
February 2014 | vol. 57 | no. 2 | communications of the acm 107

doi:10.1145/2556647.2556660

Communication Costs of
Strassen’s Matrix Multiplication
By Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz

Abstract
Algorithms have historically been evaluated in terms of the
number of arithmetic operations they performed. This anal-
ysis is no longer sufficient for predicting running times on
today’s machines. Moving data through memory hierarchies
and among processors requires much more time (and energy)
than performing computations. Hardware trends suggest that
the relative costs of this communication will only increase.
Proving lower bounds on the communication of algorithms
and finding algorithms that attain these bounds are therefore
fundamental goals. We show that the communication cost of
an algorithm is closely related to the graph expansion proper-
ties of its corresponding computation graph.

Matrix multiplication is one of the most fundamental
problems in scientific computing and in parallel comput-
ing. Applying expansion analysis to Strassen’s and other
fast matrix multiplication algorithms, we obtain the first
lower bounds on their communication costs. These bounds
show that the current sequential algorithms are optimal but
that previous parallel algorithms communicate more than
necessary. Our new parallelization of Strassen’s algorithm
is communication-optimal and outperforms all previous
matrix multiplication algorithms.

1. INTRODUCTION
Communication (i.e., moving data) can greatly dominate
the cost of an algorithm, whether the cost is measured in
running time or in total energy. This holds for moving data
between levels of a memory hierarchy or between processors
over a network. Communication time per data unit varies by
orders of magnitude, from order of 10−9 seconds for an L1
cache reference to order of 10−2 seconds for disk access. The
variation can be even more dramatic when communication
occurs over networks or the internet. In fact, technological
trends16, 17 are making communication costs grow exponen-
tially over time compared to arithmetic costs. Moore’s Law
is making arithmetic on a chip improve at about 60% per
year, but memory and network bandwidth is improving at
only 26% and 23% per year.16 So even in cases where commu-
nication is not the bottleneck today, it may be in the future.

Ideally, we would be able to determine lower bounds on the
amount of required communication for important problems
and design algorithms that attain them, namely, algorithms
that are communication-optimal. These dual problems have
long attracted researchers, with one example being classi-
cal Θ(n3) matrix multiplication (see further details below),
with lower bounds proved in Hong and Kung18 and Irony
et al.20 and many optimal sequential and parallel algorithms
obtained in, for example, Agarwal et al.1 and Cannon11.

These lower bounds have recently been extended to a
large class of other classical linear algebra problems, includ-
ing linear system solving, least squares, and eigenvalue
problems, for dense and sparse matrices, and for sequential
and parallel machines.9 Surprisingly, the highly optimized
algorithms in widely implemented libraries like LAPACK
and ScaLAPACK3 often do not attain these lower bounds,
even in the asymptotic sense. This has led to much recent
work inventing new, faster algorithms that do; see the cita-
tions in Ballard et al.9, 10 for references.

In this paper, we describe a novel approach to prove
the first communication lower bounds for Strassen’s
Θ(nlog2 7) matrix multiplication algorithm, as well as
many similar fast algorithms. Specifically, we introduce
expansion analysis of the computational graphs of the
algorithms and show that the expansion helps deter-
mine the communication cost. These communication
cost bounds are lower than those of classical matrix
multiplication: this means that not only does Strassen’s
algorithm reduce computation, but it also creates an
opportunity for reducing communication. In addition,
the lower bound decreases as the amount of available
memory grows, suggesting that using extra memory may
also allow for faster algorithms.

In fact, there is an optimal parallel algorithm that attains
our lower bounds for varying amounts of memory, whose
performance exceeds all other known matrix multiplication
implementations, classical or Strassen-based, on a large
parallel machine,6 see Figure 1. In the rest of this paper, we
focus on explaining our new lower bounds for Strassen’s
algorithm and their implications.

1.1. Communication models
In order to analyze the communication costs of algorithms,
we consider idealized memory and communication models.
In the sequential case (see Figure 2), we consider a machine
with two levels of memory hierarchy: a fast memory of size
M words (where computation is performed) and a slow
memory of infinite size. We assume that the input initially
resides in slow memory and is too large to fit in fast memory.
We define the communication cost of a sequential algorithm

The original version of this paper is entitled “Graph
Expansion and Communication Costs of Fast Matrix
Multiplication” and was first published in the Proceedings
of the 2011 ACM Symposium on Parallelism in Algorithms
and Architectures and also appeared in the December
2012 issue of the Journal of the ACM.

108 communications of the acm | february 2014 | vol. 57 | no. 2

multiplication, resulting in a total communication cost of
Θ(n3). A natural question to ask is: can we do better?

Algorithm 1 Naive Classical Matrix Multiplication

1:  for i = 1 to n do
2:   for j = 1 to n do
3:	 for k = 1 to n do
4:	 Ci j = Ci j + Ai k · Bk j

The answer is yes. We can reduce communication by
using a “blocked” algorithm (see Algorithm 2). The idea is
to partition A, B, and C into square blocks of size b × b so
that three blocks can simultaneously fit in the fast memory.
We use the notation C[I, J   ] to refer to the (I, J   )th b × b block of
the C matrix. When C[I, J   ], A[I, K   ], and B[K, J   ] are all in fast
memory, then the inner loop of the algorithm (correspond-
ing to (b3) arithmetic operations) can be performed with no
more communication.

Algorithm 2 Blocked Classical Matrix Multiplication

1:  for I = 0 to n/b do
2:   for J = 0 to n/b do
3:	 for K = 0 to n/b do
4:	 C[I, J   ] = C[I, J   ] + A[I, K   ] · B[K, J  ]

If we pick the maximum block size of , this results
in a total of block operations, each requiring (M)
words to be communicated. Hence, the total communica-
tion cost is , a factor of better than that of
the naive algorithm.

The typical performance difference between the naive
and blocked algorithms on a sequential machine is an order
of magnitude. With the blocked algorithm, attained per-
formance is close to the peak capabilities of the machine.
Again, the question arises: can we do better? Can we further
reorder these computations to communicate less?

If we insist on performing the (n3) arithmetic operations
given by the classical formulation, the answer is no. Hong
and Kung18 proved a communication cost lowerbound of

 for any reordering, showing that the blocked
algorithm is communication-optimal. But this is not the
end of the story: this communication optimality of the
blocked algorithm assumes (n3) arithmetic operations.

1.3. Strassen’s matrix multiplication
While the classical algorithms for matrix multiplication
have already been optimized for reducing communication
cost to the minimum possible, a completely different algo-
rithmic approach for this problem is possible. Let us recall
Strassen’s algorithm24 (see Algorithm 3).

Strassen’s key idea is to multiply 2 × 2 matrices using seven
scalar multiplies instead of eight. Because n × n matrices can
be divided into quadrants, Strassen’s idea applies recursively.
Each of the seven quadrant multiplications is computed
recursively, and the computational cost of additions and sub-
tractions of quadrants is (n2). Thus, the recurrence for the flop
count is F (n) = 7F (n/2) + (n2) with base case F (1) = 1, which

research highlights

to be the total number of words transferred between the
slow and fast memories.

In the parallel case (see Figure 2), we consider p proces-
sors, each with a local memory of size M, connected over a
network. In this case, the communication cost is the num-
ber of words transferred between processors, counted along
the critical path of the algorithm. That is, two words that are
communicated simultaneously between separate pairs of
processors are counted only once.

1.2. Classical matrix multiplication
To illustrate the effects of arithmetic reordering on com-
munication and running time of a sequential computation,
consider the problem of computing matrix multiplication
C = A · B, where the (i, j)th output element is computed by the
classical formula Ci j = ∑k Ai k · Bk j. One “naive” ordering of
the computation of the classical algorithm can be specified
simply by three nested loops (see Algorithm 1). For matrices
that are too large to fit in fast memory, this ordering requires
the communication of at least one operand for each scalar

0

10

20

30

40

50

100 1000 10000

Ef
fe

ct
iv

e
G

fl
op

s
/ s

 /
pr

oc
es

so
r

Number of processors

Classical Peak

New Algorithm

Best Previous Strassen

Best Classical

Figure 1. Strong-scaling performance comparison of parallel matrix
multiplication algorithms on a Cray XT4.6 All data corresponds to
a fixed dimension n = 94080. The x-axis represents the number
of processors p on a log scale, and the y-axis measures effective
performance, or 2n3/(p · time). The new algorithm outperforms all
other known algorithms and exceeds the peak performance of the
machine with respect to the classical flop count. The new algorithm
runs 24–184% faster than the best previous Strassen-based
algorithm and 51–84% faster than the best classical algorithm for
this problem size.

CPU
M

CPU
M

CPU
M

CPU
M

CPU
M

Figure 2. Sequential two-level (left) and parallel distributed-memory
(right) models.

February 2014 | vol. 57 | no. 2 | communications of the acm 109

is given by the recurrence . The
base case occurs when the input and output sub-matrices fit
in the fast memory and the matrix multiplication can be per-
formed with no further communication. This yields

for M n2, matching the lower bound stated in Theorem 1.

2.2. Parallel case
The proof technique of Theorem 1 extends to parallel
machines, yielding

Corollary 2.10 Consider Strassen’s algorithm implemented
on a parallel machine with p processors, each with a local
memory of size M. Then for , the communication
cost of Strassen’s algorithm is

While Corollary 2 does not hold for all sizes of local
memory (relative to the problem size and number of
processors), the following memory-independent lower
bound can be proved using similar techniques5 and holds
for all local memory sizes, though it requires separate
assumptions.

Theorem 3.5 Suppose a parallel algorithm performing Stras
sen’s matrix multiplication load balances the computation.
Then, the communication cost is

Note that the bound in Corollary 2 dominates the one in
Theorem 3 for M = O (n2/p2 / log 7). Thus, the tightest lower bound
for parallel implementations of Strassen is the maximum of
these two bounds. Table 2 and Figure 3, both adapted from
Ballard et al.,5 illustrate the relationship between the two func-
tions. Figure 3 in particular shows bounds on strong scaling:
for a fixed dimension n, increasing the number of processors
(each with local memory size M) within a limited range does
not increase the total volume of communication. Thus, the
communication cost along the critical path decreases linearly
with p. This is because in this “perfect strong scaling range,”

yields F (n) = (nlog27), which is asymptotically less computation
than the classical algorithm.

The main results presented in the following section
expose a wonderful fact: not only does Strassen’s algorithm
require less computation than the classical algorithm, but it
also requires less communication!

Algorithm 3 Strassen’s Matrix Multiplication Algorithm

Input:

1:  if n = 1 then
2:	 C = A · B
3:  else
4:	 M1 = (A11 + A22) · (B11 + B22)
5:	 M2 = (A21 + A22) · B11

6:	 M3 = A11 · (B12 − B22)
7:	 M4 = A22 · (B21 − B11)
8:	 M5 = (A11 + A12) · B22

9:	 M6 = (A21 − A11) · (B11 + B12)
10:	 M7 = (A12 − A22) · (B21 + B22)
11:	 C11 = M1 + M4 − M5 + M7

12:	 C12 = M3 + M5

13:	 C21 = M2 + M4

14:	 C22 = M1 − M2 + M3 + M6

Output:
 

2. COMMUNICATION LOWER BOUNDS
In this section, we state our main results: communication
lower bounds for Strassen’s matrix multiplication. The proof
technique described in Section 3 allows us to state bounds
in both sequential and parallel cases. As mentioned in the
Section 1, the lower bounds are lower than the bounds for
the classical algorithm.18, 20 In both sequential and parallel
cases, there now exist communication-optimal algorithms
that achieve the lower bounds.

2.1. Sequential case
We obtain the following lower bound:

Theorem 1.10 Consider Strassen’s algorithm implemented
on a sequential machine with fast memory of size M. Then for
M n2, the communication cost of Strassen’s algorithm is

It holds for any implementation and any known variant
of Strassen’s algorithm that is based on performing 2 × 2
matrix multiplication with seven scalar multiplications.
This includes Winograd’s O (nlog27) variant that uses 15 addi-
tions instead of 18, which is the most commonly used fast
matrix multiplication algorithm in practice.

This lower bound is tight, in that it is attained by the
standard recursive sequential implementation of Strassen’s
algorithm. The recursive algorithm’s communication cost

Table 1. Asymptotic communication cost lower bounds for sequen-
tial matrix multiplication, where n is the matrix dimension and M
is the fast memory size. Note that although the expressions for
classical and Strassen are similar, the proof techniques are quite
different

Classical Strassen

Sequential lower
bound18, 10

110 communications of the acm | february 2014 | vol. 57 | no. 2

the dominant lower bound includes a p in the denominator;
however, when the second bound begins to dominate, the
denominator includes a p2/3 rather than p, and increasing p
leads to more communication volume. As shown in the fig-
ure, a similar phenomenon occurs for the classical algorithm,
though with slightly different parameters.5, 23

The recent parallel algorithm for Strassen’s matrix multi-
plication6 has communication cost

where p is the number of processors and M is the size of the
local memory. Note that this matches the lower bounds of
Corollary 2 and Theorem 3 above. A similar algorithm for
Strassen’s matrix multiplication in the BSP model is pre-
sented in McColl and Tiskin.22

3. PROOF HIGHLIGHTS
The crux of the proof of Theorem 1 is based on estimating
the edge expansion of the computation graph of Strassen’s
algorithm. We describe below how communication cost
is closely related to the edge expansion properties of this
graph. The graph has a recursive structure, and we use a
combinatorial analysis of the expansion. The high-level
argument is based on partitioning the computation in

research highlights

segments, which we explain in Section 3.3. Let us first define
two key concepts: computation graphs and edge expansion.
See Ballard et al.10 for the full proof.

3.1. Computation graphs
The computation performed by an algorithm on a given
input can be modeled as a computation directed acyclic
graph (CDAG): we have a vertex for each input, intermediate,
and output argument, and edges according to direct depen-
dencies (e.g., for the binary arithmetic operation x := y + z,
we have directed edges from vertices corresponding to oper-
ands y and z to the vertex corresponding to x).

In the sequential case, an implementation (or sched-
uling) determines the order of execution of the arithme-
tic operations, which respects the partial ordering of the
CDAG. In the parallel case, an implementation determines
which arithmetic operations are performed by which of the
p processors as well as the ordering of local operations. This
corresponds to partitioning the CDAG into p parts. Edges
crossing between the various parts correspond to arguments
that are in the possession of one processor but are needed by
another processor and therefore relate to communication.

3.2. Edge expansion
Expansion is a graph-theoretic concept19 that relates a given
subset of a graph to its boundary. If a graph has large expan-
sion, then subsets of vertices will have relatively large bound-
aries. For example, a 2D grid where each vertex has north,
south, east, and west neighbors has small expansion, whereas
a complete graph has large expansion. While there are sev-
eral variants of expansion metrics, we are interested in edge
expansion of regular graphs, defined as follows: the edge
expansion h(G) of a d-regular undirected graph G = (V, E) is

	 � (1)

where EG(A, B) is the set of edges connecting the disjoint
vertex sets A and B.

Note that CDAGs are typically not regular. If a graph
G = (V, E) is not regular but has a bounded maximal degree d,
then we can add (<d) loops to vertices of degree <d, obtaining
a regular graph G. We use the convention that a loop adds
1 to the degree of a vertex. Note that for any S Í V, we have
|EG(S, V \S)| = |EG (S, V \S)|, as none of the added loops con-
tributes to the edge expansion of G.

For many graphs, small sets have larger expansion than
larger sets. Let hs(G) denote the edge expansion of G for sets
of size at most s:

	 � (2)

For many interesting graph families (including Strassen’s
CDAG), hs(G) does not depend on |V(G)| when s is fixed,
although it may decrease when s increases.

3.3. The partition argument
The high-level lower bound argument is based on partition-
ing the execution of an algorithm’s implementation into
segments. Let O be any total ordering of the vertices that

 Classical Strassen

Memory-dependent
lower bound20, 10

Memory-independent
lower bound5

Table 2. A symptotic communication cost lower bounds for parallel
matrix multiplication, where n is matrix dimension, M is local
memory size, and p is the number of processors

Figure 3. Communication costs and strong scaling of matrix
multiplication: classical vs. Strassen.5 The vertical axis corresponds
to p times the communication cost, so horizontal lines correspond to
perfect strong scaling. The quantity pmin is the minimum number of
processors required to store the input and output matrices (i.e., pmin =
3n2/M where n is the matrix dimension and M is the local memory size).

pmin pmin

(C
om

m
un

ic
at

io
n

co
st

)
x

p

p

Classical
Strassen

(log27)/2
pmin

3/2

February 2014 | vol. 57 | no. 2 | communications of the acm 111

research highlights

respects the partial ordering of the CDAG G, that is, all the
edges are directed upwards in the total order. This total
ordering can be thought of as the actual order in which the
computations are performed. Let P be any partition of V into
segments S1, S2, …, so that a segment Si P is a subset of the
vertices that are contiguous in the total ordering O.

Let S be some segment, and define RS and WS to be the set
of read and write operands, respectively (see Figure 4), namely,
RS is the set of vertices outside S that have an edge going into
S, and WS is the set of vertices in S that have an edge going out-
side of S. Recall that M is the size of the fast memory. Then,
the total communication cost due to reads of operands in
S is at least |RS| − M, as at most M of the needed |RS| oper-
ands are already in fast memory when the segment starts.
Similarly, S causes at least |WS|− M actual write operations,
as at most M of the operands needed by other segments are
left in the fast memory when the segment ends. The total
communication cost is therefore bounded below by

	 � (3)

3.4. Edge expansion and communication
Consider a segment S and its read and write operands RS and
WS (see Figure 4). If the graph G containing S has h(G) edge
expansion, maximum degree d and at least 2|S| vertices,
then (using the definition of h(G) ), we have

Claim 4. |RS| + |WS| ≥ h(G) · |S|.

Combining this with (3) and choosing to partition V into |V|/s
segments of equal size s, we obtain IO maxs (|V|/s) · (h(G) · s −
2M) = (|V| · h(G) ). In many cases, h(G) is too small to attain the
desired communication cost lower bound. Typically, h(G) is
a decreasing function of |V(G)|; that is, the edge expansion
deteriorates with the increase of the input size and number
of arithmetic operations of the corresponding algorithm
(this is the case with Strassen’s algorithm). In such cases, it
is better to consider the expansion of G on small sets only: IO
maxs (|V|/s) · (hs(G) · s − 2M). Choosing the minimal s so that

	 hs(G) · s ≥ 3M� (4)

we obtain

	 � (5)

The existence of a value s |V|/2 that satisfies condition (4) is
not always guaranteed. In Ballard et al.,10 we confirm the exis-
tence of such s for Strassen’s CDAG for sufficiently large |V|.

4. STRASSEN’S CDAG
Recall Strassen’s algorithm for matrix multiplication and
consider its computation graph. If we let Hi be the computation
graph of Strassen’s algorithm for recursion of depth i, then
Hlog2 n corresponds to the computation for input matrices of
size n × n. Let us first consider H1 as shown in Figure 5, which
corresponds to multiplying 2 × 2 matrices. Each of A and B
is “encoded” into seven pairs of multiplication inputs, and
vertices corresponding to the outputs of the multiplications
are then “decoded” to compute the output matrix C.

The general computation graph Hlog2 n has similar structure:

•	 Encode A: generate weighted sums of elements of A
•	 Encode B: generate weighted sums of elements of B
•	 Multiply the encodings of A and B element-wise
•  Decode C: take weighted sums of the products

Denote by Enclog2 n A the part of Hlog2 n that corresponds to
the encoding of matrix A. Similarly, Enclog2 nB, and Declog2 nC
correspond to the parts of Hlog2 n that compute the encoding
of B and the decoding of C, respectively. Figure 6 shows a
high level picture of Hlog2 n. In the next section, we provide a
more detailed description of the CDAG.

S

RS

WS

V

Figure 4. A subset (segment) S and its corresponding read operands
RS and write operands WS.

7 5 4 1 3 2 6

11 12 21 22

11 12 21 2211 12 21 22

Dec1 C

Enc1 A Enc1 B

Figure 5. Computation graph of Strassen’s algorithm for multiplying
2 × 2 matrices (H1). The encodings of A and B correspond to the
additions and subtractions in lines 4–10 of Algorithm 3, and the
decoding of the seven multiplications to compute C corresponds
to lines 11–14. A vertex labeled with two indices ij corresponds to
the (i, j)th entry of a matrix and a vertex labeled with one index k
corresponds to the kth intermediate multiplication.

research highlights

112 communications of the acm | february 2014 | vol. 57 | no. 2

4.2. Strassen’s edge expansion
Given the construction of the CDAG for Strassen’s algorithm, we
now state our main lemma on the edge expansion of the decod-
ing graph. The proof technique resembles the expander analy-
sis in Alon et al.2 For the complete proof, see Ballard et al.10

Lemma 5. (Main lemma) The edge expansion of DeckC is

By another argument (proof in Ballard et al.10), we obtain that

hs(Declog2n C) ≥ h(DeckC),

where s = (7k). Choosing s = (M (log27)/2), we satisfy Inequality 4
and obtain Inequality 5 (for sufficiently large |V|). This gives
Theorem 1.

5. EXTENSIONS
In this paper, we focus on lower bounds for Strassen’s matrix
multiplication algorithm on two machine models. However,
the design space of improving fundamental algorithms via
communication minimization is much larger. It includes prov-
ing lower bounds and developing optimal algorithms; using
classical methods as well as fast algorithms like Strassen’s;
performing matrix multiplication, other matrix algorithms, and
more general computations; minimizing time and/or energy;
using minimal memory or trading off extra memory for less
communication; and using hierarchical, homogeneous, or
heterogeneous sequential and parallel models. In this section,
we discuss a subset of these extensions; see Ballard et al.9, 10 and
the references therein for more details.

5.1. Lower bounds
The proof technique described in Section 3 is not specific
to Strassen’s algorithm and can be applied more widely.
The partition argument is used for classical algorithms in
numerical linear algebra8, 20 where a geometric inequality
specifies the per-segment communication cost rather than
edge expansion. Further, the edge expansion technique
applies to Strassen-like algorithms that also multiply square
matrices with o(n3) arithmetic operations, to other fast algo-
rithms for rectangular matrix multiplication, and to other
matrix computations.

Strassen-like algorithms. Strassen-like algorithms are recur
sive matrix multiplication algorithms based on a scheme for
multiplying k × k matrices using q scalar multiplications for
some k and q < k3 (so that the algorithm performs O(nω0) flops
where ω0 = logk q.) For the latest bounds on the arithmetic
complexity of matrix multiplication and references to
previous bounds, see Williams.25 For our lower bound proof
to apply, we require another technical criterion for Strassen-
like algorithms: the decoding graph must be connected. This
class of algorithms includes many (but not all) fast matrix
multiplications. For details and examples, see Ballard et al.7, 10

For Strassen-like algorithms, the statements of the com-
munication lower bounds have the same form as Theorem 1,
Corollary 2, and Theorem 3: replace log2 7 with ω0 everywhere
it appears! The proof technique follows that for Strassen’s

4.1. Recursive construction
We construct the computation graph Hi+1 by constructing Deci+1C
from DeciC and Dec1C, similarly constructing Enci+1 A and
Enci+1B, and then composing the three parts together. Here
is the main idea for recursively constructing Deci+1C, which
is illustrated in Figure 7.

•	 Replicate Dec1C 7i times.
•	 Replicate DeciC 4 times.
•  Identify the 4 · 7i output vertices of the copies of Dec1C

with the 4 · 7i input vertices of the copies of DeciC:
  – �Recall that each Dec1C has four output vertices.
  – �The set of each first output vertex of the 7i Dec1C

graphs is identified with the set of 7i input vertices of
the first copy of Deci C.

  – �The set of each second output vertex of the 7i Dec1C
graphs is identified with the set of 7i input vertices of
the second copy of DeciC, and so on.

  – �We make sure that the jth input vertex of a copy of
DeciC is identified with an output vertex of the j th copy
of Dec1C.

After constructing Enci+1A and Enci+1B in a similar manner, we
obtain Hi+1 by connecting edges from the kth output vertices
of Enci+1A and Enci+1B to the kth input vertex of Deci+1C, which
corresponds to the element-wise scalar multiplications.

Enclog2 n BEnclog2 n A

Declog2 n C log2 n

nlog
2

 7

n2

n2

Figure 6. High-level view of Strassen’s CDAG for n × n matrices. The
graph is composed of two encoding subgraphs and one decoding
subgraph; connections between the subgraphs are not shown.

DeciC

Dec
1 C

Figure 7. Illustration of the recursive construction of the decoding
subgraph. To construct Deci+1C, DeciC is replicated 4 times and Dec1C
is replicated 7i times, and appropriate vertices are identified.

February 2014 | vol. 57 | no. 2 | communications of the acm 113

implementation for distributed-memory machines that it
performs much faster in practice.6, 21

Communication avoiding parallel Strassen. In Section 2.2,
we stated the communication cost of a new parallel
algorithm for Strassen’s matrix multiplication, matching
the asymptotic lower bound. The details of the algorithm
appear in Ballard et al.,6 and more extensive implementation
details and performance data are given in Lipshitz et al.21
We show that the new algorithm is more efficient than
any other parallel matrix multiplication algorithm of
which we are aware, including those that are based on the
classical algorithm and those that are based on previous
parallelizations of Strassen’s algorithm.

Figure 1 shows performance on a Cray XT4. For results on
other machines, see Lipshitz et al.21 For example, running on
a Cray XE6 with up to 10,000 cores, for a problem of dimen-
sion n = 131712, our new algorithm attains performance as
high as 30% above the peak for classical matrix multiplica-
tion, 83% above the best classical implementation, and
75% above the best previous implementation of Strassen’s
algorithm. Even for a small problem of dimension n = 4704,
it attains performance 66% higher than the best classical
implementation.

Further applications. The key algorithmic idea in our par
allel implementation of Strassen’s algorithm is a careful
parallel traversal of the recursion tree. This idea works for
many other recursive algorithms where the subproblems
do not have interdependencies (and it also works in some
cases where dependencies exist). For example, classical
rectangular matrix multiplication14 and sparse matrix–
matrix multiplication4 can be parallelized in this way to
obtain communication optimality.

The same techniques can be utilized to save energy at the
algorithmic level (since communication consumes more
energy than computation) as well as to obtain lower bounds
on energy requirements.15

In summary, we believe this work flow of theoretical lower
bounds to algorithmic development to efficient implemen-
tations is very effective: by considering fundamental compu-
tations at an algorithmic level, significant improvements in
many applications are possible.

Acknowledgments
We would like to thank Benjamin Lipshitz for his work on
many of these ideas and for useful discussions during the
writing of this paper.

This work is supported by Microsoft (Award #024263)
and Intel (Award #024894) funding and by matching fund-
ing by U.C. Discovery (Award #DIG07-10227); additional
support from Par Lab affiliates National Instruments,
NEC, Nokia, NVIDIA, and Samsung is acknowledged. This
research is supported by U.S. Department of Energy grants
under Grant Numbers DE-SC0003959, DE-SC0004938,
DE-SC0005136, DE-SC0008700, AC02-05CH11231, and
DE-FC02-06-ER25786, and DARPA grant HR0011-12-2-0016.
The research is also supported by the Sofja Kovalevskaja
programme of Alexander von Humboldt Foundation and
by the National Science Foundation under agreement DMS-
0635607, and by ERC Starting Grant Number 239985.�

algorithm. While the bounds for the classical algorithm
have the same form, replacing log2 7 with 3, the proof tech-
niques are quite different.18, 20

Fast rectangular matrix multiplication. Many fast algo
rithms have been devised for multiplication of rectangular
matrices (see Ballard et al.7 for a detailed list). A fast
algorithm for multiplying m × k and k × r matrices in q < mkr
scalar multiplications can be applied recursively to multiply
mt × k t and k t × r t matrices in O(qt ) flops. For such algorithms,
the CDAG has very similar structure to Strassen and
Strassen-like algorithms for square multiplication in that
it is composed of two encoding graphs and one decoding
graph. Assuming that the decoding graph is connected, the
proofs of Theorem 1 and Lemma 5 apply where we plug in mr
and q for 4 and 7. In this case, we obtain a result analogous
to Theorem 1 which states that the communication cost of
such an algorithm is given by Ω (qt/M logmr q–1). If the output
matrix is the largest of the three matrices (i.e., k < m and k < r),
then this lower bound is attained by the natural recursive
algorithm and is therefore tight. The lower bound extends to
the parallel case as well, analogous to Corollary 2, and can be
attained using the algorithmic technique of Ballard et al.6

The rest of numerical linear algebra. Fast matrix multi
plication, algorithms are basic building blocks in many fast
algorithms in linear algebra, such as algorithms for LU,
QR, and eigenvalue and singular value decompositions.13
Therefore, communication cost lower bounds for these
algorithms can be derived from our lower bounds for fast
matrix multiplication algorithms. For example, a lower
bound on LU (or QR, etc.) follows when the fast matrix
multiplication algorithm is called by the LU algorithm
on sufficiently large sub-matrices. This is the case in the
algorithms of Demmel et al.,13 and we can then deduce
matching lower and upper bounds.10

Nested loops computation. Nearly all of the arguments
for proving communication lower bounds are based on
establishing a relationship between a given set of data and
the amount of useful computation that can be done with
that data, a so-called “surface-to-volume” ratio. For example,
Hong and Kung18 use an analysis of dominator sets and
minimal sets of CDAGs to establish such ratios. The Loomis–
Whitney geometric inequality is applied for this purpose
to matrix computations specified by three nested loops in
Ballard et al.8 and Irony et al.20 Recently, Christ et al.12 have
extended this analysis using a generalization of the Loomis–
Whitney inequality, known as the Hölder–Brascamp–Lieb
inequality, to prove lower bounds for computations that
are specified by an arbitrary set of nested loops that linearly
access arrays and meet certain other criteria.

5.2. Algorithms
The main motivation for pursuing communication
lower bounds is to provide targets for algorithmic per-
formance. Indeed, the conjecture and proof of Theorem
1 and Corollary 2, as well as the existence of an optimal
algorithm in the sequential case, were the main moti-
vations for improving the parallel implementations of
Strassen’s algorithm. Not only were we able to devise an
optimal algorithm, but we were also able to show with an

research highlights

114 communications of the acm | february 2014 | vol. 57 | no. 2

References
multiplication. In Proceedings of the
27th IEEE International Parallel &
Distributed Processing Symposium
(IPDPS) (2013), IEEE.

	15.	D emmel, J., Gearhart, A., Lipshitz, B.,
Schwartz, O. Perfect strong scaling using
no additional energy. In Proceedings
of the 27th IEEE International
Parallel & Distributed Processing
Symposium, IPDPS ’13 (2013), IEEE.

	16.	 Fuller, S.H., Millett, L.I., eds. The
Future of Computing Performance:
Game Over or Next Level? The
National Academies Press,
Washington, D.C., 2011, 200 pages,
http://www.nap.edu.

	17.	G raham, S.L., Snir, M., Patterson, C.A.,
eds. Getting up to Speed: The Future
of Supercomputing. Report of National
Research Council of the National
Academies Sciences. The National
Academies Press, Washington, D.C.,
2004, 289 pages, http://www.nap.edu.

	18.	H ong, J.W., Kung, H.T. I/O complexity:
The red-blue pebble game. In STOC
’81: Proceedings of the 13th annual
ACM Symposium on Theory of
Computing (1981), ACM, New York,
NY, USA, 326–333.

	19.	H oory, S., Linial, N., Wigderson, A.
Expander graphs and their applications.
Bull. AMS 43(4), (2006), 439–561.

	20.	I rony, D., Toledo, S., Tiskin, A.

Communication lower bounds
for distributed-memory matrix
multiplication. J. Parallel Distrib.
Comput. 64, 9, (2004), 1017–1026.

	21.	 Lipshitz, B., Ballard, G., Demmel, J.,
Schwartz, O. Communication-avoiding
parallel Strassen: Implementation
and performance. In Proceedings of
the International Conference on High
Performance Computing, Networking,
Storage and Analysis, (2012),
IEEE Computer Society Press, Los
Alamitos, CA, USA, 101:1–101:11.

	22.	 McColl, W.F., Tiskin, A. Memory-
efficient matrix multiplication in the
BSP model. Algorithmica 24 (1999),
287–297.

	23.	 Solomonik, E., Demmel, J. Commu-
nication-optimal parallel 2.5D matrix
multiplication and LU factorization
algorithms. In Proceedings of the 17th
International European Conference
on Parallel and Distributed Computing
(2011), Springer.

	24.	 Strassen, V. Gaussian elimination is
not optimal. Numer. Math. 13 (1969),
354–356.

	25.	 Williams, V.V. Multiplying matrices
faster than Coppersmith-Winograd.
In Proceedings of the 44th
Symposium on Theory of Computing,
STOC ’12 (2012), ACM, New York, NY,
USA, 887–898.

	 1.	A garwal, R.C., Balle, S.M., Gustavson, F.G.,
Joshi, M., Palkar, P. A three-
dimensional approach to parallel
matrix multiplication. IBM J. Res. Dev.
39, 5 (1995), 575–582.

	 2.	A lon, N., Schwartz, O., Shapira, A.
An elementary construction of constant-
degree expanders. Combinator. Probab.
Comput. 17, 3 (2008), 319–327.

	 3.	A nderson, E., Bai, Z., Bischof, C.,
Demmel, J., Dongarra, J., Croz, J.D.,
Greenbaum, A., Hammarling, S.,
McKenney, A., Ostrouchov, S.,
Sorensen, D. LAPACK’s User’s Guide,
Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA,
1992. Also available from http://www.
netlib.org/lapack/.

	 4.	B allard, G., Buluç, A., Demmel, J.,
Grigori, L., Lipshitz, B., Schwartz, O.,
Toledo, S. Communication Optimal
Parallel Multiplication of Sparse
Random Matrices. In Proceedings of the
25th ACM Symposium on Parallelism in
Algorithms and Architectures, (2013),
ACM, New York, NY, USA.

	 5.	B allard, G., Demmel, J., Holtz, O.,
Lipshitz, B., Schwartz, O. Brief
announcement: Strong scaling of
matrix multiplication algorithms and
memory-independent communication
lower bounds. In Proceedings of the
24th ACM Symposium on Parallelism
in Algorithms and Architectures,
(2012), ACM, New York, NY, USA, 77–79.

	 6.	B allard, G., Demmel, J., Holtz, O.,
Lipshitz, B., Schwartz, O. Communication-
optimal parallel algorithm for
Strassen’s matrix multiplication. In
Proceedings of the 24th ACM
Symposium on Parallelism in
Algorithms and Architectures, SPAA ’12
(2012), ACM, New York, NY, USA, 193–204.

	 7.	B allard, G., Demmel, J., Holtz, O.,
Lipshitz, B., Schwartz, O. Graph
expansion analysis for communication
costs of fast rectangular matrix
multiplication. In Design and Analysis
of Algorithms. G. Even and D. Rawitz,
eds., Volume 7659 of Lecture Notes
in Computer Science (2012), Springer,
Berlin-Heidelberg, 13–36.

	 8.	B allard, G., Demmel, J., Holtz, O.,
Schwartz, O. Graph expansion and
communication costs of fast matrix
multiplication. In Proceedings of
the 23rd Annual ACM Symposium
on Parallel Algorithms and Architec-
tures (2011), ACM, New York, NY,
USA, 1–12.

	 9.	B allard, G., Demmel, J., Holtz, O.,
Schwartz, O. Minimizing
communication in numerical linear
algebra. SIAM J. Matrix Anal. Appl.
32, 3 (2011), 866–901.

	10.	B allard, G., Demmel, J., Holtz, O.,
Schwartz, O. Graph expansion and
communication costs of fast matrix
multiplication. J. ACM (Dec. 2012)
59, 6, 32:1–32:23.

	11.	 Cannon, L. A cellular computer
to implement the Kalman filter
algorithm. PhD thesis, Montana State
University, Bozeman, MN (1969).

	12.	 Christ, M., Demmel, J., Knight, N.,
Scanlon, T., Yelick, K. Communication
lower bounds and optimal algorithms
for programs that reference arrays –
Part I. Manuscript, 2013.

	13.	D emmel, J., Dumitriu, I., Holtz, O.
Fast linear algebra is stable. Numer.
Math. 108, 1 (2007), 59–91.

	14.	D emmel, J., Eliahu, D., Fox, A.,
Kamil, S., Lipshitz, B., Schwartz, O.,
Spillinger, O. Communication-optimal
parallel recursive rectangular matrix © 2014 ACM 0001-0782/14/02 $15.00

Grey Ballard (ballard@eecs.berkeley.
edu), Electrical Engineering and
Computer Science Department,
University of California, Berkeley, CA.

James Demmel (demmel@cs.berkeley.
edu), Department of Mathematics
and Computer Science Division,
University of California, Berkeley, CA.

Olga Holtz (holtz@math.berkeley.edu),
Department of Mathematics, University of
California, Berkeley, CA, and Institut
für Mathematik, Technische Universitat
Berlin, Germany.

Oded Schwartz (odedsc@eecs.berkeley.
edu), Electrical Engineering and Computer
Science Department, University of
California, Berkeley, CA.

ACM Transactions
on Interactive

Intelligent Systems

ACM Transactions on Interactive
Intelligent Systems (TIIS). This
quarterly journal publishes papers
on research encompassing the
design, realization, or evaluation of
interactive systems incorporating
some form of machine intelligence.

World-Renowned Journals from ACM
 ACM publishes over 50 magazines and journals that cover an array of established as well as emerging areas of the computing field.

IT professionals worldwide depend on ACM's publications to keep them abreast of the latest technological developments and industry
news in a timely, comprehensive manner of the highest quality and integrity. For a complete listing of ACM's leading magazines & journals,

including our renowned Transaction Series, please visit the ACM publications homepage: www.acm.org/pubs.

 PLEASE CONTACT ACM MEMBER
SERVICES TO PLACE AN ORDER
Phone: 1.800.342.6626 (U.S. and Canada)
 +1.212.626.0500 (Global)
Fax: +1.212.944.1318
 (Hours: 8:30am–4:30pm, Eastern Time)
Email: acmhelp@acm.org
Mail: ACM Member Services
 General Post Offi ce
 PO Box 30777
 New York, NY 10087-0777 USA

ACM Transactions on Computation
Theory (ToCT). This quarterly peer-
reviewed journal has an emphasis
on computational complexity, foun-
dations of cryptography and other
computation-based topics in theo-
retical computer science.

ACM Transactions
on Computation

Theory

www.acm.org/pubs

PUBS_halfpage_Ad.indd 1 6/7/12 11:38 AM

