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Abstract
Algorithms have historically been evaluated in terms of the 
number of arithmetic operations they performed. This anal-
ysis is no longer sufficient for predicting running times on 
today’s machines. Moving data through memory hierarchies 
and among processors requires much more time (and energy) 
than performing computations. Hardware trends suggest that 
the relative costs of this communication will only increase. 
Proving lower bounds on the communication of algorithms 
and finding algorithms that attain these bounds are therefore 
fundamental goals. We show that the communication cost of 
an algorithm is closely related to the graph expansion proper-
ties of its corresponding computation graph.

Matrix multiplication is one of the most fundamental 
problems in scientific computing and in parallel comput-
ing. Applying expansion analysis to Strassen’s and other 
fast matrix multiplication algorithms, we obtain the first 
lower bounds on their communication costs. These bounds 
show that the current sequential algorithms are optimal but 
that previous parallel algorithms communicate more than 
necessary. Our new parallelization of Strassen’s algorithm 
is communication-optimal and outperforms all previous 
matrix multiplication algorithms.

1. INTRODUCTION
Communication (i.e., moving data) can greatly dominate 
the cost of an algorithm, whether the cost is measured in 
running time or in total energy. This holds for moving data 
between levels of a memory hierarchy or between processors 
over a network. Communication time per data unit varies by 
orders of magnitude, from order of 10−9 seconds for an L1 
cache reference to order of 10−2 seconds for disk access. The 
variation can be even more dramatic when communication 
occurs over networks or the internet. In fact, technological 
trends16, 17 are making communication costs grow exponen-
tially over time compared to arithmetic costs. Moore’s Law 
is making arithmetic on a chip improve at about 60% per 
year, but memory and network bandwidth is improving at 
only 26% and 23% per year.16 So even in cases where commu-
nication is not the bottleneck today, it may be in the future.

Ideally, we would be able to determine lower bounds on the 
amount of required communication for important problems 
and design algorithms that attain them, namely, algorithms 
that are communication-optimal. These dual problems have 
long attracted researchers, with one example being classi-
cal Θ(n3) matrix multiplication (see further details below), 
with lower bounds proved in Hong and Kung18 and Irony 
et al.20 and many optimal sequential and parallel algorithms 
obtained in, for example, Agarwal et al.1 and Cannon11.

These lower bounds have recently been extended to a 
large class of other classical linear algebra problems, includ-
ing linear system solving, least squares, and eigenvalue 
problems, for dense and sparse matrices, and for sequential 
and parallel machines.9 Surprisingly, the highly optimized 
algorithms in widely implemented libraries like LAPACK 
and ScaLAPACK3 often do not attain these lower bounds, 
even in the asymptotic sense. This has led to much recent 
work inventing new, faster algorithms that do; see the cita-
tions in Ballard et al.9, 10 for references.

In this paper, we describe a novel approach to prove 
the first communication lower bounds for Strassen’s 
Θ(nlog2 7) matrix multiplication algorithm, as well as 
many similar fast algorithms. Specifically, we introduce 
expansion analysis of the computational graphs of the 
algorithms and show that the expansion helps deter-
mine the communication cost. These communication 
cost bounds are lower than those of classical matrix 
multiplication: this means that not only does Strassen’s 
algorithm reduce computation, but it also creates an 
opportunity for reducing communication. In addition, 
the lower bound decreases as the amount of available 
memory grows, suggesting that using extra memory may 
also allow for faster algorithms.

In fact, there is an optimal parallel algorithm that attains 
our lower bounds for varying amounts of memory, whose 
performance exceeds all other known matrix multiplication 
implementations, classical or Strassen-based, on a large 
parallel machine,6 see Figure 1. In the rest of this paper, we 
focus on explaining our new lower bounds for Strassen’s 
algorithm and their implications.

1.1. Communication models
In order to analyze the communication costs of algorithms, 
we consider idealized memory and communication models. 
In the sequential case (see Figure 2), we consider a machine 
with two levels of memory hierarchy: a fast memory of size 
M words (where computation is performed) and a slow 
memory of infinite size. We assume that the input initially 
resides in slow memory and is too large to fit in fast memory. 
We define the communication cost of a sequential algorithm 

The original version of this paper is entitled “Graph 
Expansion and Communication Costs of Fast Matrix 
Multiplication” and was first published in the Proceedings 
of the 2011 ACM Symposium on Parallelism in Algorithms 
and Architectures and also appeared in the December 
2012 issue of the Journal of the ACM.
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multiplication, resulting in a total communication cost of 
Θ(n3). A natural question to ask is: can we do better?

Algorithm 1 Naive Classical Matrix Multiplication

1:  for i = 1 to n do
2:    for j = 1 to n do
3:	 for k = 1 to n do
4:	 Ci j = Ci j + Ai k · Bk j

The answer is yes. We can reduce communication by 
using a “blocked” algorithm (see Algorithm 2). The idea is 
to partition A, B, and C into square blocks of size b × b so 
that three blocks can simultaneously fit in the fast memory. 
We use the notation C[I, J   ] to refer to the (I, J   )th b × b block of 
the C matrix. When C[I, J   ], A[I, K   ], and B[K, J   ] are all in fast 
memory, then the inner loop of the algorithm (correspond-
ing to (b3) arithmetic operations) can be performed with no 
more communication.

Algorithm 2 Blocked Classical Matrix Multiplication

1:  for I = 0 to n/b do
2:    for J = 0 to n/b do
3:	 for K = 0 to n/b do
4:	 C[I, J   ] = C[I, J   ] + A[I, K   ] · B[K, J  ]

If we pick the maximum block size of , this results 
in a total of  block operations, each requiring (M) 
words to be communicated. Hence, the total communica-
tion cost is , a factor of  better than that of 
the naive algorithm.

The typical performance difference between the naive 
and blocked algorithms on a sequential machine is an order 
of magnitude. With the blocked algorithm, attained per-
formance is close to the peak capabilities of the machine. 
Again, the question arises: can we do better? Can we further 
reorder these computations to communicate less?

If we insist on performing the (n3) arithmetic operations 
given by the classical formulation, the answer is no. Hong 
and Kung18 proved a communication cost lowerbound of 

 for any reordering, showing that the blocked 
algorithm is communication-optimal. But this is not the 
end of the story: this communication optimality of the 
blocked algorithm assumes (n3) arithmetic operations.

1.3. Strassen’s matrix multiplication
While the classical algorithms for matrix multiplication 
have already been optimized for reducing communication 
cost to the minimum possible, a completely different algo-
rithmic approach for this problem is possible. Let us recall 
Strassen’s algorithm24 (see Algorithm 3).

Strassen’s key idea is to multiply 2 × 2 matrices using seven 
scalar multiplies instead of eight. Because n × n matrices can 
be divided into quadrants, Strassen’s idea applies recursively. 
Each of the seven quadrant multiplications is computed 
recursively, and the computational cost of additions and sub-
tractions of quadrants is (n2). Thus, the recurrence for the flop 
count is F (n) = 7F (n/2) + (n2) with base case F (1) = 1, which 
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to be the total number of words transferred between the 
slow and fast memories.

In the parallel case (see Figure 2), we consider p proces-
sors, each with a local memory of size M, connected over a 
network. In this case, the communication cost is the num-
ber of words transferred between processors, counted along 
the critical path of the algorithm. That is, two words that are 
communicated simultaneously between separate pairs of 
processors are counted only once.

1.2. Classical matrix multiplication
To illustrate the effects of arithmetic reordering on com-
munication and running time of a sequential computation, 
consider the problem of computing matrix multiplication 
C = A · B, where the (i, j )th output element is computed by the 
classical formula Ci j = ∑k Ai k · Bk j. One “naive” ordering of 
the computation of the classical algorithm can be specified 
simply by three nested loops (see Algorithm 1). For matrices 
that are too large to fit in fast memory, this ordering requires 
the communication of at least one operand for each scalar 
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Figure 1. Strong-scaling performance comparison of parallel matrix 
multiplication algorithms on a Cray XT4.6 All data corresponds to 
a fixed dimension n = 94080. The x-axis represents the number 
of processors p on a log scale, and the y-axis measures effective 
performance, or 2n3/(p · time). The new algorithm outperforms all 
other known algorithms and exceeds the peak performance of the 
machine with respect to the classical flop count. The new algorithm 
runs 24–184% faster than the best previous Strassen-based 
algorithm and 51–84% faster than the best classical algorithm for 
this problem size.
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Figure 2. Sequential two-level (left) and parallel distributed-memory 
(right) models.



 

February 2014  |   vol.  57  |   no.  2  |   communications of the acm     109

is given by the recurrence . The 
base case occurs when the input and output sub-matrices fit 
in the fast memory and the matrix multiplication can be per-
formed with no further communication. This yields

for M  n2, matching the lower bound stated in Theorem 1.

2.2. Parallel case
The proof technique of Theorem 1 extends to parallel 
machines, yielding

Corollary 2.10 Consider Strassen’s algorithm implemented 
on a parallel machine with p processors, each with a local 
memory of size M. Then for , the communication 
cost of Strassen’s algorithm is

While Corollary 2 does not hold for all sizes of local 
memory (relative to the problem size and number of 
processors), the following memory-independent lower 
bound can be proved using similar techniques5 and holds 
for all local memory sizes, though it requires separate 
assumptions.

Theorem 3.5 Suppose a parallel algorithm performing Stras
sen’s matrix multiplication load balances the computation. 
Then, the communication cost is

Note that the bound in Corollary 2 dominates the one in 
Theorem 3 for M = O (n2/p2 / log 7). Thus, the tightest lower bound 
for parallel implementations of Strassen is the maximum of 
these two bounds. Table 2 and Figure 3, both adapted from 
Ballard et al.,5 illustrate the relationship between the two func-
tions. Figure 3 in particular shows bounds on strong scaling: 
for a fixed dimension n, increasing the number of processors 
(each with local memory size M) within a limited range does 
not increase the total volume of communication. Thus, the 
communication cost along the critical path decreases linearly 
with p. This is because in this “perfect strong scaling range,” 

yields F (n) = (nlog27), which is asymptotically less computation 
than the classical algorithm.

The main results presented in the following section 
expose a wonderful fact: not only does Strassen’s algorithm 
require less computation than the classical algorithm, but it 
also requires less communication!

Algorithm 3 Strassen’s Matrix Multiplication Algorithm

Input:
 

1:  if n = 1 then
2:	 C = A · B
3:  else
4:	 M1 = (A11 + A22) · (B11 + B22)
5:	 M2 = (A21 + A22) · B11

6:	 M3 = A11 · (B12 − B22)
7:	 M4 = A22 · (B21 − B11)
8:	 M5 = (A11 + A12) · B22

9:	 M6 = (A21 − A11) · (B11 + B12)
10:	 M7 = (A12 − A22) · (B21 + B22)
11:	 C11 = M1 + M4 − M5 + M7

12:	 C12 = M3 + M5

13:	 C21 = M2 + M4

14:	 C22 = M1 − M2 + M3 + M6

Output:
 

2. COMMUNICATION LOWER BOUNDS
In this section, we state our main results: communication 
lower bounds for Strassen’s matrix multiplication. The proof 
technique described in Section 3 allows us to state bounds 
in both sequential and parallel cases. As mentioned in the 
Section 1, the lower bounds are lower than the bounds for 
the classical algorithm.18, 20 In both sequential and parallel 
cases, there now exist communication-optimal algorithms 
that achieve the lower bounds.

2.1. Sequential case
We obtain the following lower bound:

Theorem 1.10 Consider Strassen’s algorithm implemented 
on a sequential machine with fast memory of size M. Then for 
M  n2, the communication cost of Strassen’s algorithm is

It holds for any implementation and any known variant 
of Strassen’s algorithm that is based on performing 2 × 2 
matrix multiplication with seven scalar multiplications. 
This includes Winograd’s O (nlog27) variant that uses 15 addi-
tions instead of 18, which is the most commonly used fast 
matrix multiplication algorithm in practice.

This lower bound is tight, in that it is attained by the 
standard recursive sequential implementation of Strassen’s 
algorithm. The recursive algorithm’s communication cost 

Table 1. Asymptotic communication cost lower bounds for sequen-
tial matrix multiplication, where n is the matrix dimension and M 
is the fast memory size. Note that although the expressions for 
classical and Strassen are similar, the proof techniques are quite 
different

Classical Strassen

Sequential lower 
bound18, 10
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the dominant lower bound includes a p in the denominator; 
however, when the second bound begins to dominate, the 
denominator includes a p2/3 rather than p, and increasing p 
leads to more communication volume. As shown in the fig-
ure, a similar phenomenon occurs for the classical algorithm, 
though with slightly different parameters.5, 23

The recent parallel algorithm for Strassen’s matrix multi-
plication6 has communication cost

where p is the number of processors and M is the size of the 
local memory. Note that this matches the lower bounds of 
Corollary 2 and Theorem 3 above. A similar algorithm for 
Strassen’s matrix multiplication in the BSP model is pre-
sented in McColl and Tiskin.22

3. PROOF HIGHLIGHTS
The crux of the proof of Theorem 1 is based on estimating 
the edge expansion of the computation graph of Strassen’s 
algorithm. We describe below how communication cost 
is closely related to the edge expansion properties of this 
graph. The graph has a recursive structure, and we use a 
combinatorial analysis of the expansion. The high-level 
argument is based on partitioning the computation in 
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segments, which we explain in Section 3.3. Let us first define 
two key concepts: computation graphs and edge expansion. 
See Ballard et al.10 for the full proof.

3.1. Computation graphs
The computation performed by an algorithm on a given 
input can be modeled as a computation directed acyclic 
graph (CDAG): we have a vertex for each input, intermediate, 
and output argument, and edges according to direct depen-
dencies (e.g., for the binary arithmetic operation x := y + z, 
we have directed edges from vertices corresponding to oper-
ands y and z to the vertex corresponding to x).

In the sequential case, an implementation (or sched-
uling) determines the order of execution of the arithme-
tic operations, which respects the partial ordering of the 
CDAG. In the parallel case, an implementation determines 
which arithmetic operations are performed by which of the 
p processors as well as the ordering of local operations. This 
corresponds to partitioning the CDAG into p parts. Edges 
crossing between the various parts correspond to arguments 
that are in the possession of one processor but are needed by 
another processor and therefore relate to communication.

3.2. Edge expansion
Expansion is a graph-theoretic concept19 that relates a given 
subset of a graph to its boundary. If a graph has large expan-
sion, then subsets of vertices will have relatively large bound-
aries. For example, a 2D grid where each vertex has north, 
south, east, and west neighbors has small expansion, whereas 
a complete graph has large expansion. While there are sev-
eral variants of expansion metrics, we are interested in edge 
expansion of regular graphs, defined as follows: the edge 
expansion h(G) of a d-regular undirected graph G = (V, E) is

	 � (1)

where EG(A, B) is the set of edges connecting the disjoint 
vertex sets A and B.

Note that CDAGs are typically not regular. If a graph 
G = (V, E) is not regular but has a bounded maximal degree d, 
then we can add (<d) loops to vertices of degree <d, obtaining 
a regular graph G. We use the convention that a loop adds 
1 to the degree of a vertex. Note that for any S Í V, we have 
|EG(S, V \S)| = |EG (S, V \S)|, as none of the added loops con-
tributes to the edge expansion of G.

For many graphs, small sets have larger expansion than 
larger sets. Let hs(G) denote the edge expansion of G for sets 
of size at most s:

	 � (2)

For many interesting graph families (including Strassen’s 
CDAG), hs(G) does not depend on |V(G)| when s is fixed, 
although it may decrease when s increases.

3.3. The partition argument
The high-level lower bound argument is based on partition-
ing the execution of an algorithm’s implementation into 
segments. Let O be any total ordering of the vertices that 

 Classical Strassen

Memory-dependent 
lower bound20, 10

Memory-independent 
lower bound5

Table 2. A symptotic communication cost lower bounds for parallel 
matrix multiplication, where n is matrix dimension, M is local 
memory size, and p is the number of processors

Figure 3. Communication costs and strong scaling of matrix 
multiplication: classical vs. Strassen.5 The vertical axis corresponds 
to p times the communication cost, so horizontal lines correspond to 
perfect strong scaling. The quantity pmin is the minimum number of 
processors required to store the input and output matrices (i.e., pmin = 
3n2/M where n is the matrix dimension and M is the local memory size).
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respects the partial ordering of the CDAG G, that is, all the 
edges are directed upwards in the total order. This total 
ordering can be thought of as the actual order in which the 
computations are performed. Let P be any partition of V into 
segments S1, S2, …, so that a segment Si  P is a subset of the 
vertices that are contiguous in the total ordering O.

Let S be some segment, and define RS and WS to be the set 
of read and write operands, respectively (see Figure 4), namely, 
RS is the set of vertices outside S that have an edge going into 
S, and WS is the set of vertices in S that have an edge going out-
side of S. Recall that M is the size of the fast memory. Then, 
the total communication cost due to reads of  operands in 
S is at least |RS| − M, as at most M of the needed |RS| oper-
ands are already in fast memory when the segment starts. 
Similarly, S causes at least |WS|− M actual write operations, 
as at most M of the operands needed by other segments are 
left in the fast memory when the segment ends. The total 
communication cost is therefore bounded below by

	 � (3)

3.4. Edge expansion and communication
Consider a segment S and its read and write operands RS and 
WS (see Figure 4). If the graph G containing S has h(G) edge 
expansion, maximum degree d and at least 2|S| vertices, 
then (using the definition of h(G) ), we have

Claim 4. |RS| + |WS| ≥ h(G) · |S|.

Combining this with (3) and choosing to partition V into |V|/s 
segments of equal size s, we obtain IO  maxs (|V|/s) · (h(G) · s − 
2M) = (|V| · h(G) ). In many cases, h(G) is too small to attain the 
desired communication cost lower bound. Typically, h(G) is 
a decreasing function of |V(G)|; that is, the edge expansion 
deteriorates with the increase of the input size and number 
of arithmetic operations of the corresponding algorithm 
(this is the case with Strassen’s algorithm). In such cases, it 
is better to consider the expansion of G on small sets only: IO  
maxs (|V|/s) · (hs(G) · s − 2M). Choosing the minimal s so that

	 hs(G) · s ≥ 3M� (4)

we obtain

	 � (5)

The existence of a value s  |V|/2 that satisfies condition (4) is 
not always guaranteed. In Ballard et al.,10 we confirm the exis-
tence of such s for Strassen’s CDAG for sufficiently large |V|.

4. STRASSEN’S CDAG
Recall Strassen’s algorithm for matrix multiplication and 
consider its computation graph. If we let Hi be the computation 
graph of Strassen’s algorithm for recursion of depth i, then 
Hlog2 n corresponds to the computation for input matrices of 
size n × n. Let us first consider H1 as shown in Figure 5, which 
corresponds to multiplying 2 × 2 matrices. Each of A and B 
is “encoded” into seven pairs of multiplication inputs, and 
vertices corresponding to the outputs of the multiplications 
are then “decoded” to compute the output matrix C.

The general computation graph Hlog2 n has similar structure:

•	 Encode A: generate weighted sums of elements of A
•	 Encode B: generate weighted sums of elements of B
•	 Multiply the encodings of A and B element-wise
•  Decode C: take weighted sums of the products

Denote by Enclog2 n A the part of Hlog2 n that corresponds to 
the encoding of matrix A. Similarly, Enclog2 nB, and Declog2 nC 
correspond to the parts of Hlog2 n that compute the encoding 
of B and the decoding of C, respectively. Figure 6 shows a 
high level picture of Hlog2 n. In the next section, we provide a 
more detailed description of the CDAG.

S

RS

WS

V

Figure 4. A subset (segment) S and its corresponding read operands 
RS and write operands WS.

7 5 4 1 3 2 6

11 12 21 22

11 12 21 2211 12 21 22

Dec1 C

Enc1 A Enc1 B

Figure 5. Computation graph of Strassen’s algorithm for multiplying 
2 × 2 matrices (H1). The encodings of A and B correspond to the 
additions and subtractions in lines 4–10 of Algorithm 3, and the 
decoding of the seven multiplications to compute C corresponds 
to lines 11–14. A vertex labeled with two indices ij corresponds to 
the (i, j)th entry of a matrix and a vertex labeled with one index k 
corresponds to the kth intermediate multiplication.
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4.2. Strassen’s edge expansion
Given the construction of the CDAG for Strassen’s algorithm, we 
now state our main lemma on the edge expansion of the decod-
ing graph. The proof technique resembles the expander analy-
sis in Alon et al.2 For the complete proof, see Ballard et al.10

Lemma 5. (Main lemma) The edge expansion of DeckC is

By another argument (proof in Ballard et al.10), we obtain that

hs(Declog2n C) ≥ h(DeckC),

where s = (7k). Choosing s = (M (log27)/2), we satisfy Inequality 4 
and obtain Inequality 5 (for sufficiently large |V|). This gives 
Theorem 1.

5. EXTENSIONS
In this paper, we focus on lower bounds for Strassen’s matrix 
multiplication algorithm on two machine models. However, 
the design space of improving fundamental algorithms via 
communication minimization is much larger. It includes prov-
ing lower bounds and developing optimal algorithms; using 
classical methods as well as fast algorithms like Strassen’s; 
performing matrix multiplication, other matrix algorithms, and 
more general computations; minimizing time and/or energy; 
using minimal memory or trading off extra memory for less 
communication; and using hierarchical, homogeneous, or 
heterogeneous sequential and parallel models. In this section, 
we discuss a subset of these extensions; see Ballard et al.9, 10 and 
the references therein for more details.

5.1. Lower bounds
The proof technique described in Section 3 is not specific 
to Strassen’s algorithm and can be applied more widely. 
The partition argument is used for classical algorithms in 
numerical linear algebra8, 20 where a geometric inequality 
specifies the per-segment communication cost rather than 
edge expansion. Further, the edge expansion technique 
applies to Strassen-like algorithms that also multiply square 
matrices with o(n3) arithmetic operations, to other fast algo-
rithms for rectangular matrix multiplication, and to other 
matrix computations.

Strassen-like algorithms. Strassen-like algorithms are recur
sive matrix multiplication algorithms based on a scheme for 
multiplying k × k matrices using q scalar multiplications for 
some k and q < k3 (so that the algorithm performs O(nω0) flops 
where ω0 = logk q.) For the latest bounds on the arithmetic 
complexity of matrix multiplication and references to 
previous bounds, see Williams.25 For our lower bound proof 
to apply, we require another technical criterion for Strassen-
like algorithms: the decoding graph must be connected. This 
class of algorithms includes many (but not all) fast matrix 
multiplications. For details and examples, see Ballard et al.7, 10

For Strassen-like algorithms, the statements of the com-
munication lower bounds have the same form as Theorem 1, 
Corollary 2, and Theorem 3: replace log2 7 with ω0 everywhere 
it appears! The proof technique follows that for Strassen’s 

4.1. Recursive construction
We construct the computation graph Hi+1 by constructing Deci+1C 
from DeciC and Dec1C, similarly constructing Enci+1 A  and 
Enci+1B, and then composing the three parts together. Here 
is the main idea for recursively constructing Deci+1C, which 
is illustrated in Figure 7.

•	 Replicate Dec1C 7i times.
•	 Replicate DeciC 4 times.
•  Identify the 4 · 7i output vertices of the copies of Dec1C 

with the 4 · 7i input vertices of the copies of DeciC:
  – �Recall that each Dec1C has four output vertices.
  – �The set of each first output vertex of the 7i Dec1C 

graphs is identified with the set of 7i input vertices of 
the first copy of Deci C.

  – �The set of each second output vertex of the 7i Dec1C 
graphs is identified with the set of 7i input vertices of 
the second copy of DeciC, and so on.

  – �We make sure that the jth input vertex of a copy of 
DeciC is identified with an output vertex of the j th copy 
of Dec1C.

After constructing Enci+1A and Enci+1B in a similar manner, we 
obtain Hi+1 by connecting edges from the kth output vertices 
of Enci+1A and Enci+1B to the kth input vertex of Deci+1C, which 
corresponds to the element-wise scalar multiplications.

Enclog2 n BEnclog2 n A

Declog2 n C log2 n

nlog
2

 7

n2

n2

Figure 6. High-level view of Strassen’s CDAG for n × n matrices. The 
graph is composed of two encoding subgraphs and one decoding 
subgraph; connections between the subgraphs are not shown.

DeciC

Dec
1 C

Figure 7. Illustration of the recursive construction of the decoding 
subgraph. To construct Deci+1C, DeciC is replicated 4 times and Dec1C 
is replicated 7i times, and appropriate vertices are identified.
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implementation for distributed-memory machines that it 
performs much faster in practice.6, 21

Communication avoiding parallel Strassen. In Section  2.2, 
we  stated the communication cost of a new parallel 
algorithm for Strassen’s matrix multiplication, matching 
the asymptotic lower bound. The details of the algorithm 
appear in Ballard et al.,6 and more extensive implementation 
details and performance data are given in Lipshitz et al.21 
We show that the new algorithm is more efficient than 
any other parallel matrix multiplication algorithm of 
which we are aware, including those that are based on the 
classical algorithm and those that are based on previous 
parallelizations of Strassen’s algorithm.

Figure 1 shows performance on a Cray XT4. For results on 
other machines, see Lipshitz et al.21 For example, running on 
a Cray XE6 with up to 10,000 cores, for a problem of dimen-
sion n = 131712, our new algorithm attains performance as 
high as 30% above the peak for classical matrix multiplica-
tion, 83% above the best classical implementation, and 
75% above the best previous implementation of Strassen’s 
algorithm. Even for a small problem of dimension n = 4704, 
it attains performance 66% higher than the best classical 
implementation.

Further applications. The key algorithmic idea in our par
allel implementation of Strassen’s algorithm is a careful 
parallel traversal of the recursion tree. This idea works for 
many other recursive algorithms where the subproblems 
do not have interdependencies (and it also works in some 
cases where dependencies exist). For example, classical 
rectangular matrix multiplication14 and sparse matrix–
matrix multiplication4 can be parallelized in this way to 
obtain communication optimality.

The same techniques can be utilized to save energy at the 
algorithmic level (since communication consumes more 
energy than computation) as well as to obtain lower bounds 
on energy requirements.15

In summary, we believe this work flow of theoretical lower 
bounds to algorithmic development to efficient implemen-
tations is very effective: by considering fundamental compu-
tations at an algorithmic level, significant improvements in 
many applications are possible.
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algorithm. While the bounds for the classical algorithm 
have the same form, replacing log2 7 with 3, the proof tech-
niques are quite different.18, 20

Fast rectangular matrix multiplication. Many fast algo
rithms have been devised for multiplication of rectangular 
matrices (see Ballard et al.7 for a detailed list). A fast 
algorithm for multiplying m × k and k × r matrices in q < mkr 
scalar multiplications can be applied recursively to multiply 
mt × k t and k t × r t matrices in O(qt ) flops. For such algorithms, 
the CDAG has very similar structure to Strassen and 
Strassen-like algorithms for square multiplication in that 
it is composed of two encoding graphs and one decoding 
graph. Assuming that the decoding graph is connected, the 
proofs of Theorem 1 and Lemma 5 apply where we plug in mr 
and q for 4 and 7. In this case, we obtain a result analogous 
to Theorem 1 which states that the communication cost of 
such an algorithm is given by Ω (qt/M logmr q–1). If the output 
matrix is the largest of the three matrices (i.e., k < m and k < r), 
then this lower bound is attained by the natural recursive 
algorithm and is therefore tight. The lower bound extends to 
the parallel case as well, analogous to Corollary 2, and can be 
attained using the algorithmic technique of Ballard et al.6

The rest of numerical linear algebra. Fast matrix multi
plication, algorithms are basic building blocks in many fast 
algorithms in linear algebra, such as algorithms for LU, 
QR, and eigenvalue and singular value decompositions.13 
Therefore, communication cost lower bounds for these 
algorithms can be derived from our lower bounds for fast 
matrix multiplication algorithms. For example, a lower 
bound on LU (or QR, etc.) follows when the fast matrix 
multiplication algorithm is called by the LU algorithm 
on sufficiently large sub-matrices. This is the case in the 
algorithms of Demmel et al.,13 and we can then deduce 
matching lower and upper bounds.10

Nested loops computation. Nearly all of the arguments 
for proving communication lower bounds are based on 
establishing a relationship between a given set of data and 
the amount of useful computation that can be done with 
that data, a so-called “surface-to-volume” ratio. For example, 
Hong and Kung18 use an analysis of dominator sets and 
minimal sets of CDAGs to establish such ratios. The Loomis–
Whitney geometric inequality is applied for this purpose 
to matrix computations specified by three nested loops in 
Ballard et al.8 and Irony et al.20 Recently, Christ et al.12 have 
extended this analysis using a generalization of the Loomis–
Whitney inequality, known as the Hölder–Brascamp–Lieb 
inequality, to prove lower bounds for computations that 
are specified by an arbitrary set of nested loops that linearly 
access arrays and meet certain other criteria.

5.2. Algorithms
The main motivation for pursuing communication 
lower bounds is to provide targets for algorithmic per-
formance. Indeed, the conjecture and proof of Theorem 
1 and Corollary 2, as well as the existence of an optimal 
algorithm in the sequential case, were the main moti-
vations for   improving the parallel implementations of 
Strassen’s algorithm. Not only were we able to devise an 
optimal algorithm, but we were also able to show with an 
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