e. The set

�c
e ≡
{

set of angles {�e
i ∈ [0,2�)}nE

i=1 defining VE
e

}
(37)

specifying the enrichment space inside element �e is defined by analogy with (27). In this case
however, the enrichment functions defining VE (32) will differ in general from one element �e

of the domain to another.
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ae y j
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Ωe

x j x j h x j 2h

y j

y j h

a x y x
T

Figure 4. Locally frozen advection fields to enable the construction of enrichment func-
tions as free-space solutions inside the two adjacent elements �e = (x j , x j +h)×(y j , y j +h) and

�e′ = (x j +h, x j +2h)×(y j , y j +h) for an example advection field a(x)= (−y, x)T.

It is worthwhile to note that, although the discussion above assumed that the diffusivity � is
spatially constant, so that only a(x), the advection velocity, is allowed to vary, the approach outlined
herein is not necessarily limited to the constant diffusivity case. When �=�(x), the enrichment
functions for the advection–diffusion equation would be defined by analogy to (34) but with �(x)
frozen locally inside each element.

To highlight the relation between the local variable-coefficient enrichment function (34) and
the governing variable-coefficient PDE being solved, it is assumed that a(x)∈C1(�e) so that the
following Taylor expansion around the element’s center point x̄e can be justified:

a(x)=a(x̄e)+∇a|x=x̄e ·(x− x̄e)+O(x− x̄e)2 in �e. (38)

Hence, the operator governing the PDE (1) inside the element �e takes the form

Lc=Lec+ f (c)=0 in �e, (39)

where

Lec≡a(x̄e) ·∇c−��c (40)

and

f (c)≡ [∇a|x=x̄e ·(x− x̄e)+O(x− x̄e)2] ·∇c. (41)

Equation (39) is a perturbed constant-coefficient advection–diffusion equation. The linearization
of a(x) (38) is essentially a first-order approximation of the advection field, and therefore the
functions (34) can be viewed as first-order approximations of the free-space solutions of the
variable-coefficient transport equation to be solved. The ‘residual’ advection equation (41) acts as
a source-like term. From the discussion of Section 2.2, and more specifically the rule of thumb
regarding the inclusion of the polynomial field VP in the approximation space of an enriched
element, it follows that the true DEM discretization is more appropriate for the solution of variable-
coefficient problems than its DGM counterpart, even when such problems are homogeneous.
Nevertheless, it will be shown in Section 6.2 that for some variable-coefficient homogeneous
problems, pure DGM elements with Vh ≡VE =⋃e V

E
e defined by (33) can perform quite well.

4. LAGRANGE MULTIPLIER SPACE Wh FOR VARIABLE-COEFFICIENT
ADVECTION–DIFFUSION PROBLEMS

4.1. Exponential Lagrange multiplier approximations

It was shown in Section 2.3 that the variational formulation of the problem of interest implies that the
space of approximation of the Lagrange multiplier field should be related to the normal derivatives
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Ωe
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Figure 5. Straight edge of element �e oriented at angle �e,e′
.

of the enrichment functions at the element edges. The expression for the Lagrange multiplier �
in (19) was deduced from (18) for the continuous formulation. However, a problem arises when
one attempts to use (19) to compute appropriate discrete Lagrange multiplier approximations �h,
because the enrichment field for a generic variable-coefficient problem is element dependent.

Indeed, suppose that the discrete Lagrange multiplier approximation �h is defined on �e,e′

analogously to (19)—that is, as

�h|
�e,e′ =span{∇cE

e (x;�i )|�e,e′ ·ne,e′ }, (42)

where span{cE
e (x;�e

i )} is the enrichment field (34) inside element �e and ne,e′
denotes the outward

unit normal to �e,e′
. Implicit in the expression (42) is the assumption that ∇cE

e ·ne,e′
is defined

on �e,e′
. However, for a non-constant a(x) and the enrichment space given by (32) and (33), the

normal derivative ∇cE
e ·ne,e′

is typically undefined, as discussed below.
For concreteness, consider a discretization of the domain � by a (structured or unstructured)

mesh of quadrilateral elements �e. Let �e,e′
be a straight edge separating two adjacent elements �e

and �e′
, but viewed as an edge belonging to �e (Figure 5). It is straightforward§ to parameterize

this edge with respect to an arc-length coordinate 0�s�h, where h is the length of this edge.
Denoting by �e,e′ ∈ [0,�/2] the angle �e,e′

makes with the x-axis, the normal derivatives of the
enrichment functions in elements �e and �e′

are given by

∇cE
e (x;�e

i )|
�e,e′ ·ne,e′ =C1 exp

{
1

2�
[(ae

�+ae
�e

i
) ·te,e′

](s−se,e′
r,i )

}
(43)

and

∇cE
e′(x;�e′

i )|
�e′,e ·ne′,e =C2 exp

{
1

2�
[(ae′

� +ae′
�e′

i

) ·te,e′
](s−se,e′

r,i )

}
, (44)

respectively, where C1 ≡1/(2�)(ae
�+ae

�e
i
) ·ne,e′

and C2 ≡1/(2�)(ae′
� +ae′

�e′
i

) ·ne′,e are two constants,

te,e′
is the unit tangent vector to �e,e′

and 0�se,e′
r,i �h is the arbitrary reference point introduced

for the stable evaluation of exponentials on �e,e′
. The constant appearing in the argument of the

exponential in (43) is denoted from this point onward by

�e(�e
i )≡�e

i ≡ 1

2�
[(ae

�+ae
�e

i
) ·te,e′

]= |ae|
2�

[cos(�e −�e,e′
)+cos(�e

i −�e,e′
)]. (45)

From the comparison of (43) and (44), it follows that if ae 
=ae′
,

∇cE
e (x;�e

i )|
�e,e′ ·ne,e′ 
=−∇cE

e′(x;�e′
i )|

�e′,e ·ne′,e (46)

§For details about this parameterization, the reader is referred to Section 4 of [15].
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even for �e
i =�e′

i , which implies that a normal derivative of an enrichment function along the edge
�e,e′

(42) is not in this case well defined.
One approach for remedying this problem is to extend the enrichment space V=⋃e V

E
e (32)

to the element edges. This extension is denoted here by VE
e,e′ and constructed only for the sake

of enabling the approximation of the Lagrange multiplier field using an approach similar to that
of (42). For this purpose, let ae,e′

denote a constant advection velocity associated with the edge
�e,e′

, for example,

ae,e′ ≡a(x̄e,e′
) where x̄e,e′ =midpoint of �e,e′

. (47)

Then, for a specified angle �e,e′
i ∈ [0,2�),

cE
e,e′(x;�e,e′

i )≡ exp

{
1

2�
(ae,e′

� +ae,e′

�e,e′
i

)(x−xe,e′
r,i )

}∣∣∣∣
�e,e′

∈VE
e,e′ (48)

is an i th auxiliary enrichment function defined on the edge �e,e′
. Substituting cE

e (x;�i )|�e,e′ by

cE
e,e′(x;�e,e′

i ) (48) in (42) leads to the discrete Lagrange multiplier approximation

�h|
�e,e′ =span{∇cE

e,e′(x;�e,e′
i ) ·ne,e′ }=span{e�e,e′

i (s−se,e′
r,i )

,0�s�h}, (49)

where

�e,e′
(�e,e′

i )≡�e,e′
i ≡ 1

2�
[(ae,e′

� +ae,e′

�e,e′
i

) ·te,e′
]= |ae,e′ |

2�
[cos(�e,e′ −�e,e′

)+cos(�e,e′
i −�e,e′

)]. (50)

From (50) and (49), it follows that �h|
�e,e′ =−�h|

�e′,e which implies that �h|
�e,e′ is well defined

on �e,e′
.

Expanding now in the Taylor series (43) and the generic function defining the span in (49) leads
to

∇cE
e (x;�e

i )|
�e,e′ ·ne,e′ =C1[1+�e

i (s−se,e′
r,i )+ 1

2 [�e
i ]2(s−se,e′

r,i )2 +O(s−se,e′
r,i )3] (51)

and

�h(s)|
�e,e′ =1+�e,e

i (s−se,e′
r,i )+ 1

2 [�e,e′
]2(s−se,e′

r,i )2 +O(s−se,e′
r,i )3, (52)

respectively. Since |s−se,e′
r,i |�h, it follows that

|∇cE
e (x;�e

i )|
�e,e′ ·ne,e′ −C1�

h(s)|
�e,e′ | = C1|(�e

i −�e,e′
i )(s−se,e′

r,i )+ 1
2 ([�e

i ]2 −[�e,e′
i ]2)(s−se,e′

r,i )2

+O(s−se,e′
r,i )3|�C1|(�e

i −�e,e′
i )h|+O(h2), (53)

which →0 when h →0. A similar result can be established for the difference

|∇cE
e′(x;�e′

i )|
�e′,e ·ne′,e −C2�

h(s)|
�e′,e |, (54)

which means that as the mesh is refined, the normal derivatives of the enrichment functions cE
e

and cE
e′ inside the adjacent elements �e and �e′

approach the normal derivative of the auxiliary

enrichment function cE
e,e′ (48) which is equally defined on the edges �e,e′

and �e′,e. This in
turn justifies the choice (49) for approximating the Lagrange multipliers in the case of a variable
advection-coefficient.
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Figure 6. �e,e′
(�) for the case of a quadrilateral element—extrema are marked by circles (a1 =a2 =j=1):

(a) on edges aligned with the x-axis (�=0) and (b) on edges aligned with the y-axis (�=�/2).

4.2. Lagrange multiplier selection

As in the case of the constant-coefficient advection–diffusion equation [15, 16], the set �c
e (37) typi-

cally leads to too many Lagrange multiplier dofs (42) in the sense that condition (20) fails. For this
reason, the space of Lagrange multiplier approximations is constructed as Wh =⋃e

⋃
e′<e W

h
e,e′

where

Wh
e,e′ ≡span

{
∇cE

e,e′(x;��e,e′
i )|

�e,e′ ·ne,e′
:��e,e′

i ∈��
e,e′, n� ≡card{��

e,e′ }=
⌊

nE

4

⌋}
, (55)

and n� is the number of Lagrange multiplier dofs per edge.
In a previous work [15], a set of angles, denoted by ��

e,e′ and used for constructing Lagrange
multiplier approximations, was chosen independently from the set of angles �c

e used for selecting
enrichment functions for the approximation of the primal solution, by sampling uniformly the
interval [0,2�) in n� points. In the present work, this approach is slightly modified to take into
account an important effect of a varying advection-coefficient. Underlying this modification is
the assumption that, to span as well as possible the space of all exponentials of the form {eA :
Amin�A�Amax}, A should be uniformly distributed between Amin and Amax. Hence, if

�e,e′
min ≡ min

��e,e′
i ∈[0,2�)

�e,e′
(��e,e′

i ) and �e,e′
max ≡ max

��e,e′
i ∈[0,2�)

�e,e′
(��e,e′

i ) (56)

where �e,e′
(��e,e′

i ) is defined as in (50), the angles ��e,e′
i are implicitly chosen here so that the

corresponding values of �e,e′
(��e,e′

i ) are uniformly sampled in the interval [�e,e′
min,�

e,e′
max].

The extrema of (50) can be computed analytically by taking the derivative with respect to � of
the function �e,e′

(�)—which is plotted in Figure 6 for straight edges that are aligned with the x-
and y-axes—setting it to zero, and solving

d�e,e′

d�
= |ae,e′ |

2�
sin(�e,e′ −�∗)=0

⇒ �∗ =�e,e′ −n�, n ∈Z. (57)

Substituting �∗ =�e,e′ −n� into (50) gives

�e,e′
min = 1

2�
(ae,e′

� ·te,e′ −|ae,e′ |) for ��e,e′
min =�e,e′ +� (58)
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Algorithm 1 Construction of the Lagrange multiplier approximation field

Given nE enrichment functions, set n� =�nE/4� per (21).
Select a tolerance 	>0, 	<<1.
for all edges �e,e′

in the mesh do

if |ae,e′ |<	 then
Employ polynomial Lagrange multipliers on �e,e′

.
else

Compute �e,e′
min and �e,e′

max using (58) and (59), respectively.
Set

Le,e′ ≡ ��e,e′

(n�−1)
= |ae,e′ |

�(n�−1)
. (61)

for i =1 to n� do
Set

�e,e′
i =�e,e′

min +(i −1)Le,e′
. (62)

end for
Find the index

i∗ =min

{
arg min

1�i�n�
|�e,e′

i |
}

. (63)

Set �i∗ =0.
Return the set {�e,e′

i }n�

i=1 and define the Lagrange multipliers as in (49).
end if

end for

and

�e,e′
max = 1

2�
(ae,e′

� ·te,e′ +|ae,e′ |) for ��e,e′
max =�e,e′

. (59)

From (58) and (59), it follows that the size of the interval [�e,e′
min,�

e,e′
max] is

��e,e′ ≡�e,e′
max −�e,e′

min = |ae,e′ |
�

. (60)

The general procedure for selecting the arguments �e,e′
i =�e,e′

(��
i ) defining the approximations

of the Lagrange multiplier field is summarized in Algorithm 1 and illustrated in Figure 7. The
interval [�e,e′

min,�
e,e′
max] is partitioned into (n�−1) subintervals of equal size, and the union of zero

and the (n�−1) endpoints of the subintervals furthest away from zero¶ are taken as the set of �e,e′
i

that appears in the argument of the exponential in (49). Therefore, the constant Lagrange multiplier
approximation generated by �e,e′

i =0, which can be viewed as a coarse-scale approximation, is
always included in the definition of Wh

e,e′ in order to balance the fine scales represented by the

remaining (n�−1) exponential Lagrange multiplier approximations.
Note that when ae,e′ ≡0 on an edge �e,e′

—that is, when the advection velocity satisfies a no-
slip boundary condition—and n�>1, at least two of the Lagrange multiplier approximations (49)
evaluate to constants. To avoid such a redundancy, polynomial Lagrange multiplier approximations
are adopted instead of exponential ones on edges where |ae,e′ |≈0.

¶ It is straightforward to show that the function �e,e′
i (45) has necessarily a zero in the interval (�e,e′

min ,�e,e′
max), or at one

of its endpoints.
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Figure 7. Illustration of the Lagrange multiplier selection procedure (Algorithm 1) for n� =4 and
0∈ (�e,e′

min +Le,e′
,�e,e′

min +2Le,e′
): (a) Case 1: |�e,e′

i∗ |> 1
2 Le,e′

(i∗ =3); (b) Case 2: |�e,e′
i∗ |< 1

2 Le,e′
(i∗ =2);

and (c) Case 3: |�e,e′
i∗ |= 1

2 Le,e′
(i∗ =2).

5. DESIGN OF DGM/DEM ELEMENTS FOR VARIABLE-COEFFICIENT
ADVECTION–DIFFUSION PROBLEMS

5.1. Nomenclature and computational complexity

Throughout the remainder of this paper, a DGM element is denoted by Q−nE−n� and a DEM
element by Q−nE−n�+. In this notation, Q stands for quadrilateral, nE denotes the number of
enrichment functions (cardinality of the set �c

e) and n� the number of Lagrange multiplier dofs

per edge (cardinality of the set {�e,e′
i }). The + superscript designates a genuine DEM element

(Vh =VP ⊕VE) and distinguishes it from a pure DGM element (Vh =VE).
The four DGM elements Q−4−1, Q−8−2, Q−12−3 and Q−16−4 and four DEM elements

Q−5−1+, Q−9−2+, Q−13−3+ and Q−17−4+ are constructed as follows. For all of them,
�c

e is chosen as

�c
e ={�e

m}nE

m=1 ≡�e +{
m}nE

m=1 with 
m = 2(m−1)�

nE ∈ [0,2�), (64)

which leads to the specifications of Table I, illustrated in Figure 8 for the true DEM elements.
Note that for all considered DGM elements, nE is chosen to be even so that �i =�e +� is included
in �c

e and therefore the constant function is included in VE. On the other hand for all considered
DEM elements, nE is chosen to be odd so that �i =�e +� is excluded from �c

e and therefore, the
constant function is excluded from VE since it is included in VP. Although the approximation
spaces of the true DEM elements contain one more enrichment function than their pure DGM
counterparts, note that adding these additional enrichment functions does not increase the cost of
the true DEM elements. This is because the computational complexity of these elements (Table III)
is not determined by the number of enrichment functions nE but rather the number of Lagrange
multiplier approximation dofs, as the enrichment dofs are eliminated locally at the element level
by static condensation.

The sets of exponential arguments �e,e′
i associated with these elements are specified in Table II.

The polynomial approximation of all four considered DEM elements is chosen to be that of the
standard bilinear element Q1.

The computational complexity of the aforementioned DGM and DEM elements is reported in
Table III for the case of a uniform mesh with nel =n×n quadrilateral elements, assuming that
static condensation of the enrichment dofs is implemented at the element-level (see Section 2.4).
For reference, the table also includes the computational complexity of the standard Galerkin
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Table I. Enrichment spaces of some proposed DGM and DEM elements for linear vari-
able-coefficient transport problems.

Element nE �c
e

DGM element Q−4−1 4 �e +{ �
2 (m−1) :m =1, ...,4}

Q−8−2 8 �e +{ �
4 (m−1) :m =1, ...,8}

Q−12−3 12 �e +{ �
6 (m−1) :m =1, ...,12}

Q−16−4 16 �e +{ �
8 (m−1) :m =1, ...,16}

DEM element Q−5−1+ 5 �e +{ 2�
5 (m−1) :m =1, ...,5}

Q−9−2+ 9 �e +{ 2�
9 (m−1) :m =1, ...,9}

Q−13−3+ 13 �e +{ 2�
13 (m−1) :m =1, ...,13}

Q−17−4+ 17 �e +{ 2�
17 (m−1) :m =1, ...,17}

φe φe

φe

φe

(a) (b)

(c) (d)

Figure 8. Vector field of (ae
�+ae

�i
)/|ae| (28) for the DEM elements described in Table I (�e =�/4): (a)

Q−5−1+; (b) Q−9−2+; (c) Q−13−3+; and (d) Q−17−4+.

Table II. Lagrange multiplier approximation spaces of the same DGM and DEM elements as in Table I
(identified here by the number of Lagrange multiplier dofs per edge, n�).

n� {�e,e′
i }∗ ⊆ ��

e,e′ ⊆ �e,e′
h ⊆

1 {0} {�e,e′ +�} {1}
2 {0,�e,e′

min,�e,e′
max} {�e,e′ +�,�e,e′ +�,�e,e′ } {1,exp( 1

2� ae,e′
� ·te,e′ ∓ 1

2� |ae,e′ |)}
3 {0,�e,e′

mp , {�e,e′ +�,�e,e′ + �
2 , {1,exp( 1

2� ae,e′
� ·te,e′

),

�e,e′
min,�e,e′

max} �e,e′ +�,�e,e′ } exp( 1
2� ae,e′

� ·te,e′ ∓ 1
2� |ae,e′ |)}

4 {0,�e,e′
min,�e,e′

max, {�e,e′ +�,�e,e′ +�,�e,e′ {1,exp( 1
2� ae,e′

� ·te,e′ ∓ 1
2� |ae,e′ |),

�e,e′
mp ± 1

6��e,e′ } �e,e′ +cos−1(∓ 1
3 )} exp( 1

2� ae,e′
� ·te,e′ ∓ 1

6� |ae,e′ |)}
∗In this column, �e,e′

mp denotes the midpoint of edge �e,e′
, so that: �e,e′

mp ≡ 1
2 (�e,e′

min +�e,e′
max).

bilinear, biquadratic, bicubic and biquartic elements (Q1, Q2, Q3 and Q4, respectively). The
reader can observe that two elements of the following pairs of DGM and Galerkin elements
have comparable computational complexity: (Q−4−1, Q1), (Q−8−2, Q2), (Q−12−3, Q3) and
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Table III. Computational complexity of some DGM, DEM and standard Galerkin elements.

Stencil width for
Element Asymptotic # of dofs uniform n×n mesh

Q1 nel 9
Q2 3nel 21
Q3 5nel 33
Q4 7nel 45

Q−4−1 2nel 7
Q−8−2 4nel 14
Q−12−3 6nel 21
Q−16−4 8nel 28

Q−5−1+ 3nel 21
Q−9−2+ 5nel 33
Q−13−3+ 7nel 45
Q−17−4+ 9nel 57

(Q−16−4, Q4). The reader can also observe that each constructed DEM element Q−nE−n�+
has the same computational complexity as the standard Galerkin element Qn�+1. In Section 6, it is
shown numerically that any two elements of the following triplets exhibit comparable convergence
rates: (Q−4−1, Q−5−1+, Q1), (Q−8−2, Q−9−2+, Q2), (Q−12−3, Q−13−3+, Q3) and
(Q−16−4, Q−17−4+, Q4). For this reason, all pairs of elements within these triplets are referred
to here as ‘comparables’ and the performance of a proposed DGM or DEM element is assessed
in this paper by comparing it with that of the comparable Galerkin element.

Also reported in Table III is the stencil width of each element, which is a measure of the sparsity
pattern of the resulting system matrix. The stencil of a DGM discretization is shown to be in
general smaller than that of its Galerkin comparable.

5.2. Analytical evaluation of element-level arrays

As �→0 (Pe→∞), the numerical integration by a Gaussian quadrature of the integrals (11)–(13)
becomes highly inaccurate because of the large magnitudes of the arguments of the exponential
enrichment functions (34). However, these integrals can be evaluated analytically on any mesh with
straight-edged elements, provided that the advection field a(x) is a sufficiently simple function.
For example, on a uniform mesh of square elements �e ≡ (x j , x j+1)×(y j , y j+1), the entries of the
kEE matrices (11), for 1�l,m�nE, take the form

kEE
lm ≡

∫
�e

[(a(x) ·∇cl )cm +�∇cl ·∇cm]d�e

= |ae|
2�

(cos�e +cos�e
l )I a1(x)

lm + |ae|
2�

(sin�e +sin�e
l )I a2(x)

lm

+ 1

4�

[
(a�+a�l ) ·(a�+a�m )

]
I diff
lm , (65)

where

I ai (x)
lm ≡

∫ x j+1

x j

∫ y j+1

y j

ai (x)e
|ae |
2� (2cos�e+cos�e

l +cos�e
m )(x−xe

r,l−xe
r,m )

×e
|ae |
2� (2sin�e+sin�e

l +sin�e
m )(y−ye

r,l−ye
r,m ) dy dx, (66)
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for i =1,2, and

I diff
lm ≡

[∫ x j+1

x j

e
|ae |
2� (2cos�e+cos�e

l +cos�e
m )(x−xe

r,l−xe
r,m ) dx

]

×
[∫ y j+1

y j

e
|ae |
2� (2sin�e+sin�e

l +sin�e
m )(y−ye

r,l−ye
r,m ) dy

]
. (67)

The diffusion integral I diff
lm (67) can be evaluated analytically as it is simply the product of two

1D integrals of exponential functions. Analytic computation of the advection integrals I ai (x) (66)
depends on the form of a(x). For a polynomial ai (x), e.g. ai (x)= xmi yni for some integers mi and
ni , a recursive relation can be derived to compute (66) exactly with ease. In practice, a(x) is likely
to be available numerically—that is, at a discrete set of M points {xe

1, ...,xe
M }∈�e. In this case, a(x)

can be reconstructed by interpolating its discrete values at these points using standard Lagrange
polynomial interpolation within each element, making possible the analytic computation of (66).

5.3. Selection of reference points

Inside each element, the reference point (xe
r,i , ye

r,i ) first introduced in (26) is set to one of the
corners of the element as follows:

xe
r,i =

⎧⎨
⎩

max
x∈��e

x if cos�e +cos�e
i �0,

min
x∈��e

x if cos�e +cos�e
i <0,

ye
r,i =

⎧⎪⎨
⎪⎩

max
y∈��e

y if sin�e +sin�e
i �0,

min
y∈��e

y if sin�e +sin�e
i <0.

(68)

The only purpose of the reference point is to avoid floating point overflow by the evaluation
of otherwise very large floating point numbers on a finite precision arithmetic processor. The
reference points used for the evaluation of the Lagrange multiplier approximations (49) are set in
an analogous fashion.

6. NUMERICAL RESULTS

The performances of the DGM and DEM elements described in the previous section are assessed
for two different 2D linear variable-coefficient transport problems in which the advection field a(x)
is given in an analytical form. In both problems, the boundary conditions are prescribed so that
boundary layers form as �→0 (Pe→∞), making the solution of these problems by a standard
FEM inefficient. In both cases, the given domain � is discretized by uniform meshes of square
elements, the integrals (65)—and therefore the matrices and right hand-sides in (22)—are evaluated
analytically, and the performances of the considered DGM and DEM elements are contrasted with
those of their standard Galerkin comparables. The performances of the DGM element Q−4−1
and DEM element Q−5−1+ are also compared with that of the streamline upwind stabilized
bilinear finite element proposed in [3].

All reported solution errors are relative solution errors measured in the L2(�) broken norm. For
a solution produced by a DGM element with nE enrichment functions cE

e (x;�i ) and enrichment
dofs di , the square of this relative error can be written as

E2 =
∑nel

e=1 ‖∑nE

i=1 di cE
e (x;�i )|�e −cref(x)|�e |‖2

L2(�e)∑nel

e=1 ‖cref(x)|�e |‖2
L2(�e)

=
∑nel

e=1

{∫
�e

(∑nE

i=1 di cE
e (x;�i )−cref(x)

)2
d�e

}
∑nel

e=1

∫
�e c2

ref(x)d�e
, (69)
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Figure 9. L-shaped domain and rotating velocity field (curved lines indicate streamlines).

where cref(x) is a converged ‘reference’ solution computed using a sufficiently refined mesh. The
adoption here of a reference solution in lieu of an exact one is due to the fact that the exact
solutions of both BVPs considered in Sections 6.1 and 6.2 are unavailable. More specifically, the
reference solution is computed in both cases using the higher-order Galerkin element Q6 and a
uniform mesh with an element size h = 1

120 , and verified to be free from any spurious oscillation.

6.1. Inhomogeneous problem with a rotating advection field and an L-shaped domain

Here, the following inhomogeneous BVP defined on an L-shaped domain �= [(0,1)×
(0,1)]\[(0,0.5)×(0.5,1)] (Figure 9) is considered:

(1− y, x)T ·∇c(x)−��c(x)=1 in �= [(0,1)×(0,1)]\[(0,0.5)×(0.5,1)],

c=0 on ��.
(70)

The diffusivity constant is set to �=10−3 and therefore the Péclet number for this problem is
Pe=103. This problem is a variable-coefficient variant of an advection–diffusion problem that
was studied in [15, 39]. It is also similar to a benchmark problem that was used to evaluate the
performances of the RFB and Petrov–Galerkin stabilized methods in [1, 12], respectively. The
advection field is that of a rigid body rotation about the point (x, y)= (0,1).

The above problem is a stringent test for the advection–diffusion equation because its solution
presents an outflow boundary layer as well as a second boundary layer that terminates in the vicinity
of the reentrant corner (the point (x, y)= (0.5,0.5) in Figure 9). Because it is an inhomogeneous
problem, the DEM elements Q−5−1+, Q−9−2+, Q−13−3+ and Q−17−4+ are more suitable
for its discretization than their DGM counterparts. The performances of these elements obtained
for this problem are reported in Table IV for four different mesh resolutions. In each case, these
performances are contrasted with those of the standard Galerkin elements Q1, Q2, Q3 and Q4,
and that of the stabilized version of the finite element Q1. The results are tabulated by groups
of elements of comparable complexities. The reader can observe that in general, each considered
DEM element delivers for a given mesh an accuracy that is an order of magnitude better than that
of its standard Galerkin comparable. The DEM element Q−5−1+ is also found to outperform
the stabilized finite element Q1 [3] by a large margin.

Table V reports the convergence rates numerically deduced from the performance results reported
in Table IV. Each pair of elements (Q2, Q−9−2+), (Q3, Q−13−3+) and (Q4, Q−17−4+) are
found to have comparable convergence rate. However, Figure 10 shows that in each case, the DEM
element has the smallest error constant: for a given mesh size, it delivers a numerical solution
that is typically one order of magnitude more accurate than those produced by its standard and
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Table IV. Inhomogeneous problem defined on an L-shaped domain (Pe=103): relative solution errors.

Element 300 elements 1200 elements 2700 elements 10800 elements

Q1 4.91×101 2.28×10−1 1.46×10−1 6.33×10−2

Stabilized Q1 2.26×10−1 1.39×10−1 1.02×10−1 5.54×10−2

Q−5−1+ 1.29×10−1 3.87×10−2 2.16×10−2 7.36×10−3

Q2 2.02×10−1 9.13×10−2 5.44×10−2 1.90×10−2

Q−9−2+ 4.40×10−2 1.24×10−2 5.85×10−3 1.13×10−3

Q3 1.12×10−1 4.58×10−2 2.46×10−2 6.29×10−3

Q−13−3+ 3.10×10−2 6.85×10−3 2.10×10−3 2.24×10−4

Q4 6.89×10−2 2.45×10−2 1.13×10−2 1.92×10−3

Q−17−4+ 2.74×10−2 2.42×10−3 4.92×10−4 1.24×10−4

Table V. Inhomogeneous problem defined on an L-shaped domain (Pe=103): convergence rates.

Required # dofs to achieve
Element Convergence rate∗ the relative error of 10−2

Q1 1.44 139649
Stabilized Q1 1.16 198020
Q−5−1+ 1.55 21834

Q2 1.94 62721
Q−9−2+ 2.37 7568

Q3 2.67 33707
Q−13−3+ 3.23 5935

Q4 3.50 20796
Q−17−4+ 3.26 4802

∗The convergence rates reported in Table V for the standard Galerkin elements are slightly below the theoretical
rates associated with the L2 norm, because they are derived from numerical experiments and mesh resolutions
for which these elements have not reached asymptotic convergence.
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Figure 10. Inhomogeneous problem defined on an L-shaped domain (Pe=103): decrease of the relative
solution error with the mesh size.
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Figure 11. Thermal boundary layer problem: domain and boundary conditions.

stabilized Galerkin comparables. More specifically, the reader can observe that to achieve for this
problem the relative error of 0.1%:

• The DEM element Q−5−1+ requires 6.4 times fewer dofs than the Galerkin element Q1.
• The DEM element Q−9−2+ requires 8.3 times fewer dofs than the Galerkin element Q2.
• The DEM element Q−13−3+ requires 5.7 times fewer dofs than the Galerkin element Q3.
• The DEM element Q−17−4+ requires 4.3 times fewer dofs than the Galerkin element Q4.

These results demonstrate the computational superiority of the DEM methodology.
The performance results reported in Table V also reveal that increasing the number of enrichment

functions of a DEM element reduces the number of dofs needed for achieving a specified accuracy,
thereby illustrating the higher-order behavior of a DEM element with an increasing value of nE.

6.2. Thermal boundary layer problem

Next, the following variable-coefficient BVP, whose boundary conditions are illustrated in
Figure 11, is considered

(y, 0)T ·∇c(x)−��c(x)=0 in �= (0,1)2,

c(0, y)=1, 0�y�1,

c(1, y)= y, 0�y�1,

c(x,0)=1− x

�
, 0�x��,

c(x,0)=0, ��x�1,

c(x,1)=1, 0�x�1.

(71)

The parameter 0<�<<1 ensures that the above BVP is well-posed. It is set here to �= 1
10 . The

diffusivity constant is set to �=10−3, which sets the Péclet number to Pe=103. Variants of this
problem have been used to assess the performance of stabilized finite elements [9, 11, 12] and
other finite elements with enriched approximation spaces [35, 40]. This problem is referred to here
as a thermal boundary layer problem as it may be viewed as a model problem for the formation
of a pair of thermal boundary layers along the lower and outflow boundaries of a fully developed
shear flow between two parallel plates with the lower one fixed, and the upper one moving to the
right. In this context, c(x) represents the temperature at a point x∈�⊂R2. This BVP involves a
relatively simple variable advection field. However, its solution features both an outflow boundary
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Figure 12. Thermal boundary layer problem (Pe=103,h = 1
30 ): front views of the computed solutions: (a)

Galerkin element Q2; (b) DGM element Q−8−2; (c) Galerkin element Q3; (d) DGM element Q−12−3;
(e) Galerkin element Q4; and (f) DGM element Q−16−4.

layer at x =1, and a parabolic layer along y =0. As such, it is a challenging problem for standard
Galerkin elements (see Figures 12 and 13(a),(c),(e)).

Table VI reports the relative solution errors associated with the discretization of the above
problem by the DGM, DEM, and standard and stabilized Galerkin elements introduced at the
beginning of Section 6 using four different uniform meshes. In the first column of this table, n
denotes the number of elements in one direction. Therefore, the total number of elements is nel =n2

and the size of an element is h =1/n. Figures 12 and 13 display the front and rear views of the
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Figure 13. Thermal boundary layer problem (Pe=103,h = 1
30 ): rear views of the computed solutions: (a)

Galerkin element Q2; (b) DGM element Q−8−2; (c) Galerkin element Q3; (d) DGM element Q−12−3;
(e) Galerkin element Q4; and (f) DGM element Q−16−4.

standard Galerkin and DGM solutions, respectively. The following observations are noteworthy:

• Although the first-order DGM element Q−4−1 is outperformed by the DEM element Q−
5−1+, which has a slightly higher computational complexity, it outperforms both the standard
and stabilized Galerkin elements Q1 which have a comparable computational complexity.

• Despite the fact that the homogeneous problem considered here is a variable-coefficient
BVP and therefore locally equivalent to an inhomogeneous constant-coefficient problem (see
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Table VI. Thermal boundary layer problem (Pe=103): relative solution errors.

Element n =10 n =15 n =20 n =30

Q1 4.00e×10−1 1.16×10−1 9.47×10−2 5.74×10−2

Stabilized Q1 8.42×10−2 6.55×10−2 5.49×10−2 4.20×10−2

Q−4−1 6.48×10−2 4.97×10−2 3.79×10−2 2.25×10−2

Q−5−1+ 1.22×10−2 7.07×10−3 4.25×10−3 2.12×10−3

Q2 9.54×10−2 5.10×10−2 3.62×10−2 2.20×10−2

Q−8−2 2.10×10−2 9.37×10−3 4.43×10−3 1.50×10−3

Q−9−2+ 4.62×10−3 4.56×10−3 9.71×10−4 5.56×10−4

Q3 4.52×10−2 2.72×10−2 1.87×10−2 1.04×10−2

Q−12−3 5.55×10−3 3.98×10−3 8.38×10−4 5.19×10−4

Q−13−3+ 2.98×10−3 4.24×10−3 7.94×10−4 5.16×10−4

Q4 2.77×10−2 1.61×10−2 1.05×10−2 5.29×10−3

Q−16−4 3.73×10−3 4.03×10−3 7.56×10−4 4.99×10−4

Q−17−4+ 2.79×10−3 4.21×10−3 7.22×10−4 5.08×10−4

(39)–(41)), the DGM elements are found to become as effective as the DEM elements at
solving it when more enrichment functions are added to VE.

• In general, the DGM and DEM elements are found to deliver for a given mesh a significantly
better accuracy than their standard Galerkin comparables. When the number of enrichment
functions is increased, the higher-order DGM and DEM elements are shown to produce
numerical solutions that are an order of magnitude more accurate than those computed by
their standard higher-order Galerkin comparables.

• Whereas the solutions computed using the DGM and DEM discretizations are continuous
and smooth, those computed using the Galerkin discretizations—including the higher-order
ones—are fraught with spurious, non-physical oscillations near the outflow boundary (x =1).

7. SUMMARY AND CONCLUSIONS

The DEM enhances the standard piecewise polynomial approximation of the classical FEM by
non-conforming enrichment functions that are chosen among the free-space solutions of the homo-
geneous form of the PDE to be solved. DEM also introduces Lagrange multipliers at the element
boundaries to enforce there a weak form of the continuity of the computed solution. These two
characteristics of DEM allow it to achieve high convergence rates as the p-type FEM, but with
error constants that are orders of magnitude smaller.

When the PDE of interest is linear and has constant coefficients, its free-space solutions can
usually be obtained analytically, for example, using the method of separation of variables. In this
case, the Lagrange multipliers are approximated in a space that is closely related to the normal
derivatives of the enrichment functions along the element boundaries. For linear PDEs with variable
coefficients and whose free-space solutions are not available analytically, this paper proposes to
construct the enrichment functions as free-space solutions of a variant of the homogeneous form
of the governing PDE in which the coefficients are approximated in each element by constants
equal to their values at a given point—for example, the center point of the element. This approach
for extending the application of DEM to variable-coefficient PDEs is justifiable by a simple Taylor
expansion analysis. However, it typically results in element-dependent expressions of the enrich-
ment functions and therefore in discontinuous normal derivatives of these functions along the
element boundaries. For this reason, a second set of enrichment functions is considered in each
element for the sole purpose of constructing an edge-base (in two dimensions, or face-based in three
dimensions) dual space of local Lagrange multiplier approximations of an appropriate dimension.
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This second set is similar to the first one except for the fact that in the enrichment functions to be
used for the approximation of the Lagrange multipliers, the variable coefficients of the PDE are
approximated in this case on each edge or face of the mesh by constants equal to their values at
a given point—for example, the center point of the edge or face. The normal derivatives of such
enrichment functions are uniquely defined on their geometrical support and therefore are suitable
for constructing an effective dual space of Lagrange multiplier approximations. Whereas all of
these ideas are fully developed in this paper in the context of the 2D variable-coefficient advection–
diffusion equation, they are equally applicable to any other linear PDE with variable coefficients. To
demonstrate their effectiveness, several DEM elements with and without the polynomial component
of the approximation have been designed using the aforementioned discretization concepts for the
2D variable-coefficient advection–diffusion equation and applied to the solution of two benchmark
transport problems in the high Péclet number regime: an inhomogeneous BVP with a rotating
advection field defined on an L-shaped domain, and a homogeneous boundary layer that serves as a
model for the formation of a pair of thermal boundary layers in a fully developed shear flow between
two parallel plates. It is found that discretizations by the DEM and DGM elements require far fewer
dofs to achieve a certain accuracy than discretizations by the standard and stabilized Galerkin finite
elements of comparable computational complexity and convergence rate. More specifically, it is
found that for the inhomogeneous problem at Pe=103, the DEM elements Q−5−1+, Q−9−2+,
Q−13−3+, and Q−17−4+ reduce the total number of dofs required by the finite element
discretizations based on the Q1, Q2, Q3 and Q4 elements to achieve a relative error of 1% by
factors equal to 6.4, 8.3, 5.7 and 4.3, respectively. For the homogeneous benchmark problem, it is
found that for a given mesh, the DGM elements Q−8−2, Q−12−3, and Q−16−4 deliver an
order of magnitude better accuracy than the higher-order standard Galerkin elements Q2, Q3, and
Q4 which have comparable computational complexity and convergence rate, respectively. More
importantly, it is observed that the solutions computed using the DGM and DEM discretizations
are continuous and smooth, whereas those computed using the Galerkin discretizations—including
the higher-order ones—are fraught with spurious, non-physical oscillations near the outflow
boundary.
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37. Babuška I. The finite element method with Lagrange multipliers. Numerical Mathematics 1973; 20:179–192.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:309–335
DOI: 10.1002/nme



A DEM FOR VARIABLE-COEFFICIENT ADVECTION–DIFFUSION 335

38. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer New York Inc.: New York, NY,
1991.

39. Franca LP, Hwang FN. Refining the submesh strategy in the two-level finite element method: application to the
advection–diffusion equation. International Journal for Numerical Methods in Engineering 2002; 39:161–187.

40. Franca LP, Oliveira SP. Resolving boundary layers with the discontinuous enrichment method. Center for
Computational Mathematics (CCM) Report, University of Colorado, May 2003.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:309–335
DOI: 10.1002/nme


