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Summary

Parallel sparse matrix-matrix multiplication is an irregular
computation whose performance is communication bound

Hypergraph partitioning can relate parallelization schemes to
communication costs

Using hypergraphs, we obtain theoretical communication lower
bounds and practical algorithmic insight for parallel sparse
matrix-matrix multiplication
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Sparse matrix-matrix multiplication (SpGEMM)
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Geometric view of the computation
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Communication hypergraphs and hypergraph partitioning

Hypergraphs consist of vertices and nets, or sets of vertices (of any size)

for undirected graphs, nets are sets of exactly two vertices

For our purposes:

vertices correspond to computation
nets correspond to data

p1 p2
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SpGEMM’s hypergraph
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Vertices correspond to computation (nonzero multiplication)

Nets correspond to data (nonzero entries)
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SpGEMM’s hypergraph

Vertices correspond to computation (nonzero multiplication)
Nets correspond to data (nonzero entries)
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Main theoretical result

Theorem

The communication cost of SpGEMM using p processors is at least

min
{V1,...,Vp}∈P

max
i∈[p]

{# cut nets with vertices in Vi} ,

where P is the set of all sufficiently load-balanced partitions.

Proof.

The hypergraph models communication perfectly.
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Main practical result
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Hypergraph partitioning software can estimate lower bound

Key application of SpGEMM: algebraic multigrid triple product

compute Ac = PTAf P using two calls to SpGEMM
we analyze a model problem (off-line)



Main practical result

Af · P PT · (Af P)
N p standard hypergraph standard hypergraph

19,683 27 5,528 4,649 10,712 964
91,125 125 5,528 5,823 10,712 1,324

250,047 343 5,528 6,160 10,712 1,444
531,441 729 5,528 6,914 10,712 1,491
970,299 1,331 5,528 6,679 10,712 1,548

Table: Comparison of standard algorithm with best hypergraph partition
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Hypergraph partitioning software can estimate lower bound

Key application of SpGEMM: algebraic multigrid triple product

compute Ac = PTAf P using two calls to SpGEMM
we analyze a model problem (off-line)
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A. Buluç and J. R. Gilbert.

Parallel sparse matrix-matrix multiplication and indexing: implementation and experiments.
SISC, 34(4):C170–C191, 2012.

Grey Ballard, Jonathan Hu, and Christopher Siefert.

Reducing communication costs for sparse matrix multiplication within algebraic multigrid.
Technical Report SAND2015-3275, Sandia Natl. Labs., 2015.
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