Communication-Optimal Parallel Algorithm for Strassen’s Matrix Multiplication

Grey Ballard, James Demmel, Benjamin Lipshitz and Oded Schwartz

Sandia National Labs
UC Berkeley

Simons Institute Workshop
October 22, 2013

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, and Samsung. Research is also supported by DOE grants DE-SC0003959, DE-SC0004938, and DE-AC02-05CH11231 and by the National Science Foundation under agreement DMS-0635607.
The Plan

- I’ll present a new parallel algorithm based on Strassen’s matrix multiplication, called Communication Avoiding Parallel Strassen

- The new Strassen-based parallel algorithm CAPS
 - is communication optimal
 - matches the lower bounds [B., Demmel, Holtz, Schwartz, ‘11]
 - is faster: in theory and in practice

- I’ll also show performance results and talk about practical considerations for using Strassen and CAPS

- Strassen’s algorithm is not just a theoretical idea: it can be practical in parallel and deserves further exploration
Outline

1. Motivation
2. Lower Bounds
3. Algorithms
4. Performance
5. Practical Considerations
Motivation: Strassen’s fast matrix multiplication (1969)

Strassen’s original algorithm uses 7 multiplies and 18 adds for $n = 2$. Most importantly, it can be applied recursively.

\[
\begin{align*}
Q_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\
Q_2 &= (A_{21} + A_{22}) \cdot B_{11} \\
Q_3 &= A_{11} \cdot (B_{12} - B_{22}) \\
Q_4 &= A_{22} \cdot (B_{21} - B_{11}) \\
Q_5 &= (A_{11} + A_{12}) \cdot B_{22} \\
Q_6 &= (A_{21} - A_{11}) \cdot (B_{11} + B_{12}) \\
Q_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22})
\end{align*}
\]

\[
\begin{align*}
C_{11} &= Q_1 + Q_4 - Q_5 + Q_7 \\
C_{12} &= Q_3 + Q_5 \\
C_{21} &= Q_2 + Q_4 \\
C_{22} &= Q_1 - Q_2 + Q_3 + Q_6
\end{align*}
\]

\[
F(n) = 7 \cdot F(n/2) + O(n^2)
\]

\[
F(n) = \Theta \left(n^{\log_2 7} \right)
\]

\[
\log_2 7 \approx 2.81
\]
Motivation: communication costs

Two kinds of costs:

- Arithmetic (FLOPs)
- Communication: moving data
 - between levels of a memory hierarchy (sequential case)
 - over a network connecting processors (parallel case)
- Communication will only get more expensive relative to arithmetic
Motivation: communication costs

\[\gamma = \text{time per FLOP} \]
\[\beta = \text{time per word} \]
\[\alpha = \text{time per message} \]

\[F = \#\text{Flops} \]
\[BW = \#\text{Words} \]
\[L = \#\text{Messages} \]

Running time = \[\gamma \cdot F + \beta \cdot BW + \alpha \cdot L \]
Outline

1. Motivation

2. Lower Bounds

3. Algorithms

4. Performance

5. Practical Considerations
Communication lower bounds for matrix multiplication

Classical (cubic):

\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} M \right) \]

[Hong & Kung 81]
- Combinatorial proof
- Sequential only

[Irony, Toledo, Tiskin 04]
- Geometric proof
- Sequential and parallel

\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} \frac{M}{P} \right) \]

\(n \) = matrix dimension, \(M \) = fast/local memory size, \(P \) = number of processors
Communication lower bounds for matrix multiplication

[B., Demmel, Holtz, Schwartz 11]:
- Sequential and parallel
- Graph expansion proof

Strassen:
\[
\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} M \right)
\]

Classical (cubic):
\[
\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} M \right)
\]

\[
\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} \frac{M}{P} \right)
\]

\[
\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} \frac{M}{P} \right)
\]

\[n = \text{matrix dimension, } M = \text{fast/local memory size, } P = \text{number of processors}\]
Communication lower bounds for matrix multiplication

[B., Demmel, Holtz, Schwartz 11]:

- Sequential and parallel
- Graph expansion proof

Strassen: \[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} M \right) \]

Strassen-like: \[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\omega_0} M \right) \]

Classical (cubic): \[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} M \right) \]

\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} \frac{M}{P} \right) \]

\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\omega_0} \frac{M}{P} \right) \]

\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} \frac{M}{P} \right) \]

\(n = \) matrix dimension, \(M = \) fast/local memory size, \(P = \) number of processors
Communication lower bounds for matrix multiplication

Strassen:

$$\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} M \right)$$

$$\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} \frac{M}{P} \right)$$

Classical (cubic):

$$\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} M \right)$$

$$\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} \frac{M}{P} \right)$$

$n = \text{matrix dimension}, \; M = \text{fast/local memory size}, \; P = \text{number of processors}$
Communication lower bounds for matrix multiplication

Strassen:

Sequential
\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} M \right) \]

Distributed
\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} \frac{M}{P} \right) \]

Distributed
\[\Omega \left(\frac{n^2}{P^2/\log_2 7} \right) \]

Classical (cubic):

\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} M \right) \]

\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} \frac{M}{P} \right) \]

\[\Omega \left(\frac{n^2}{P^2/\log_2 8} \right) \]

Memory independent bound [B., Demmel, Holtz, Lipshitz, Schwartz 12]
Communication lower bounds for matrix multiplication

Algorithms attaining these bounds?

Strassen:

- Sequential: $\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} M \right)$
- Distributed: $\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} \frac{M}{P} \right)$

Classical (cubic):

- Distributed: $\Omega \left(\frac{n^2}{P^2 / \log_2 8} \right)$

$n = \text{matrix dimension}, \ M = \text{fast/local memory size}, \ P = \text{number of processors}$
Communication lower bounds for matrix multiplication

Algorithms attaining these bounds?

Strassen:
\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} M \right) \]

Classical (cubic):
\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} M \right) \]

\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} \frac{M}{P} \right) \]

\[\Omega \left(\frac{n^2}{P^2 / \log_2 7} \right) \]

\[\Omega \left(\frac{n^2}{P^2 / \log_2 8} \right) \]

\(n \) = matrix dimension, \(M \) = fast/local memory size, \(P \) = number of processors
Communication lower bounds for matrix multiplication

Algorithms attaining these bounds?

Strassen:

\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} M \right) \]

Classical (cubic):

\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} M \right) \]

\[\Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} \frac{M}{P} \right) \]

Our new algorithm

\[\Omega \left(\frac{n^2}{P^2/\log_2 8} \right) \]

\(n = \) matrix dimension, \(M = \) fast/local memory size, \(P = \) number of processors
Don’t use a classical algorithm for the communication

- Strassen can communicate less than classical

Strassen: $\Omega\left(\left(\frac{n}{\sqrt{M}}\right)^{\log_2 7} \frac{M}{P}\right)$

Classical: $\Omega\left(\left(\frac{n}{\sqrt{M}}\right)^{\log_2 8} \frac{M}{P}\right)$
Lessons from lower bounds

1 Don’t use a classical algorithm for the communication

- Strassen can communicate less than classical

\[
\begin{align*}
\text{Strassen: } & \Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} \frac{M}{P} \right) \\
\text{Classical: } & \Omega \left(\left(\frac{n}{\sqrt{M}} \right)^{\log_2 8} \frac{M}{P} \right)
\end{align*}
\]

2 Use all available memory

- Communication bound decreases with increased memory
- Up to a factor of \(O(P^{1-2/\log_2 7}) \) extra memory is useful

\[
\text{Strassen: } \Omega \left(\max \left\{ \left(\frac{n}{\sqrt{M}} \right)^{\log_2 7} \frac{M}{P}, \frac{n^2}{P^{2/\log_2 7}} \right\} \right)
\]
Outline

1 Motivation

2 Lower Bounds

3 Algorithms

4 Performance

5 Practical Considerations
Here's the basic communication pattern for the classical “2D” algorithm:
Here’s the basic communication pattern for the classical “2D” algorithm:

- **2D**: think Cannon or SUMMA
 [Cannon 69, van de Geijn & Watts 97]
- **2.5D**: think reduced communication by using more memory
 [Solomonik & Demmel 11]
Previous parallel Strassen-based algorithms

2D-Strassen: [Luo & Drake 95]
- Run classical 2D inter-processors.
 - Same communication costs as classical 2D.
- Run Strassen locally.
 - Can’t use Strassen on the full matrix size.
Previous parallel Strassen-based algorithms

2D-Strassen: [Luo & Drake 95]
- Run classical 2D inter-processors.
 - Same communication costs as classical 2D.
- Run Strassen locally.
 - Can’t use Strassen on the full matrix size.

Strassen-2D: [Luo & Drake 95; Grayson, Shah, van de Geijn 95]
- Run Strassen inter-processors
 - This part can be done without communication.
- Then run classical 2D.
 - Communication costs grow exponentially with the number of Strassen steps.
Previous parallel Strassen-based algorithms

2D-Strassen: [Luo & Drake 95]
- Run classical 2D inter-processors.
 - Same communication costs as classical 2D.
- Run Strassen locally.
 - Can’t use Strassen on the full matrix size.

Strassen-2D: [Luo & Drake 95; Grayson, Shah, van de Geijn 95]
- Run Strassen inter-processors
 - This part can be done without communication.
- Then run classical 2D.
 - Communication costs grow exponentially with the number of Strassen steps.

Neither is communication optimal, even if you use 2.5D
Main idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first traversal of the recursion tree

Breadth-First-Search (BFS)

- Runs all 7 multiplies in parallel
 - each uses $P/7$ processors
- Requires 7/4 as much extra memory
- Requires communication, but
- All BFS minimizes communication if possible

Depth-First-Search (DFS)

- Runs all 7 multiplies sequentially
 - each uses all P processors
- Requires 1/4 as much extra memory
- No immediate communication
- Increases bandwidth by factor of 7/4
- Increases latency by factor of 7
The memory and communication costs of all \(\binom{10}{5} = 252 \) possible interleavings of BFS and DFS steps for multiplying matrices of size \(n = 351,232 \) on \(P = 7^5 = 16,807 \) processors using 10 Strassen steps.
Asymptotic costs analysis

<table>
<thead>
<tr>
<th></th>
<th>Flops</th>
<th>Bandwidth Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bound</td>
<td>$\frac{n^\log_2 7}{P}$</td>
<td>$\max \left{ \frac{n^\log_2 7}{PM^{(\log_2 7)/2-1}}, \frac{n^2}{P^{2/\log_2 7}} \right}$</td>
</tr>
<tr>
<td>Strassen</td>
<td>$\frac{n^\log_2 7}{P(\log_2 7-1)/2}$</td>
<td>$\frac{n^2}{P^{1/2}}$</td>
</tr>
<tr>
<td>2D-Strassen</td>
<td>$(\frac{7}{8})^\ell \frac{n^3}{P}$</td>
<td>$(\frac{7}{4})^\ell \frac{n^2}{P^{1/2}}$</td>
</tr>
<tr>
<td>Strassen-2D</td>
<td>$\frac{n^\log_2 7}{P}$</td>
<td>$\max \left{ \frac{n^\log_2 7}{P^{2/\log_2 7}}, \frac{n^2}{P^{2/\log_2 7}} \right}$</td>
</tr>
<tr>
<td>CAPS</td>
<td>$\frac{n^\log_2 7}{P}$</td>
<td>$\max \left{ \frac{n^\log_2 7}{PM^{(\log_2 7)/2-1}}, \frac{n^2}{P^{2/\log_2 7}} \right}$</td>
</tr>
<tr>
<td>Class</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grey Ballard
Asymptotic costs analysis

<table>
<thead>
<tr>
<th></th>
<th>Flops</th>
<th>Bandwidth Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{n^{\log_2 7}}{P}$</td>
<td>$\max \left{ \frac{n^{\log_2 7}}{PM^{(\log_2 7)/2 - 1}}, \frac{n^2}{P^{2/\log_2 7}} \right}$</td>
</tr>
<tr>
<td>Strassen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D-Strassen</td>
<td>$\frac{n^{\log_2 7}}{P^{(\log_2 7 - 1)/2}}$</td>
<td>$\frac{n^2}{P^{1/2}}$</td>
</tr>
<tr>
<td>Strassen-2D</td>
<td>$(\frac{7}{8})^{\ell} \frac{n^3}{P}$</td>
<td>$(\frac{7}{4})^{\ell} \frac{n^2}{P^{1/2}}$</td>
</tr>
<tr>
<td>CAPS</td>
<td>$\frac{n^{\log_2 7}}{P}$</td>
<td>$\max \left{ \frac{n^{\log_2 7}}{PM^{(\log_2 7)/2 - 1}}, \frac{n^2}{P^{2/\log_2 7}} \right}$</td>
</tr>
<tr>
<td>Classical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>$\frac{n^3}{P}$</td>
<td>$\max \left{ \frac{n^3}{PM^{1/2}}, \frac{n^2}{P^{2/3}} \right}$</td>
</tr>
<tr>
<td>2D</td>
<td>$\frac{n^3}{P}$</td>
<td>$\frac{n^2}{P^{1/2}}$</td>
</tr>
<tr>
<td>2.5D</td>
<td>$\frac{n^3}{P}$</td>
<td>$\max \left{ \frac{n^3}{PM^{1/2}}, \frac{n^2}{P^{2/3}} \right}$</td>
</tr>
</tbody>
</table>
Outline

1. Motivation
2. Lower Bounds
3. Algorithms
4. Performance
5. Practical Considerations
Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), $n = 65,856$.

![Graph showing performance of different algorithms on Intrepid. The x-axis represents the number of cores, ranging from 10^2 to 10^4. The y-axis represents effective performance as a fraction of peak. The graph compares CAPS, 2.5D-Strassen, 2D-Strassen, Strassen-2D, and 2D algorithms. The effective performance decreases as the number of cores increases, indicating strong-scaling behavior. There is a shaded area highlighting the strong-scaling range. The graph also mentions Strassen-Winograd peak.]
Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), \(n = 65,856 \).

![Graph showing strong-scaling results for CAPS and other algorithms on Intrepid. The graph compares effective performance as a fraction of peak against the number of cores, highlighting the strong-scaling range.]

- **CAPS**
- **2.5D-Strassen**
- **2D-Strassen**
- **Strassen-2D**
- **2.5D**
- **2D**

The graph indicates that CAPS outperforms other algorithms in the strong-scaling range, especially as the number of cores increases.
Comparison of the parallel models with the algorithms in strong scaling of matrix dimension $n = 65,856$ on Intrepid.
Performance of CAPS on large problems

Strong-scaling on Hopper (Cray XE6), $n = 131,712$.

The diagram shows the effective performance as a fraction of peak for different algorithms: CAPS, 2.5D-Strassen, 2D-Strassen, Strassen-2D, and 2D, across a range of number of cores. The strong-scaling range is indicated by the shaded area.
Performance of CAPS on small (comm-bound) problems

Strong-scaling on Intrepid (left) and Hopper (right), $n = 4704$.

![Graphs showing strong-scaling results on Intrepid and Hopper, with execution times and number of cores on a log-log scale. The graphs compare CAPS, 2D-Strassen, and Strassen-2D algorithms.](image-url)
Practical Considerations for Strassen

1. Harder to reach actual peak performance
 - computation to communication ratio smaller than classical

2. Additions and multiplications are no longer balanced

3. Architectures are based on powers of 2 not 7
 - CAPS prefers $P = m \cdot 7^k$
 - Intrepid requires allocation of power of two number of nodes

4. Stability bounds are not as strong as for classical
Stability - why you shouldn’t worry

- CAPS has the same stability properties as any other Strassen (Strassen-Winograd) algorithm
- Weaker stability guarantee than classical, but still norm-wise stable
 - This can be improved with techniques like diagonal scaling
Stability - why you shouldn’t worry

- CAPS has the same stability properties as any other Strassen (Strassen-Winograd) algorithm

- Weaker stability guarantee than classical, but still norm-wise stable
 - This can be improved with techniques like diagonal scaling

- Taking fewer Strassen steps improves the bound

- Theoretical bounds are pessimistic in the typical case

![Graph showing the comparison between theoretical and actual max-norm error as a function of the number of Strassen steps. The graph includes theoretical bounds and actual data points, showing a decrease in error with fewer steps.](image-url)

Grey Ballard
The CAPS matrix multiplication algorithm

1. is communication optimal

2. is faster: in theory and in practice

3. can be practical and should be used and improved
Communication-Optimal Parallel Algorithm for Strassen’s Matrix Multiplication

Grey Ballard, James Demmel, Benjamin Lipshitz and Oded Schwartz

Thank You!

www.eecs.berkeley.edu/~ballard
http://bebop.cs.berkeley.edu
Extra slides

1. Performance: Model vs Actual
2. Time breakdown
3. DFS vs BFS
4. BFS on 7 Processors
5. Sequential Performance
6. Data Layout
7. Strassen-Winograd Algorithm
8. Actual vs Effective Performance
9. Small problem on Franklin
10. Big problem on Franklin
11. Diagonal Scaling
12. Open Problems
Efficiency at various numbers of Strassen steps, $n = 21952$, on 49 nodes (196 cores) of Intrepid.
Communication-Free DFS

Possible if each processor owns corresponding entries of four submatrices of A, B, and C. [Luo & Drake 95; Grayson, Shah, van de Geijn 95]

- Additions of submatrices of A to form the T_i (no communication)
- Additions of submatrices of B to form the S_i (no communication)
- Recursive calls $Q_i = T_i \cdot S_i$ (communication deeper in recursion tree)
- Additions of the Q_i to form submatrices of C (no communication)
Communication Pattern of BFS

- Additions of submatrices of A, B to form T_i, S_i (**no communication**)
- Redistribution of the T_i, S_i (**communication**)
- Recursive calls $Q_i = T_i \cdot S_i$ (**communication deeper in recursion tree**)
- Redistribution of the Q_i (**communication**)
- Additions of the Q_i to form submatrices of C (**no communication**)

Redistributions are disjoint 7-way all-to-all communications.
BFS on 7 Processors

Requires 3 all-to-all communications, one for each of A, B, C

local additions

communication

local multiplications

local additions

communication

local additions

communication

local additions

communication

Comparison of the sequential model to the actual performance of classical and Strassen matrix multiplication on four cores (one node) of Intrepid.

Time breakdown comparison between the sequential model and the data for $n = 4097$. Both model and data times are normalized to the modeled classical algorithm time.
Data Layout
Strassen-Winograd Algorithm

\[
\begin{pmatrix}
 C_{11} & C_{12} \\
 C_{21} & C_{22}
\end{pmatrix} = C = A \cdot B = \begin{pmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{pmatrix} \cdot \begin{pmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{pmatrix}
\]

\[
S_0 = A_{11} \quad T_0 = B_{11} \quad Q_i = S_i \cdot T_i \quad U_1 = Q_i + Q_4
\]
\[
S_1 = A_{12} \quad T_1 = B_{21} \quad U_2 = U_1 + Q_5
\]
\[
S_2 = A_{21} + A_{22} \quad T_2 = B_{12} + B_{11} \quad U_3 = U_1 + Q_5
\]
\[
S_3 = S_2 - A_{12} \quad T_3 = B_{22} - T_2 \quad C_{11} = Q_1 + Q_2
\]
\[
S_4 = A_{11} - A_{21} \quad T_4 = B_{22} - B_{12} \quad C_{12} = U_3 + Q_6
\]
\[
S_5 = A_{12} + S_3 \quad T_5 = B_{22} \quad C_{21} = U_2 - Q_7
\]
\[
S_6 = A_{22} \quad T_6 = T_3 - B_{21} \quad C_{22} = U_2 + Q_3
\]
Performance Breakdown: Model vs Actual

Time breakdown comparison between the parallel model and data on Intrepid. In each case the entire modeled execution time is normalized to 1.
Performance on Franklin for small problem

$n = 3136$ on Franklin

Execution time, seconds vs. Number of Cores

Grey Ballard
Performance of CAPS on large problem

Strong-scaling on Franklin (Cray XT4), \(n = 94,080 \).
Sequential recursive Strassen is communication optimal

- Run Strassen algorithm recursively.
- When blocks are small enough, work in local memory, so no further bandwidth cost

\[W(n, M) = \begin{cases}
7W\left(\frac{n}{2}, M\right) + O(n^2) & \text{if } 3n^2 > M \\
O(n^2) & \text{otherwise}
\end{cases} \]

- Solution is

\[W(n, M) = O\left(\frac{n^{\omega_0}}{M^{\omega_0/2-1}}\right) \]
Diagonal Scaling

Outside scaling:

- Scale so each row of A and each column of B has unit norm.
- Explicitly:
 - Let $D^A_{ii} = (\|A(i,:)\|)^{-1}$, and $D^B_{jj} = (\|B(:,j)\|)^{-1}$.
 - Scale $A' = D^A A$, and $B' = B D^B$.
 - Use Strassen for the product $C' = A' B'$.
 - Unscale $C = (D^A)^{-1} C' (D^B)^{-1}$.
Diagonal Scaling

Outside scaling:

- Scale so each row of A and each column of B has unit norm.
- Explicitly:
 - Let $D^A_{ii} = (\|A(i,:)\|)^{-1}$, and $D^B_{jj} = (\|B(:,j)\|)^{-1}$.
 - Scale $A' = D^A A$, and $B' = B D^B$.
 - Use Strassen for the product $C' = A' B'$.
 - Unsacle $C = (D^A)^{-1} C' (D^B)^{-1}$.

Inside scaling:

- Scale so each column of A has the same norm as the corresponding row of B.
- Explicitly:
 - Let $D_{ii} = (\|A(:,i)\|/\|B(i,:)\|)^{-1/2}$.
 - Scale $A' = A D$, and $B' = D^{-1} B$.
 - Use Strassen for the product $C = A' B'$.
Stability: easy case

\[\frac{\max_{ij} |\hat{C}_{ij} - C_{ij}|}{|A| \cdot |B|_{ij}} \]

\[
\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}
\]
Stability: more interesting case

\[
\max_{i,j} \left| \frac{\hat{C}_{ij} - C_{ij}}{|A| \cdot |B|_{ij}} \right|
\]

\[
\left(\begin{array}{cc}
\epsilon & \epsilon \\
1 & 1
\end{array} \right) \cdot \left(\begin{array}{cc}
1 & \epsilon^{-1} \\
1 & 1
\end{array} \right)
\]
Stability: problems scaling can’t fix

\[
\max_j \left| \frac{\hat{C}_{ij} - C_{ij}}{|A| |B|_{ij}} \right|
\]

Number of Strassen Steps

<table>
<thead>
<tr>
<th>No scaling</th>
<th>Outer</th>
<th>Inner</th>
<th>Outer-Inner</th>
<th>Inner-Outer</th>
</tr>
</thead>
</table>

\[
\begin{pmatrix} 1 & \epsilon^{-1} \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & \epsilon^{-1} \\ 1 & 1 \end{pmatrix}
\]
Our parallelization approach extends to other matrix multiplication algorithms:

- classical matrix multiplication (matching the 2.5D algorithm)
- other fast matrix multiplication algorithms

And to other algorithms with recursive formulations?

Make use of CAPS within other linear algebra algorithms
Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), \(n = 65,856 \).

![Graph showing strong-scaling performance](image-url)
Comparison of the parallel models with the algorithms in strong scaling of matrix dimension $n = 65,856$ on Intrepid.
Extra slides

1. Performance: Model vs Actual
2. Time breakdown
3. DFS vs BFS
4. BFS on 7 Processors
5. Sequential Performance
6. Data Layout
7. Strassen-Winograd Algorithm
8. Actual vs Effective Performance
9. Small problem on Franklin
10. Big problem on Franklin
11. Diagonal Scaling
12. Open Problems