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Abstract

Infeasibility and Negative Curvature in Optimization.
Erik G. Boman, Stanford University, 1999.

It may seem reasonable that only problems with a solution can be solved. However,
in practice it may be that some type of “solution” is needed even when the problem is ill-
posed and no solution exists. Our concern is with constrained optimization problems that
do not have any feasible points. (We then say the problem is infeasible.) It may be that a
small perturbation of some of the constraints would yield a solution, and determining such
a perturbation might produce the approximate solution required. However, by allowing a
slightly larger pertubation in the constraints, we might find a much improved value of the
objective function. It is quite possible that a “slightly infeasible solution” of this kind would
be welcomed by the user. In this thesis we address such issues of infeasibility.

Sequential quadratic programming (SQP) methods are a class of methods for solving
constrained nonlinear optimization problems. They have been very successful in practice,
and are widely regarded as the most efficient direct approach to constrained optimization.
As their name suggests, SQP methods are iterative and solve a quadratic program (QP)
at each iteration. In convergence analysis it is usually assumed that the QP subproblems
always have a feasible point. This assumption is not warranted even when the original
nonlinear problem has a feasible point. When the original problem is infeasible, it is almost
inevitable that the QP subproblems will be infeasible. One may think this acceptable
because if there is no solution to the problem posed, it should not be surprising that an
algorithm might break down. However, in practice we would still like a point that in some
sense is “good”. This thesis addresses the issue of how to proceed when the QP subproblems
are infeasible and how to determine an approximate solution acceptable to a user when the

problem does not have a feasible point.



The approach taken is to introduce additional variables into the problem. This can be
done in several ways. Each option has different properties, for example with respect to
the linear algebra operations involved to solve the QP subproblem. A key issue is how to
measure infeasibility and feasibility. Some information provided by the user is helpful here
because the measure will differ with the application. We describe and analyze two variants
of the so-called elastic approach. The first variant is based on the /; norm, and the second
on the /o, norm.

A concern when elastic variables are added is that we may converge to a point in the
elastic formulation satisfying the first-order optimality conditions that is not feasible for
the original problem. At such a point, no direction of descent exists for the measure of
infeasibility being used. The only way to proceed is to determine a direction of negative
curvature. In Chapters 4 and 5 we focus on directions of negative curvature and how they
can be computed efficiently.

Our treatment of negative curvature is not directly based on the motivation just de-
scribed. Rather, we examine directions of negative curvature in the more general context
of unconstrained optimization. When second derivatives are known we wish to be able to
determine a point that satisfies the second-order (necessary) conditions for a minimizer. It
can be shown that an essential feature of such algorithms is to be able to compute a di-
rection of negative curvature for a symmetric matrix. We describe some new work on how
to compute such directions. In particular, we show how, with little effort, some iterative

methods can be used to obtain a good direction of negative curvature from a poor direction.
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Chapter 1

Introduction

We consider the nonlinear optimization problem

NLP: min F(x)
TER™ (1.1)
st.  c(z) >0,

where F' : R" — R and ¢ : R* — R™. We will assume that both F'(z) and ¢(z) are smooth,
i.e. they are at least twice differentiable. Although only inequality constraints are specified,
in general we may also have some equality constraints. In theory, an equality h(z) = 0 can
be transformed into a pair of inequalities h(z) > 0 and —h(z) > 0, but in practice it is
usually better to treat equalities separately. Another formulation of NLP that is commonly

used in software packages is

where FF : R" - R A : R*" — R™ is linear, ¢ : R* — R™2 is nonlinear, and the lower
and upper bounds [ and u are vectors of appropriate length. Since these two formulations
are equivalent we will use them interchangeably. The former version is most convenient to
analyze from a theoretical point of view, but since we are also concerned with efficiency in
practical algorithms we sometimes need the latter version as well.

Many types of algorithms have been proposed to solve problems of the type NLP. Good
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general references are [20] and [27]. In this dissertation we focus on SQP (Sequential
Quadratic Programming) methods. We note that NLP can be a very difficult problem
to solve; for instance, it is NP-hard in the traditional complexity model [80]. Nevertheless,
there are several algorithms for nonlinear programming that work quite well in practice.
Most algorithms attempt to solve NLP by solving a sequence of simpler optimization prob-
lems (subproblems). In this thesis we are only concerned with finding local minima. Global
optimization is a much more difficult problem, beyond the scope of this thesis.

Although the work presented here is targeted at SQP methods, we believe many of
the principles are applicable to other algorithms that are based on solving a sequence of

subproblems.

1.1 Infeasibility issues

1.1.1 Owur motivation

Given an instance of NLP it is hard (in fact NP-hard) to decide even whether a solution
exists. A solution exists if and only if there is a feasible point. If a feasible point exists, we
say that the problem is feasible, otherwise it is infeasible.

Our focus is on two different, but related, issues related to feasibility and infeasibility.
For the first issue, we assume an optimization method that solves a sequence of subproblems
(e.g. SQP, see Section 1.3). Even if the original nonlinear problem is feasible, some of the
subproblems may be infeasible. The algorithm should not stop in this case. Consequently,
some type of “approximate solution” of the infeasible subproblems is needed. In other
words, we need to do something reasonable with the inner problem to ensure that the outer
iteration can continue. An obvious approach is to modify the subproblems. This is the
topic of Chapters 2 and 3. A brief overview of earlier work is given in Section 1.4.

The second issue is what to do when the problem itself is infeasible, not just a sub-
problem. That is, we cannot assume the infeasibility will disappear, since no feasible point
exists. Curiously, it may even happen that all subproblems are feasible. Optimization prob-
lems that model real-world situations are usually feasible, but this is not always the case.
It may happen that there is no solution to the real problem, or the mathematical model
formulation has no solution. There is no simple way to detect when this happens. Typically,
the user tries to solve the model problem not knowing whether a solution exists or not. The

output from an optimization routine will normally (but not always) be a local optimum
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if the problem is feasible. But when the problem is infeasible (or some other difficulty
arises), many software packages simply terminate with a message saying “no feasible point”
or similar. Such behavior is not very helpful since the user often needs some “answer”, even
when none exists. This is the case in many real-time and on-line situations; some decision
always has to be made (not necessarily optimal). One possibility, implemented in some
codes, is to switch to minimizing the infeasibilities (in some norm) when it appears that no
feasible point exists. This is a bit more useful. However, what the user often would like is
an “approximate solution” that is near feasible and at the same time produces a reasonably
good objective value. We aim to satisfy such users. Qur proposed method will not abruptly
switch from one objective function to another, but rather change the objective smoothly.
If a “near feasible” point is not found, this is an indication that the model from which the
problem was derived may be poor. Even if one has a good mathematical model of a real-life
system, the resulting optimization problem may be infeasible under some circumstances. A
similar but slightly different situation is when the real-life problem has a solution but the
mathematical problem does not because of inaccuracies in the model. In both these cases

our method can prove valuable.

A third issue that is not generally appreciated is that even if a subproblem is feasible,
we may not wish to move to a feasible point. This may seem counter-intuitive, but we show

an example in Section 1.1.3.

Finally, we give an example of an application area. Utility companies must plan the
operation of power plants and the distribution of electrical power to their customers. This
is often split into two optimization problems, where the first decides which plants and
generators to turn on and how to operate them, while the second determines the distribution
of the power over a network to the customers. The goal may be to minimize the overall
cost or to maximize profit. The constraints are of many types. One category is physical
laws like Ohm’s and Kirchhoff’s laws, while a different type is conditions like “the end-
user voltage should be 110-115 volts”. It can happen that the problem is infeasible; e.g.,
there could be insufficient resources to satisfy the demand. Clearly, one must do something
reasonable and not just give up. Some constraints cannot be violated, for example the
physical (electromagnetic) laws, so some of the user-imposed constraints must be relaxed
or violated. Omne option is to let the voltage fall below the lowest threshold (a so-called
brown-out). An alternative is to cut the power to some customers completely. Which is the

better solution depends on the metric used to measure the constraint violations.
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1.1.2 Inconsistent constraints

In constrained optimization, it may happen that no feasible point exists. If so, we say
the constraints are inconsistent and the problem is infeasible. (Informally we may say the
constraints are infeasible.) Since this is an important topic in this thesis, we summarize
some well-known properties about infeasibility and inconsistency in this section.

If all constraints are bounds on the variables, i.e.,
[ <z<u, (1.3)

it is trivial to determine if a feasible point exists. The jth constraint is inconsistent if and
only if lj > uj.
Consider the case where all constraints are linear. We need to distinguish between

equality and inequality constraints. Consider first the equality constraints
Az =b, (1.4)

where A is m by n. When m < n and A has full rank, a feasible region always exists. This
feasible region is isomorphic to R*~™. A special case is when m = n, where the feasible
region is the single point A~ 'b. In general, the constraints are inconsistent if and only if
rank([A b]) > rank(A), i.e., there exists a vector y such that ATy = 0 and b7y # 0.

Consider next linear inequalities,
Az > b. (1.5)

The feasible region is a convex polyhedron, possibly empty. As with equalities, a feasible
region always exists when rank(A) = m < n. The constraints are inconsistent if and only
if there exists a vector y > 0 such that A7y = 0 and b’y > 0. The most common approach
to finding a feasible point is to solve an LP that minimizes the sum of infeasibilities.

With nonlinear constraints, there is no simple characteristic that tells us whether a
feasible point exists. The feasibility problem is as hard as NLP. Since SQP algorithms for
nonlinear optimization linearize the nonlinear constraints, the linear case is most important
to us.

Some work has been done on identifying (irreducibly) inconsistent sets of constraints,

mostly for linear inequalities [78, 8], but also for nonlinear programs [9]. One motivation is
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Figure 1.1: An infeasible problem.

that there may be errors in the formulation of a large optimization problem, and a tool that
identifies a small set of inconsistent constraints can assist the user in detecting errors in the
model. The same methods can also be used to determine how to modify the constraints

such that a feasible point exists.

1.1.3 Geometric examples

We show some examples of infeasible problems. For now we ignore the objective and show

only the (inconsistent) constraints.

Example 1.1.1

z1 >0 (1.6)
T2 Z 0 (17)
—z1—22—-120 (1.8)

These linear inequalities are illustrated in Figure 1.1. The first two constraints imply a
feasible point must lie in the first quadrant, while the last constraint defines an infeasible
half-plane that contains the entire first quadrant. Consequently, no point is feasible with

respect to all three constraints. However, if any one of the constraints is removed, the
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problem becomes feasible. We are interested in finding points that are “near-feasible”. Such
points can be defined in various ways. T'wo approaches discussed in the next chapters are to
minimize the constraint violations in the /o, and /; norms, respectively. In this example, one
can show the [,-norm of the constraint violations is minimized by z = (—1/3,—1/3), while
any point inside the triangle given by the vertices (0, —1), (—1,0) and (0,0) is a minimizer

in the ly-norm.

Example 1.1.2

i+ (12— 2)* <1 (1.9)
3+ (22 +2)? <1 (1.10)

These nonlinear constraints define two unit circles centered at (0, —2) and (0,2), respec-
tively. Clearly, no point can lie inside both circles because they do not intersect, so the
constraints are inconsistent. The origin, z = (0,0), is a least infeasible point in any of the

measures we consider.

As we shall see in Section 1.3, SQP methods create subproblems with constraints that
are linearizations of the nonlinear constraints. We therefore consider different linear ap-

proximations of (1.9)—(1.10).

Suppose the current iterate is x = (0,0). Then the geometry of the problem is symmetric
around the line £1 = 0, and a linearization of the two circles produces two parallel lines as

shown on the top of Figure 1.2. The QP subproblem must then be infeasible.

Suppose next that the current iterate is slightly above the line 9 = 0. The two resulting
lines for the linearized constraints are no longer parallel but slightly tilted. They intersect
at a point where z5 is large and negative. This intersection point is a vertex that defines
the “top” of the feasible region (see bottom part of Figure 1.2). This demonstrates that
a subproblem may be feasible even if the outer problem is not. However, in this example
it would be unwise to move to a feasible point because the feasible region lies far from the

region of interest with small constraint violations for the nonlinear problem.
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/

Figure 1.2: Top subproblem is infeasible; bottom subproblem is feasible, but it is not
advisable to move to a feasible point.
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1.2 Optimality conditions for NLP

We review the necessary and sufficient conditions for optimality. Most optimization al-
gorithms are designed to try to satisfy these optimality conditions. Before we state the
conditions, we need some terminology. An inequality constraint ¢;(z) > 0 is active at z if
ci(z) = 0. If ¢;(x) > 0, it is inactive. By convention, all equality constraints ¢;(z) = 0 are
active at a feasible point.

A point z* is a local minimizer (solution) to NLP if ¢(z*) > 0 and there exists a § > 0

such that F'(z) > F(z*) for all z satisfying
|z —z*| <d§ and c(z)>0. (1.11)

We will usually (implicitly) assume that the Jacobian of the active constraints at z*,
J, has full rank. We note that this condition does not always hold, but it is a common
assumption in convergence proofs.

Necessary conditions for z* to be a local minimizer are that there exist multipliers \*
such that

c(z*) >0, (1.12)

JIN* = g(z*), Jor ZTg(z*) = 0] (1.13)

A* >0, (1.14)

Z™W (¢*, \*) Z is positive semidefinite, (1.15)

where g = VF(z), Z is a basis for the nullspace of J, and W (z, \) is the Hessian of the
Lagrangian L(z,\). These conditions are called the second-order KKT (Karush-Kuhn-
Tucker) conditions. The first-order conditions are (1.12-1.14).

If we replace (1.14) and (1.15) by

>0, (1.16)
ZTW (x*,\*) Z is positive definite (1.17)

we obtain sufficient conditions for optimality.
We note that the methods in the first three chapters of this dissertation do not use exact

(analytical) second derivatives, and convergence can only be proven to first-order optimality
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points. In the last chapter we discuss second-order methods that use directions of negative

curvature.

1.3 SQP algorithms

SQP algorithms can be viewed as generalizations of Newton’s method to the (inequality-)
constrained case. The basic idea is to construct a constrained quadratic model around
the current iterate xj. Minimization of this quadratic model gives us an update pg that
approximates the error z* — zx. Our new iterate is zp1 = xx + agpg, where oy is usually
determined by a line search. Trust-region methods can also be used.

In other words, SQP methods solve a sequence of quadratic programs (QPs). Each QP
has linear constraints and a quadratic objective. The QP constraints are linearizations of
the nonlinear constraints at xy. It is important to note that the quadratic objective is an
approximation to the Lagrangian L(z, \), and not to the objective function F(x). The kth
QP subproblem for NLP can be stated as

QP: min gip+ pTHyp

(1.18)
s.t.  Jgp > —cy,

where g = VF(zy), J; is the Jacobian of ¢ at x, and Hy is an approximation to the

Hessian of the Lagrangian.

1.3.1 Brief SQP history

The origins of SQP methods can be traced back to Wilson’s doctoral thesis in 1963 [82].
Wilson was only concerned with convex problems and his algorithm required exact Hessians.
In 1969, Murray [49] proposed an SQP algorithm that used a quasi-Newton approximation
of the Hessian. He also suggested using a merit function with a line search.

SQP methods received a lot of attention in the 1970s. Of particular significance are
the papers by Biggs [3], Han [33] and Powell [61, 62]. While most SQP methods produce
QPs with inequality constraints, Biggs developed an algorithm with equality-constrained
QPs. Han proved convergence for a class of SQP algorithms, and Powell described an SQP

algorithm for which he could prove (local) superlinear convergence.
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1.3.2 Merit function and line search

Any algorithm for constrained optimization needs to ensure that the algorithm converges
to a point that is both feasible and a (constrained) minimizer. To measure how good a
given point is, we cannot simply look at the objective function because that does not say
anything about how close to the feasible set we are. The standard approach today is to
define a merit function, which combines both the objective and the constraint violations
into one function. Merit functions are closely related to penalty functions, which we will
study in Section 2.2. Here we assume for simplicity that all constraints are equalities of
the form c¢(z) = 0, and briefly mention that the two most popular merit functions for SQP

methods are the {1 merit function

M(z) = F(z) + pllc(z) |1, (1.19)
and the augmented Lagrangian
M(z,\) = F(z) — Me(z) + gc(x)Tc(m), (1.20)

where p > 0 is a penalty parameter and X is a set of Lagrange multiplier estimates. In
practice, a more complicated version of the augmented Lagrangian merit function is used.

We focus on algorithms that use a line search (the main alternative is the trust-region
approach). That is, after a search direction p has been determined, we search along the
line £ 4+ ap in order to find a good step length a. The merit function is used in the line
search to determine the step a. Most convergence proofs for SQP methods rely on proving

a sufficient decrease in the merit function at each iteration.

1.3.3 Multiplier estimates

The SQP methods that we focus on rely on Lagrange multiplier estimates. Instead of only
searching in the primal space for z*, these methods generate iterates (zy, Ax) that we want
to converge to (z*,A*). Hence we are searching in a higher-dimensional space than that
of . This basic idea is also the foundation of primal-dual methods. It is important that
we compute accurate multiplier estimates, since z cannot converge to z* any faster than
A= AN

In SQP methods we need to distinguish between the multipliers of the nonlinear problem
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and those of the QP. In each QP minor iteration, the QP multiplier estimates are updated.
After solving a QP, the QP multipliers can then be used to define the search direction in
the Lagrange multiplier (dual) space.

1.3.4 Quasi-Newton update of the Hessian

Most SQP methods do not require exact second derivatives because these may be unavailable
or expensive to compute. Another potential problem is that the exact Hessian may be
indefinite. Standard SQP methods assume H is positive semidefinite and thus the QP
subproblems are convex, but an algorithm with nonconvex QPs has recently been developed
[28]. We focus on SQP methods where at each iteration, a positive definite quasi-Newton
approximation of the Hessian is used. For an overview of quasi-Newton methods, see for

example [13].

1.3.5 Active-set approach

There are two main strategies for handling constraints in optimization problems. In interior-
point (barrier) methods, the iterates z are strictly feasible with respect to inequality con-
straints. The problem of finding an initial feasible point remains. If no such point is known,
the problem is typically augmented with an artificial variable that creates an obvious fea-
sible point for the augmented problem. When both equalities and inequalities are present,
not all interior-point methods are feasible-point methods; infeasible-interior-point methods
also exist.

A different approach is taken in active-set methods. The idea is to predict which con-
straints are active (that is, equality holds) at the solution z*. The algorithm maintains a set
of constraints that are forced to be active at each iteration. This set is called the working
set. The working set may change at each iteration. However, active-set methods are often
very efficient in practice because the working set changes little when the iterates are close

to a minimizer.

1.3.6 A simple SQP algorithm

Based on the previous subsections, we outline a pedagogical (simplified) SQP algorithm.

Implementations of SQP algorithms tend to be much more complicated.
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Algorithm 1.3: Simple SQP algorithm.

Choose xg, A\g and Hy. Set k = 0.
while the KKT conditions are not satisfied
Set up a QP subproblem at z;. Compute a search direction py
and Lagrange multipliers u.
Compute a step length « that reduces the merit function.
Update zx4+1 = zx + apg.
Use uj to update the multiplier estimates Ag.
Set =k + 1.
Evaluate c(zg), g(zg), J(zk).
Update Hy, the Hessian approximation.

end

1.4 Related infeasibility work

It was realized quite early that a deficiency with SQP algorithms is that the QP subproblems
may not have a feasible point. Many ways to remedy this problem have been suggested,
though the topic has never been a central theme in the field of SQP algorithms.

Consider the standard NLP with inequality constraints (1.1). Powell [60] suggested

modifying the linearized constraints in the following way:

Eci(zy) +alp>0, i€V, (1.21)
ci(zr) +alp>0, i¢V, (1.22)

where a; = Vei(xi) and V is the set of constraints that are violated at zj. £ is a scalar
between 0 and 1. When £ = 1, these are the standard QP constraints, which may not be
feasible. With ¢ < 1, the violated constraints are relaxed. One attempts to use a & that is
close to the largest ¢ for which a feasible point of (1.21) exists.

Several authors (Fletcher [18, 19], Powell [63]) have proposed replacing the constrained
QP with an unconstrained QP. The most popular approach has been to add a l; penalty
term to the QP objective and remove the constraints. Such a method, with the addition of
a trust-region constraint to bound the size of the search direction, was proposed by Fletcher
as the Si; QP method.

Tone [77] introduced additional variables to represent the violation in each constraint.
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He proposed adding a big M penalty term in the objective in order to keep the constraint
violations small. He also suggested a way to combine this method with that of Powell. The
approach we later suggest is similar in spirit to Tone’s, but on a detailed level it is quite

different.

Burke and Han [6] developed a robust SQP method in which the QPs are modified such
that a feasible point exists. In order to compute the modification, an additional optimization
problem has to be solved. This problem is either an LP or a QP, depending on the norm
used in their algorithm. This approach can be fairly expensive, but is important because the
authors provided a convergence proof for their algorithm under quite general assumptions.
They show an example where their robust SQP method works but the Si; QP method fails.
An algorithm very similar to the Burke and Han method has been described by Zhou [84].

Recently, Spellucci [74, 73] has proposed an SQP algorithm that handles infeasible QPs,
using an approach similar to that of Tone. This method has been implemented in the code
DONLP2 (available from http://plato.la.asu.edu/donlp2.html).

The approach described in Chapter 2 is closely related to that incorporated in the large-
scale SQP code SNOPT [25]. SNOPT incorporates something called elastic mode, which
allows certain constraints to be violated. We describe this approach in detail in the next

chapter.

A basic question underlying all strategies that attempt to modify infeasible subproblems
is whether one first attempts to solve the original subproblem before deciding to modify,
or one always modifies the subproblem. The first strategy is inefficient in the sense that
one has to solve two subproblems instead of one. A way to avoid the doubling of work
is to solve the feasibility problem as a special subproblem first. In SQP methods, the
feasibility problem for the QP subproblem is an LP, which in general is faster to solve than
a QP. An alternative is to solve only QP subproblems that are known to have a solution.
The “always modify” approach falls into this category. In some algorithms, computing the
required modification is a costly optimization problem in itself. We seek a method where

the modification is so simple that the extra cost is negligible.

A closely related topic is the analysis of SQP methods in the case where the QP sub-
problems are degenerate, and possibly the NLP itself. For example, a standard assumption
is that the Jacobian of the active constraints is nonsingular, but this is not always the case.

Wright [83] has described and analyzed an inexact SQP algorithm designed for such cases.
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Temporary and permanent infeasibility

The efforts described in the previous section are mainly concerned with “temporary” in-
feasibility. That is, even when a subproblem in an optimization algorithm is determined
to be infeasible, it is assumed that the original problem is feasible. How the infeasibility is
overcome (e.g., by modifying the subproblem) is not very important because eventually the
infeasibility will disappear.

On the other hand, if the original NLP itself is infeasible, one would expect infeasible

” infeasi-

subproblems to be a persistent phenomenon. This can be viewed as “permanen
bility. In such cases, an approximate solution that is (slightly) infeasible is the best answer
one can find. Such an approximate solution is the solution to a nearby perturbed prob-
lem. However, in general it is not known how the problem should be perturbed. Different
modifications of the subproblems will clearly produce different “solutions”.

Our goal is to devise a single strategy that addresses both types of infeasibility simul-

taneously.



Chapter 2

The [{-elastic approach

We are interested in two situations. In the first case, we have a nonlinear problem (NLP)
whose feasible set may be empty. The second case concerns the occurrence of infeasible
subproblems within an outer iteration of a nonlinear optimization algorithm; in particular,
infeasible QPs within an SQP method. Our treatment will focus mainly on the second
problem, but we later show the same approach is useful in the first setting as well.

We propose a strategy involving some additional variables (which we will call elastic
variables), and allowing the original constraints to be violated. This is combined with a
penalty function method. An important distinction from some earlier work (like the Sl; QP
method by Fletcher [19]) is that the penalty function is used only to obtain a search direction
and not as a merit function. The strategy is closely related to the one recently adopted in
SQOPT and SNOPT [25]. There the term elastic bound is used, because the bounds on
the constraints can be viewed as being elastic and no additional variables are introduced.
In our presentation we treat the elastic variables as if they were regular variables, but in an
implementation it may be possible to represent such variables implicitly in some cases.

In this chapter we focus on the [; penalty function, while in the next chapter we consider

the [, norm.

2.1 Elastic variables and a composite objective

Consider the nonlinear problem (1.1). We propose handling the infeasibility issue by mod-
ifying the original problem so that

e 3 feasible point always exists;

15
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e if the original problem has a nonempty feasible set we obtain the same solution;
e the modified problem is not harder to solve than the original.

One way to achieve the first goal is to introduce some extra variables into the problem

representing the constraint violations (infeasibilities). This leads to

min  F(z)+yP(t)
)t (2.1)
st. c(r)+t>0, t>0,

where 7y is a positive parameter, ¢ is a vector, and P is some penalty function. The intuition
behind this approach is that we allow the constraints to be violated but add a penalty to
the objective function for doing so. We can always find a feasible point for the modified
problem (2.1) for any given z by adjusting elements of ¢ until they are sufficiently large.
We call the t-variables elastic variables because they allow the constraints to be “stretched”
(violate the bounds). The term elastic is borrowed from linear programming where it has
a similar meaning?.

Several issues need to be addressed:

1. Precisely how to introduce the elastic variables? One can think of many variations of

the above formulation.

2. What type of penalty term to use? We want the penalty function to be differentiable

and ideally also to be exact for a finite ~.
3. How is the solution of the problem affected by this penalty term?

4. How is the computational complexity of the problem affected?

2.1.1 Introducing elastic variables

The best way to introduce elastic variables will depend on the formulation of the optimiza-
tion problem. One concern is to keep the number of constraints and the number of variables
low to avoid unnecessary work. Another concern is that we need to introduce the variables

in such a way that we can develop some theory regarding convergence properties.

!This use of the word “elastic” is sometimes attributed to G. Brown.



2.2. PENALTY FUNCTIONS 17

For inequalities, the obvious way to allow constraint violations is
c(x) >0 = c(z)+t>0, t>0, (2.2)
as above. This introduces one new t—variable for each constraint. An alternative is
c(z) >0 = c¢(z)+1e>0, 72>0. (2.3)

where 7 is a scalar and e as usual is a vector of ones. The latter version only captures the
most violated constraint, while the former takes into account all the constraint violations.
It is not immediately obvious whether one formulation is better than the other. We study

the ¢ version (one-norm) in this chapter, and the 7 version (max-norm) in the next chapter.

2.2 Penalty functions

We have added new variables ¢ or 7 to the problem. Ideally we wish ¢ or 7 to become zero
and thereby provide a solution to the original problem. To achieve this we must add a
penalty term to the objective. Since penalty functions have been extensively studied in the

literature [2, 20], we only briefly review the topic here.

2.2.1 Penalty functions

One way to transform a constrained optimization problem into an unconstrained problem,
is to use a penalty function. Suppose we wish to solve the NLP (1.1). Let ¢~ (z) be defined
by ¢; (z) = max(0, —c;(z)). We refer to ¢~ as the constraint violations. The main idea is

to solve the unconstrained problem
min F'(z) + P(c (z), p) (2.4)

instead of the constrained problem. Here p > 0 is a penalty parameter and P(y,p) is a
penalty term. The penalty term should satisfy P(0,p) = 0 and increase monotonically in
both y and p, so that the more violated the constraints are, the higher the penalty. When p
is sufficiently large, the unconstrained minimizer of (2.4) should equal the constrained min-
imizer of (1.1). The exact meaning of “sufficiently large” depends on the penalty function.

We describe the three most important penalty functions.
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The [; penalty function

A simple way to create a penalty function is to take the absolute values (one-norm) of the

violated constraints. This gives
Pi(z,p) = F(z) +plle” (2)|1 = F(2) +p Y _ le; (2)]- (2.5)
i

It can be shown that P; is ezact in the sense that the minimizer of (2.5) is the constrained
minimizer for a finite value of p. However, a major drawback of the absolute value penalty

function is that it is not differentiable. The derivatives do not exist when ¢;(z) = 0.

The [, penalty function

The max-norm (or ) penalty function is

Poo(z,p) = F(x) + plle™ (2) [0 = F(x) + pmax {O,mgX(—cz'(:v))} - (2.6)

If there is only one constraint, then Py (z,p) = Pi(z,p). In the general case with m
constraints, the [, penalty function shares many properties with the /; penalty function;
they are both nondifferentiable, and exact for a finite p. We now turn to differentiable

penalty functions.

The quadratic penalty function
The quadratic penalty function is

Pa(a,p) = F(z) + Ll (@)1 = F(&) + 2o~ ()T (a). (27)

This function is differentiable, although only once differentiable (not twice) when ¢;(z) =0
for some 4. In order to find the constrained minimizer, we may solve (2.7) for an increasing
sequence of values for p, for example 1,10,10%,10%,.... A drawback is that we are only
guaranteed to obtain the constrained minimizer in the limit as p — oo, and the penalty

function is usually increasingly hard to minimize..
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The augmented Lagrangian

There are several versions of the augmented Lagrangian. For equality constrained problems,
we define the augmented Lagrangian to be

La(a,,p) = F(z) - N'e(x) + Le(a) e(x), (2.8)

where )\ is a vector of Lagrange multiplier estimates. This function is differentiable. One
can prove that, when A = \*, the augmented Lagrangian is an exact penalty function for a

finite p. For inequalities several variations exist. Perhaps the most common is

—Nici(z) + L2ei(z)?  if ¢i(z) < N\
La(e, M) = F(&) + 3 pV”+2()T() e 2:9)
i (2N if ¢i(z) > Ai/p

which was suggested by Rockafellar [65].

A procedure for constrained minimization is

For k = 0,1,2,...
Compute a local minimizer, z(A\*), to ming L4 (z, A¥, p).
Update A**! such that {)\*} — X*.
Terminate when c(x(\F)) is sufficiently small.

End

Under standard assumptions, one can show that this procedure will converge to the desired
minimizer for a finite penalty parameter p. In practice, we do not know what p should be

a priori, so p has to be adjusted in the iteration scheme.

2.2.2 Elastic NLP theory

In SQP methods the subproblems are quadratic, so it is natural for us to focus on penalty
functions that have only linear and quadratic terms. Mainly we study what we call an
elastic NLP,
min F(z) + ye't (2.10)
Zz,

s.t. c(x)+t>0, t>0.
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Observe that this is (2.1) with the [; penalty function.

Lemma 1 Assume the NLP (1.1) has a nonempty feasible set. If (z*,\*) is a first-order
KKT point of (1.1), then (z*,0,\*) is a first-order KKT point of (2.10) when

v > miax)\f.

Proof: The lemma follows from the optimality conditions of (1.1). The proof is
essentially the same as the proof showing that the absolute penalty function is exact. We
give a proof here because it provides some helpful insight.

The first-order optimality conditions for (2.10) are

JT 0\ (A *
(7 ), x>0, 4 >0, (2.11)
I I/ \uy* ve

where g* = VF(z*), J is the Jacobian of the active constraints at z*, and we have split
the Lagrange multipliers into two parts corresponding to the nonlinear constraints and the

bounds on ¢. Expanding this, we get

JIN = g7, (2.12)
X+ p*=ve, \* >0, u* >0, (2.13)

and the multipliers A* and p* are uniquely determined when J has full row rank. Note
that the multipliers A\* are equal to the optimal multipliers of (1.1), since (2.12) are the
first-order optimality conditions for the original NLP. From u* = vye — \*, it follows that
p* > 0 when v > Af ... If all u* are positive, all the bounds on ¢ must be active; hence

t* = 0. This completes the proof. [J

Corollary 2 Assume the NLP (1.1) is conver and has a nonempty feasible set. If z* is a

minimizer of (1.1), then (z*,0) is a minimizer of (2.10) when
v > max A,
(2

where \* are the Lagrange multipliers for (1.1) at x*.
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Proof: Follows directly from Lemma 1 and the fact that for a convex function, any KKT
point is a minimizer. [
This corollary applies to SQP methods with positive definite Hessian approximations.

The required value of v is not so important because the optimal multipliers are not
known a priori. Most important is that  is finite provided the Lagrange multipliers are
bounded (a standard assumption). It is straightforward to generalize Lemma 1 to NLPs
with equality constraints.

The reverse of Lemma 1 or Corollary 2 does not hold, since F(z) +ve’t may have KKT
points with ¢ # 0 that are not KKT points of F(z). This is one of the concerns addressed
in this thesis.

We give two examples to illustrate the results in this section.

Example 2.2.1
Consider the QP

min =7 + 3 (2.14)

s.t. T1 + 29— 1> 0. (2.15)

The minimizer is z* = (.5,.5) with multiplier \* = 1. The elastic QP is

min z? + 23 + 7t (2.16)
st. z1+x20+t—1>0 (2.17)
£>0. (2.18)

The first-order KKT conditions for this problem are

2£E1
*
(N*) =222 |- W*alu‘* > 0, (219)

[ T U w—'y

0
0
1
which gives the solution

v<l: z"=(7/2,7/2), ' =1—7, 7" =7, " =0, (2.20)
y>1: zF=(5,.5), t"=0, 7" =1, p* =vy—1 (2.21)
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Example 2.2.2
Consider the NLP

min 0 (2.22)
s.t. 23 + x5 > 4, (2.23)
2.731.’,62 S 1. (224)

This is a pure feasibility problem because the objective is constant. The feasible regions

are shown in Figure 2.2.2. The elastic NLP is then

min y(t; + t2) (2.25)
st. 22 +xi 4+t —4>0 (2.26)
—2x1z9 +1t2+1>0 (2.27)
t1 >0 (2.28)
ty > 0. (2.29)

We examine the case where the two nonlinear constraints are active but the bounds on ¢

are not. The first-order KKT conditions are

23}1 —2.’1)2 0
2x0 —2z 0
2 Moo= , T3>0 (2.30)
1 0 vy
0 1 y
From this we get 7* = (v,7) and 1 = x2. Since we assumed that the two nonlinear

constraints were active, the possible range for z* is 2* = (o, a), V/2/2 < a < v/2. Consider
for example z = (1,1). Although =z = (1,1),t = (2,1) is a (first-order) KKT point for the
elastic program, z = (1,1) is not a KKT point for the original program. Note that the

value of 7 plays no role in this example.

2.2.3 Nonuniform penalty weights

For a particular application, the user may know that some constraints are more important

than others. Ideally an algorithm should take such information into account. This can
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Figure 2.1: The feasible regions are marked with "F’

easily be done by replacing the vector e with a nonuniform vector w (w > 0):

min F(z) + yw't (2.31)
Zz,
st c(z) +1>0 (2.32)

The more important a constraint is, the greater weight w; it should have. We assume
the constraints are scaled such that they are of the same order of magnitude, otherwise this
has to be taken into account when deciding the weights.

With weights, Lemma 1 has to be modified, but only the value of the bound on -~

changes.

2.3 An elastic SQP method

To simplify the presentation, we will, unless stated otherwise, assume only inequality con-

straints are present. We show later that equality constraints (and constraints with both

lower and upper bounds) can be treated in a similar manner. Thus we assume the QP

subproblems generated by SQP methods for the problem NLP are of the form
min g'p+ 5p"Hp

(2.33)
st.  Jp > —c,
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where as usual g = VF(zy), J = Ve(zg), and H is an approximation to the Hessian of the
Lagrangian, L(z,)\) = F(z) — Mc(z).

A standard assumption in the analysis of SQP methods is that a feasible point for the
QP always exists. Unfortunately, in practice the QP subproblem may be infeasible even if
the original problem is not. There have been a number of suggestions on how to remedy
this in an algorithm. The SQP code NPSOL works around the problem by having a phase [
minimize the (possibly weighted) sum of infeasibilities. This is not quite satisfactory because
we are not guaranteed to obtain a descent direction for the merit function of the NLP when
the subproblem is infeasible. A different approach is to use a composite objective in NLP
that incorporates both the original objective function and the constraint violations (e.g. a
penalty function). We have to be careful to do this in a manner such that the algorithm is

not slowed down when the QP subproblem is actually feasible.

Consider the [y penalty function for NLP:
P(z,7) = F(z) + 7l (2)|x (2.34)
where ¢; = max(0, —c;). By introducing elastic variables ¢, we get

min  F(z) + yelt

z,t
st c(z)+t>0 (2.35)
t>0.

A feasible point z of (2.35) that has ¢ = 0 is clearly also a feasible point for the original
problem. The parameter v weights the emphasis of becoming feasible versus improving the
objective value. As we increase -y, we put more weight on finding a feasible point. We know
from Lemma 1 that if there exists a feasible point for NLP (1.1) then (2.35) will find it when
~v is sufficiently large (but finite). If v — oo and there is still no solution, then the original
problem NLP has no feasible point (or the KKT conditions do not hold at the solution).

The corresponding elastic QP subproblem is:

min 9'p + 1pTHp + veTq

st Jp+g>—(c+1t) (2.36)
g>—t.
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The main difficulty in an SQP algorithm based on the elastic QP (2.36) is to choose

*

good values for . Ideally, we would like to choose <y larger than A} ..

but not too large.
In practice, this is impossible since we do not know A*. Therefore, we have to start with
an initial guess v = 79 and dynamically adjust . If we solve (2.36) and obtain ¢ > 0 we
may wish to increase v. We need to have some cut-off limit y,,x where we “give up” when
Y > Ymax- In these cases we will not know whether the NLP is infeasible or it has a large
multiplier at the solution. In our method -y remains constant inside a QP subproblem, but
might change between subproblems.

We know that v = A}, is the smallest v for which a solution to the elastic problem
may be a solution to the original problem. However, if we “overestimate” 7 such that
v > Apqe the solution z* does not change. Thus one could be tempted to set y to some
extremely large value. The effect is that the term from the objective becomes negligible
while ¢ # 0, so essentially the result is the standard “phase I” approach of minimizing the

sum of infeasibilities.

2.3.1 Switching to elastic mode

It is not necessary to use the elastic formulation all the time. A standard SQP method (no
elastic variables) can be employed until it is deemed necesssary or appropriate to switch to
elastic mode. We suggest several circumstances under which such a switch should take place.
The first is obviously when a QP subproblem is determined to be infeasible. Another is
when the multipliers become large, and a third is when the Jacobian of the active constraints

becomes ill-conditioned.

2.3.2 Multiplier “feedback”

From the discussion in Section 2.3 we realize that an algorithm may have to increase the
value of v until it is sufficiently large. Lemma 1 shows that the value of 7y required grows
with the largest multiplier. The optimal multipliers of the elastic problem are equivalent to
the optimal multipliers of the original problem when + is large enough that ¢ = 0. Let us
examine what happens to the multipliers when v is smaller and ¢ > 0. When the bounds

on t are not active, the optimality conditions are

jT . g*
(e () o
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It follows that Af = + for all i. When we increase 7, the multipliers (for the modified
problem) increase correspondingly, which again forces us to increase 7, and so on. This can
be compared to a feedback loop. The multipliers and y drive each other up.

Fortunately there is a simple way around this problem. Instead of scaling the penalty
term by v and leaving the original objective intact, we scale both terms. Let w be a scalar

between 0 and 1. Our new composite objective is

wF(z) + (1 — w)elt. (2.38)

Dividing through by w we see that this corresponds to v = 177“’, or equivalently, w = ﬁ

The main advantage of this formulation is that the Lagrange multipliers are now O(1), not
O(7y)- A second benefit is that while the old objective goes towards oo as 7 — oo, the new

objective goes towards elt as w — 0.

Therefore we will use the objective (2.38) in our algorithms, but from a theoretical point

of view it is simpler to analyze the v formulation.

2.4 Bounding the elastic variables

In SQP methods, the iterates z; do not in general satisfy the nonlinear constraints. A
standard assumption needed to prove convergence is therefore that the objective function

is bounded below on an extension of the feasible set. Such an extension can be written

e (@)l < B, (2.39)

where [ is a positive scalar. A different norm will produce a different region. The extension

of the feasible set in the one-norm can alternatively be written
ele™(z) < B. (2.40)
In elastic mode the constraints ¢(z) > 0 are changed to
o(z) +t>0, t>0. (2.41)

We want to examine how conditions (2.39) and (2.41) change when elastic variables are
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employed. Condition (2.39) is then
[ (c(z) +8)" | < - (2.42)

A crucial observation here is that nothing prevents ¢(z) — —oc and ¢ — oo! The penalty
term in the objective function is intended to keep ¢ small, but once we go outside the region
where (2.39) holds, the objective F(z) may go to —oo while z converges to an infeasible

point. This observation also holds in other norms.

It follows from this argument that we cannot prove convergence for the original problem
if we simply add the elastic variables to the problem and solve as usual. The problem
formulation has to be modified such that the ¢ variables are bounded in some way. Just

putting simple bounds on ¢,
t<u,

is not satisfactory because there then is no guarantee a feasible point exists for the elastic
QP. The existence of a feasible point is a key property of the elastic subproblem that should
be preserved. We suggest bounding ¢ by enforcing

£l < 6, (2.43)
or equivalently,
elt < 8. (2.44)

When elastic variables are introduced, such a 3 can be derived from the current ¢(z). This
0 is not the same B that defined the extension of the feasible region, but we bypass this
difficulty by assuming the derived ( is smaller so all our assumptions hold. Let ¢ denote

the search direction in the ¢ direction. Constraint (2.43) implies
elg < B —elt. (2.45)

Condition (2.43) and ¢t > 0 imply that the right-hand side of (2.45) is nonnegative.
Without the constraint (2.45), the QP subproblem always has a feasible point. (Pick any
p and make g large enough.) Adding (2.45) limits the choice of ¢ so it is no longer obvious
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that a QP feasible point exists. However, in the next paragraph we show that the new QP

is indeed feasible.

If we only wish to solve a single QP, adding bounds of the type ¢ < 4 would be a valid
option. But we want to solve a sequence of QPs. In that case, we might have to let u — oo
in order to ensure feasible points exist. An advantage of our approach is that § is constant

for the whole sequence of QPs.

2.4.1 The modified QP is feasible

We prove that there always exists a feasible point for the elastic QP, even after we add the

extra constraint on t.

Lemma 3 Assume c,J,t and B are given, where t > 0, 't < 8 and e'c™ < 3. Then there

ezists a feasible point for the system of linear inequalities

Jp+q>—(c+1), (2.46)
elg<p—et. (2.48)

Furthermore, when JTe # 0 (where J corresponds to the rows of J for which ¢ < 0) there

is a feasible point with e'q < B — e't.

Proof: Let ¢ denote the constraints that are violated or active at the current point z
(that is, ¢;(z) < 0), and let ¢ denote the constraints that are strictly satisfied at the current
point. We apply the same hat and bar notation to J,¢ and q. We shall assume ¢ = 0,
because if ¢ > 0 the merit function can be reduced by setting ¢ = 0 without violating any

constraints.

We have seen that without (2.48) a feasible point exists for any p (just make g sufficiently

large). We now prove that the system is feasible even with the additional constraint (2.48).
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Using the notation defined above, consider the LP

min elq = e’§ + €' (2.49)
p,q

st. Jp+¢>—(e+1),e<0, (2.50)

Jp+q>—¢ ¢>0, (2.51)

§> i, (2.52)

g20 (2.53)

A feasible point exists for this LP because the constraints are equivalent to (2.46-2.47). Let
(p*,q*) be a minimizer of the LP (2.49-2.53). If we can show that elg* < B8 — e’t, then
(p*, ¢*) is also feasible with respect to (2.46-2.48). Recall that § is an upper bound on the

constraint violations, so that —e’¢ < 3 and e’t < .

Define py and ¢¢ by

A,

po=0,3 =0, go=—(c+1). (2.54)

It is straightforward to verify that (pg,qo) is an initial feasible point (pg, go) of (2.49-2.53).
The objective value is e’gy = —e’(¢ + ). Observe that

elgo = —el(e+1) < B —et. (2.55)

Hence (pog, qo) satisfies (2.46-2.48) and we can already conclude a feasible point exists for
the modified elastic QP. Naturally, p = pg is not quite satisfactory because py = 0 and z
would remain unchanged after the update. We would like to obtain a p* # 0 and show that

elg* < elqo, (2.56)

i.e., the sum of the constraint violations is strictly decreasing. One way to accomplish this
is to start with py and find an update in the nullspace of the active set that decreases the

objective. Let A denote the full Jacobian of the constraints in (2.49-2.53), and let A be the
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Jacobian of the active set. We have that

<

(2.57)

S O
O~ O o~
~ O N~ O

From the way we split the constraints, we know that the top (block) row is active, while
the second (block) row is not. The constraints in the third (block) row correspond to the
bounds on ¢, which cannot be active because § > 0 by definition. The constraints in the

last (block) row may be either active or non-active. Consequently, the active-set Jacobian

_ J I 0
A:(O . I/)’ (2.58)

where the prime indicates that a subset of the rows has been selected.

can be written

Let

Z=|-jl. (2.59)

Then Z has full rank and AZ = 0, so Z is a basis for the nullspace of A. Furthermore, let
g denote the gradient of e’q with respect to p,q,§, i.e. g = (0,e,¢). The steepest descent

direction projected onto the nullspace is given by

v=—ZZ". (2.60)

The descent along v is
glv=—q¢"22" (2.61)
= —elJJTe (2.62)

<. (2.63)
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From this it follows there is strict descent, except when Z”g = 0, or equivalently,

JTe = 0. (2.64)

Consider the function f(z) = e’é¢(z), that is, the sum of the violated constraints. A
point that satisfies JTe = 0 is a first-order optimality point for f. At such points, one
cannot expect to reduce the objective unless second-order information is used to compute
a direction of negative curvature. When JTe # 0, then v7g < 0 so v is a feasible direction

of (strict) descent, and it follows that

elg* < B —e't. (2.65)

2.4.2 Warm start and initial feasible point

We showed that a feasible point of the QP exists, but the procedure described may not
be suitable in an algorithm. In a practical algorithm one would want to find not only a
feasible point but preferably a “good” one. Also we would like to find such a point quickly.
In an active-set method, we wish to exploit the information from the previous QP in the
next QP. This is done by retaining the working set from the previous QP—a so-called warm
start. The use of warm starts can dramatically reduce the number of QP iterations, and is

necessary for convergence when QP subproblems are nonconvex.

In the elastic SQP method, warm starts can be performed as in a standard SQP method,
except we operate on the extended problem with the t-variables. The only special case is the
first time we switch to elastic mode, perhaps because the regular (inelastic) QP is infeasible.
We can determine a search direction p from the constraints in the working set. Fortunately,

it is easy to determine a ¢ such that all constraints but (2.48) are satisfied:

g=max(—(Jp+c+t),—t). (2.66)
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2.5 Updating the parameters v and ¢

2.5.1 Updating the penalty parameter y

With the modification introduced in Section 2.4, the infeasibilities are kept small by two
mechanisms: by the penalty parameter v, and by the constraint e’t < 8. The latter ensures
the elastic variables are bounded, while a sufficiently large v will make them go to zero (if a
feasible point exists). So far we have not discussed how to adjust 7 in a practical algorithm.
We now show how the Lagrange multiplier from the nontrivial constraint on ¢ can be used

to determine the update for +.

Consider the elastic nonlinear problem

min F(z) +ye't (2.67)
s.t. c(z) +t>0 (2.68)
t>0 (2.69)
elt<p (2.70)

Let A, 4 and v be the Lagrange multipliers for the three groups of constraints, respectively.

The first-order optimality conditions are

A
JT 0 0 g*

p* | = : (2.71)
I I —e . ye

v
Aout vt >0, (2.72)
which gives
JIN* = g¢*, (2.73)
A4 u* = (y+vie. (2.74)

If v* > 0, the constraint (2.70) is active, so we have to increase . Based on (2.74), a natural

update would be

Ynew = ¥ + V. (2.75)
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This strategy tries to produce an = such that e’t < 8. However, it does not attempt to
reduce the elastic variables further. Recall that if a feasible point exists for the original
problem, we wish to find a point with ¢ = 0 for the elastic problem. This indicates we need

to increase y by more than (2.75), so we propose

Ynew = 2 (v + V%), (2.76)

where the constant two is somewhat arbitrary (must be at least one).

We impose an upper limit on 7, say Ymaz- If ¥ > Ymaz the problem is quite likely
infeasible and we stop increasing . Because the value of « is at least doubled every time we
increase vy, the cut-off vy, is reached in O(log(7¥maz)) steps. Thus only a constant number
of adjustments of v will be made.

Note that in an SQP method the nonlinear multipliers are not known, but the QP
multipliers can be used as estimates. QP multipliers are always available in our elastic
methods because the elastic QPs are feasible. In a standard SQP method a QP may be

infeasible and then no multipliers are available.

2.5.2 More on v and the constraint on ¢

We have seen that the constraint on e’t plays a role similar to controlling the penalty
parameter . The magnitude of ¢ is implicitly bounded by 7. A larger v will produce a
smaller ¢ in some norm. Thus it is not necessary to introduce an explicit constraint on ¢
such as (2.44) in an elastic SQP method, but doing so has several advantages. It is highly
unlikely that the user would have any idea about how to choose a value for -, while a
reasonable bound 3 on e’t is much more likely to be known. Recall that we assumed the
objective and constraint functions are well-defined within an extension of the feasible region

T

where e’c¢™ () < 8. This ( is not necessarily small; in fact it could be infinite.

Lemma 4 A minimizer (p*,q*) of the elastic QP

1
ngiqn g'p + EpTH p+velq (2.77)
s.t. Jp+q>—(c+1) (2.78)
qg=>—t (2.79)
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satisfies
elg* <0 (2.80)
when v is sufficiently large.
Proof: We have shown that (2.77) has a feasible point, even when the constraint
eflg<p—e't (2.81)

is added. When 8 = e’t, this reduces to (2.80).

Consider the case when + is large. The minimum of (2.77) will go towards co as y — oo
if elqg > 0. Clearly the minimum of (2.77) is less than or equal to the minimum of the same
QP with the additional constraint (2.80). Because e’q* < 0, it follows that the minimum
of (2.77) does not increase with . Consequently, e’q < 0 for v sufficiently large. O

2.5.3 Adjustment of s and ¢ based on the merit function

Earlier we defined the augmented Lagrangian merit function as
1
M(z,\) = F(z) = Ne(z) + §P||C(iv)||§, (2.82)

where p > 0 is a penalty parameter. This formulation is only valid for equality constraints
(c(z) = 0). One way to generalize it to inequalities (c(z) > 0), is to introduce a set of
slack variables s. These variables can be represented implicitly in a code, and hence do not

require extra storage. A merit function is then
1
M(z,5,)) = F(z) = M(e(z) = 5) + 5 (c(z) = 5)" Dy(c(z) = 5), (2.83)

where D, is a diagonal matrix of penalty parameters p;. This merit function was analyzed in
[26]. In an SQP algorithm such as implemented in NPSOL and SNOPT, search directions
for z, s, and \ are computed in each QP subproblem and then a “better” value of s is
chosen between QP subproblems. Consider z and A to be fixed. Since the slack variables all

occur separately in the merit function, it is possible to choose each s; such that it minimizes
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M (z, s, \) subject to s; > 0. The result is

max (0, ¢;(z if p; =0,
s = (0,ci(z)) Pi (2.84)
max(0,c¢;(z) — Ni/pi) if p; > 0.

The same principle applies in the elastic SQP method. We can adjust s and ¢ in order

to minimize the merit function. For the elastic NLP (2.10), we have

F(xz,t) = F(z) + ve't, (2.85)
é(z,t) = c(z) +t, (2.86)

~ 1
M(z,s,t,\) = F(z) +velt — \l(c(z) — s +t) + i(c(x) —s+t)TDy(c(z) —s+1). (2.87)
A convenient way to minimize M (z, s, ¢, \) with respect to s and ¢ is to minimize for each

pair (s;,t;) separately. This is a valid strategy because there are no cross-terms. Consider

therefore the two-dimensional problem

. 1
min ¢(si,t;) = vt — Aici —si +i) + 5(ei —si+ ti)? (2.88)
s.t. s;,; > 0. (2.89)

There are four possible cases because each of s; and ¢; may be zero or nonzero. We now
show that s; > 0 and ¢; > 0 is never optimal, hence s; = 0 or ¢; = 0.
Suppose s; > 0 and ¢; > 0 at the minimum of ¢(s;, ;). By taking partial derivatives of

¢(si,t;) we obtain the optimality conditions

0
8_¢ =X —pilci—s; +t;) =0, (2.90)
Si
15]
a—f =y—X\+ pi(ci —8; + ti) = 0. (2.91)
i

These two equations are only consistent if v+ = 0. Since v > 0, we conclude there is no
unconstrained minimizer of ¢(s;, ;).
When t; = 0 the problem reduces to the standard (nonelastic) case and the optimal s;

is given by (2.84). Consider next the case where s; = 0. Then condition (2.91) reduces to

¥ —Ai +pilei +t;) =0, (2.92)
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which gives

b= — (c,-(a:) 4= Ai) (2.93)

Pi

when p; > 0. We observe that when v > A;, then t; < —¢;. When p; = 0, we can simply set

t; = —ci(z). We need to enforce ¢t; > 0, so in general the optimal ¢; is given by

p = max (0, —c¢;(z)) if p; =0, (2.94)
max(0, —c;(z) — (v — Ai)/pi)  if pi > 0.

It is easy to tell whether s; = 0 or ¢; = 0 by examining the value of ¢(x;). When ¢;(z) > 0
then ¢; = 0 and s; is given by (2.84). Otherwise, when ¢;(z) < 0 then s; = 0 and ¢; is given
by (2.94).

2.6 Relation to the SNOPT approach

We have mentioned that the elastic method we suggest is closely related to the method im-
plemented in SNOPT. We will elaborate on this shortly, but first we describe how equalities
can be handled.

2.6.1 Equality constraints

So far we have assumed that all the constraints are inequalities. For equalities, there are
two main strategies for modifying the constraints to allow for elasticity. The obvious elastic

version of ¢(z) = 0 is
clz) +t=0, (2.95)

where t may have both positive and negative elements. A drawback of this formulation is
that a sign change in ¢ causes discontinuous derivatives in the absolute value (/1) penalty
function. We therefore insist on the elastic variables being nonnegative. Fortunately, the

difficulty can be avoided by using two variables instead of one:

clx)+t—v=0, t,v>0. (2.96)
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The number of elastic variables has now doubled, but we note that there always exists a
solution where complementarity in ¢ and v holds, i.e. t;v; = 0 for all 4. This property can

be exploited in an implementation: only one vector (the length of ¢) need be stored.

Equality constraints are a special case of inequality constraints with both lower and
upper bounds. Using the same approach as for equalities, the constraints [ < ¢(z) < u can

be transformed to

I<ce(z)+t—v<u, tov>0. (2.97)

Another option is to transform all the general constraints (equalities and inequalities)
into equalities by adding new slack variables. The new slack variables will have simple
bounds, and we can add elastic variables on these. More formally, [ < ¢(z) < u will be

transformed to
c(r) —s=0, [<s<u. (2.98)

This is not an elastic formulation, but just a restatement of the original problem. The
formulation can be made elastic by allowing the bounds on s to be violated. This type of
strategy has been implemented in SNOPT and SQOPT.

2.6.2 SNOPT

SNOPT [25] is an SQP code developed by Gill, Murray, and Saunders for solving large and
sparse nonlinear optimization problems. Of particular interest to us is that SNOPT has
incorporated an elastic formulation similar to the ones we have studied. More specifically,
the [i-elastic formulation is employed but all the elastic variables are handled implicitly.
SNOPT treats linear and nonlinear constraints differently. First, a linear elastic program
is solved to compute a point that satisfies the linear constraints. If this linear problem is
infeasible, then SNOPT stops and never evaluates the nonlinear constraints. Otherwise,
all the following iterates stay feasible with respect to the linear constraints and the simple

bounds. An [;-elastic problem is solved where only the nonlinear constraints are elastic.



38 CHAPTER 2. THE L,-ELASTIC APPROACH

2.6.3 SQOPT

SQOPT is the QP solver employed by SNOPT. This is a sparse, active-set QP algorithm
that switches to [i-elastic mode when necessary. In fact, SQOPT can treat any subset of

the constraints as elastic, but SNOPT uses these features only as described above.

2.6.4 A quick comparison to our approach

We propose to allow all types of constraints to be elastic, that is, simple bounds and linear
constraints as well as nonlinear constraints. This is slightly more general than what is
done in SNOPT, though one could achieve much the same effect with SNOPT by simply

specifying the linear constraints as nonlinear.

SNOPT only supports the /1 norm for constraint violations, while we propose to use the
lso norm in the next chapter. We will show that the [, norm has some advantages in the

case of simple bounds.

Another difference is that SNOPT puts no explicit upper bound on the magnitude of
the constraint violations, e’t, though the code attempts to keep this quantity small in the

line search.

2.7 A model elastic SQP algorithm

We summarize our findings so far by describing a simple elastic SQP algorithm.
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Algorithm 2.7: Simple elastic SQP algorithm.

Initialize variables.
repeat
Find an initial feasible point for the elastic QP (2.77).
Solve the elastic QP to obtain search directions p, ¢ and multipliers 7.
Determine « by a line search using the augmented Lagrangian
merit function applied to F(z) + yet.
Set z =z + ap.

Set t =t + agq.
Set A=A+ a(r — ).
Update t.

Update penalty parameters v and p, if necessary.
if ¥ > Ymax then the NLP is likely infeasible, exit

Perform quasi-Newton update of the approximate Hessian H.

until ¢ = 0 and z satisfies the optimality conditions.

2.8 Numerical examples and results

We have not yet implemented the elastic SQP algorithm in full as described. However, one
can demonstrate the behavior of such an algorithm by changing the problem to contain
explicit elastic variables. We have written a program in MATLAB that takes an optimiza-
tion problem as input and transforms the problem to include elastic variables. The elastic
problem is then solved by calling NPSOL (or E04UCF, the corresponding NAG routine).
First we look at an infeasible problem. Consider the following version of the example

with two circles from Section 1.1.3:

min ||z — (0,1)]? (2.99)

T
s.t. ||z — (2,0)]? < 1 (2.100)
|z — (=2,0)|” < 1. (2.101)

We ran NPSOL 5.0 with explicit elastic variables and a fixed value of y. The results for the
original problem and the elastic problem with various values of 7 are shown in Table 2.1.

Since there is no feasible point, there is no solution or “correct answer” to this problem.
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¥ ¥ # iter. | # func. eval.
original | ( .447, 0) 14 43
10-3 (0, .998) 3 6
1 (0, .333) 6 9
10 | (0, .5E-3) 8 13
10° (0, .5E-6) 8 11

Table 2.1: Results for the /;-elastic algorithm on an infeasible problem.

v original | 100 | 100, | 10X}, | 1.01M% ..
HS27 | 20/28 |37/84 | 22/27 | 18/27 | 27/40
HS93 | 11/14 | 10/13 | 11/14 | 11/14 | 12/16
HS104 | 21/26 | 15/17 | 17/19 | 17/19 | 22/29
HS108 | 1/2t | 18/32 | 16/29 | 13/17 | 16/20

HS116 | 14/15 5/6* 11/13 19/24 22/28

Table 2.2: Number of iterations and function evaluations for the [;-elastic algorithm on
some standard test problems.

If we ignore the constraints, the unconstrained minimizer is (0,1). Any point along the line
between the points (—1,0) and (1,0) minimizes the /;-norm of infeasibilities, while (0,0)
is a minimizer of the l[,-norm of the infeasibilities. Taking all this into account, one can
argue that (0,0) is the best point.

We observe from the empirical results in Table 2.1 that a small value of v leads to a
point near the unconstrained minimizer, while the elastic solution approaches (0,0) with
increasing <. This behavior is what we desired for infeasible problems.

We now turn to feasible optimization problems. Two concerns when we add elastic
variables are that the transformed problem is more expensive to solve per iteration, and
the number of iterations increase. However, from the discussion in this chapter we have
seen that the additional work per iteration is small. We have not developed any theory
concerning the number of (major) iterations, so this must be studied empirically.

We show the results for some test problems taken from Hock and Schittkowski [34] in
Table 2.2. Note that we did not add elastic variables to simple bounds. Equalities were not
treated as a special case, but essentially as two inequalities.

The numbers in the table are the number of iterations and function evaluations. The
dagger (f) indicates that no solution was found, while an asterix (*) means that the code
converged to a point that satisfies the optimality conditions of the elastic problem but not

those of the original problem. (In theory this should not happen, but it may happen in
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practice owing to scaling effects.)

Test problems HS27 and HS108 are particularly interesting. We see that if y is very large
(10'9), the number of iterations and function evaluations increase significantly. But when
v = 10X}, .+, the number of iterations (and function evaluations) is actually smaller than for
the original problem. This indicates that the elastic approach may accelerate convergence
even when there are no infeasible QP subproblems.

The number of iterations do not vary as much for the other problems. Since A}, is
the smallest value of v that gives a solution with £ = 0, it is natural that the number of
iterations should increase a little when -y is close to this value. This strengthens our belief
that it is advisable to overestimate ~.

These numerical results should be interpreted as examples of what may happen. More

extensive testing on a proper implementation of the elastic algorithm is left as future work.
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Chapter 3

The [ -elastic approach

3.1 Introduction

In the previous chapter we studied elastic SQP methods using a vector of elastic variables
and the one-norm in the penalty term. There are many alternatives. Of particular interest
is the max-norm, since then only one elastic variable is required. This approach is there-
fore potentially more efficient in terms of the work per iteration, though the difference is
negligible when the elastic variables are handled implicitly. The [, norm is worth studying
because this norm may be more relevant in some applications. For example, the maximum
violation of any single constraint may be an important quantity to the user, while the sum

of all the constraint violations gives little information.

Replacing ¢ by 7e in the elastic formulation, where 7 is scalar, we obtain

min F(z) 4+ 7 (3.1)
T,T

s.t. c(z) + e >0,

7> 0.

We call this the 7 version or the max-norm version. Note that we may wish to use a
nonuniform vector of penalty weights in place of e; see the following section. For simplicity
we only analyze the case with uniform weights (e) in this chapter, though we believe it is

straightforward to generalize the formulae to the nonuniform case.

43



44 CHAPTER 3. THE L-ELASTIC APPROACH

The QP corresponding to (3.1) is
.1
min —p’Hp+g¢'p+~6 (3.2)
pf 2
s.t. Jp+0e > —(c+ Te),
0>—r,

where 6 is the update in the 7 dimension.

3.1.1 Nonuniform penalty weights

In the previous chapter we showed how to generalize the elastic one-norm formulation by
incorporating penalty weights. In the max-norm formulation we cannot have weights in the
penalty term because there is a single scalar elastic variable. However, we can put weights

in the constraints:

min F(z) + 7 (3.3)
T,T
s.t. ¢(z) +Tv > 0. (3.4)

Note that the weights v are inversely related to the weights w from the one-norm formulation
in Section 2.2.3. That is, a small v; corresponds to a large w;, and vice versa. In particular,
v; = 0 implies that the constraint ¢; > 0 is hard and cannot be violated.

Note that the scaling of the constraints is important in this formulation, and this should

be taken into account when the weights are chosen.

3.2 Theory

Exactly as in Section 2.2.2, we derive the following results.

Lemma 5 Assume the NLP (1.1) has a nonempty feasible set. If (z*,\*) is a first-order
KKT point of (1.1), then (z*,0,\*) is a first-order KKT point of (3.1) when

722)\;.
i
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The only thing that has changed from Lemma 1 is the value of the bound for v. We skip
the proof because it is essentially the same as for Lemma 1. Again, we have a corollary in

the convex case.

Corollary 6 Assume the NLP (1.1) is convez and has a nonempty feasible set. If z* is a

minimizer of (1.1), then (z*,0) is a minimizer of (3.1) when
>,
i

where \* are the Lagrange multipliers for (1.1) at x*.

3.3 Bounding 7

As described earlier, we assume the objective and constraints are well-defined and bounded

on an extension of the feasible region,

le™ (@)oo < 8, (3.5)

where we this time consider the max-norm. This condition is equivalent to ¢(z) > —fe. It is
therefore desirable to bound the elastic variable 7 by 7 < . Analogously to Section 2.4, we
need to show that the elastic QP has a nonempty feasible region also when this additional

constraint is present.

Lemma 7 Assume c,J,7 and (B are given, where 0 < 7 < 8 and ¢; > —f for all i. Then

there exists a feasible point for the system of linear inequalities

Jp+6e>—(c+ Te), (3.6)
0> —r, (3.7)
0<pB—r. (3.8)

Furthermore, when J has full row rank, there is a feasible point with 8 < 8 — .
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Proof: Consider the LP

min 6 (3.9)

p,0
s.t. Jp+0e > —(c+ Te), (3.10)
0> —r. (3.11)

We wish to show that a minimizer 8* satisfies §* < 8 — 7. It is easy to verify that py =
0, 8y = max {—7, max; —(¢; + 7)} is a feasible point. By assumption, ¢; > —fso 6§y < f—.

If 6* is a minimizer, then 8* < 8 — 7. This proves the main part of the lemma.

Next we prove the last part of the lemma. Let J correspond to the working set, a set of

active constraints (¢; = —7). The working matrix for (3.10)—(3.11) is of the form
J=(7 ¢). (3.12)

If the lower bound on 8 is active then p = 0, § = —7 is a feasible point, so we assume in

the following that the bound is not active.

The working set contains at most n constraints, where n is the dimension of p; hence

the null space of J is nonempty. Let Z be a basis for the null space of J. A corresponding

_(Z
Z_(O _1), (3.13)

provided there exists a y such that jy = e. Suppose this is the case. Define the search

null space for J is of the form

direction v by
v=—-7227"1, (3.14)
where g = (0,...,0,1)T is the gradient of the objective. The descent along v is
glv=—¢'727%g = -1, (3.15)

so v is a direct of strict descent, which is what we wanted. The only case where there is no

descent is when Z7g = 0. This can only occur when there is no y such that J y = e, which
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implies that J has low row rank. Because J is a submatrix of .J, J must also have low row

rank if J has. O

3.4 Updating v

In this section we show that v in the max-norm variant should be updated the same way
as for the one-norm version.

Consider the elastic nonlinear problem

n%cin F(z)+~1 (3.16)
s.t. c(z) +7e >0 (3.17)
T2>0 (3.18)
T < B. (3.19)

Let X be the Lagrange multipliers for the nonlinear constraints and let y and v be the

multipliers for the bounds on 7. The first-order optimality conditions are

)\*
JEo oo (9 (3.20)
el 1 -1 /:* v ]’ '

A u*, vt >0, (3.21)

which gives
I\ =g, (3.22)
N+ pt =y +vh (3.23)

If v* > 0, constraint (3.19) is active, so we have to increase . Based on (3.23), a natural

update would be
Ynew =7 + I/*, (3.24)

but as we have argued earlier, it is better to choose v larger than than the estimated
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minimum value. Thus we suggest the same update as in (2.76):

Ynew = 2(7 + V7). (3.25)

3.5 Updating s and 7 based on the merit function

The augmented Lagrangian merit function for the /,-elastic problem is

1
M(z,s,7,p) = F(z) +y7 + A(c — s+ 7€) + 5(0 — s+ 7€) Dy(c— s+ Te). (3.26)

We wish to find nonnegative 7 and s that minimize M, assuming all other variables are fixed.
Unfortunately, this optimization problem does not decompose into several two-dimensional
problems that can easily solved, like with the /1 norm. Similarly to the result for the Iy
case, we show that either 7 = 0 or at least one s; = 0.

Suppose the bounds s = 0 and 7 = 0 are not active. The optimality conditions are

oM

= AXN—=D(c— = 2
B A o(c—s+Te) =0, (3.27)
M
(?9—7' =y+Me+e™Dy(c—s+1t) =0. (3.28)

If we take the inner product of (3.27) and e and compare with (3.28), it becomes clear that
these equations can only have a solution if v = 0, which is false.

If = 0, then each optimal s; can be computed separately from (3.27). A more difficult
case is when 7 > 0. For a fixed value of 7, again the optimal s can be computed from (3.27).
Consequently, we can treat s as a function of 7 and we only need to solve a one-dimensional

optimization problem to determine .

3.6 Efficient elastic SQP methods

We have described a simple elastic SQP method for the case when there are only general
inequalities. In a real code, we need to emphasize efficiency. In this section we study how to
make the algorithm more efficient and how to handle equality constraints and distinguish
between various types of constraint (simple bounds, linear, nonlinear). In order to analyze

these aspects, we need to go into much more detail than we have done so far.
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3.6.1 Working-set Jacobian and null space representations

In this section we review standard methods for representing the working-set Jacobian, J ,
and its corresponding null space. Different representations are used in the small, dense case

and the large, sparse case.

The small, dense case (NPSOL)

At each QP iteration, a working set of constraints is identified. All the constraints in the
working set are linearly independent. A constraint in the working set can correspond to a
(simple) bound constraint, a linear constraint, or a linearized nonlinear constraint. NPSOL

uses the TQ factorization of J, given by

~

JQ=(01T), (3.29)

where T' is a square, nonsingular, and reverse-triangular matrix, and @ is orthogonal. The

transformed Hessian is defined by

H, = QTHQ. (3.30)
Let the columns of () be partitioned so that

R=(Z2Y), (3.31)

where the columns of Z form a basis for the null space of J. The matrix Z is needed to
compute the reduced gradient Z?g. NPSOL maintains the Cholesky factor R of H,, such
that RTR = H,. Note that the reduced Hessian, H, = Z'HZ, is the upper left portion of
the transformed Hessian. This is used (and updated) by NPSOL’s QP solver LSSOL.
When a bound constraint is active, the corresponding variable is fized. In this case,
we can simply eliminate the corresponding column in the Jacobian J , since that variable

cannot change.

The large, sparse case (SNOPT)

For large and sparse problemms, J is typically stored as a sparse matrix, and Z may be given

only implicitly. At an iteration in an active-set method there are some linear and nonlinear
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constraints active, and also some variables are fixed on their bounds. This gives rise to a

. (B S N
J= : (3.32)
0 0 I

where B is square and nonsingular. Possibly the variables (columns) must be permuted

working-set Jacobian of the form

to obtain this partitioned form. Borrowing terms from linear programming, we say the
variables corresponding to the columns of B are basic, the variables corresponding to the
columns of N are nonbasic (or fixed), while the variables corresponding to the columns of

S are called superbasic. A basis for the null space of J is given by

—B18
Z = I ) (3.33)

The matrices Z and B~! are not computed explicitly because only the actions of Z and ZT
are required in optimization algorithms. Thus it is sufficient to factor B such that Bx =y

and BTz = y can be solved efficiently for any vector v.

The reduced Hessian ZTH Z is computed and stored as a dense matrix in SNOPT’s QP
solver SQOPT, since the dimension of the null space is assumed to be small. Note that
ZTHZ may be much denser than Z or H.

3.6.2 Equality constraints

So far we have considered only inequality constraints. The simplest elastic formulation in

the max-norm would be
c(z) +1e—ve=0, 7,v2>0, (3.34)

but this is not a valid elastic formulation. There are no scalars 7 and v such that equality
holds in every component. Consequently, with scalar elastic variables we must change

to a formulation based on inequalities. The natural max-norm elastic formulation for a
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constraint ¢;(z) =0 is

|es(z)] <, (3.35)

which can be written
c(z) +7e >0, (3.36)
—c(z)+71e >0, T2>0, (3.37)

for a set of constraints c¢(z) = 0.

Equality constraints are a special case of inequality constraints with both lower and

upper bounds. The max-norm elastic formulation of [ < ¢(z) < u is

c(z) +7e > 1, (3.38)
—c(z)+71e>—-u, 7>0. (3.39)

Another option is to transform all the general constraints (equalities and inequalities) into
equalities by adding new slack variables. The new slack variables will have simple bounds,

and we can add elastic variables on these. More formally,
[<c(z) <u (3.40)
will be transformed to
() —s=0, [<s<u. (3.41)

We allow the bounds on s to be violated, but not the equalities. This strategy is only useful
if simple bounds can be made elastic in an efficient way. That is the topic of the next section.

Note that the slack variables s can often be represented implicitly in an implementation.

3.6.3 Bound constraints

Adding elastic variables to the general (linear or nonlinear) constraints does not change
the nature of these constraints. But adding variables ¢ or 7e to the simple bounds on z

transforms these to general linear constraints, which may require more work. One way to
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avoid this problem is to insist on always satisfying the simple bounds. However, this is
not quite satisfactory because there is little reason to believe the simple bounds are always
more important to satisfy than the general constraints. In fact, we claim that elastic simple
bounds would be quite useful. In many applications, the general constraints correspond
to physical laws (which are not elastic), while simple bounds are often chosen by the user
and may be flexible. Nevertheless, many simple bounds are of the type z; > 0, and such
nonnegativity bounds are almost always hard bounds. The user should therefore be given
the opportunity to specify which constraints and bounds should be hard (inelastic) and
which should be soft (elastic).

Simple bounds need to be treated separately because when a simple bound is active we
can eliminate the corresponding column in the Jacobian, and similarly for the Hessian. In
effect, simple bounds let us reduce the problem size. When the additional elastic variables
are introduced, it appears that this attractive property is lost. However, there are ways
around this snag. One approach has been implemented in SNOPT and SQOPT, while we
show a different approach (based on the max-norm) in which the special structure of the

elastic problem is taken advantage of.

3.6.4 Only simple bound constraints are elastic

A special formulation of NLP is when the general constraints are equalities and the simple

bounds are the only inequalities:

min F(z)

z,t

st.  c(z)=0 (3.42)
[<zx<u

Any NLP can be written in this form with the help of slack variables. In this section, we
consider the case where only the simple bounds are allowed to become elastic.
For bound constraints we cannot afford to introduce many new variables, so we choose

to focus on the variant where the bounds I < z < u are changed into
z+T1e>1l, z—T1e<u, T>0. (3.43)

Here 7 is a scalar elastic variable.

For purpose of exposition, in the following we ignore the upper bounds and assume only
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lower bounds are present. (Upper bounds do not change the nature of the problem but

make the formulae more complicated.) We are left with the optimization problem

min  F(z) + 7

@t

st. c¢(z)=0 (3.44)
T+Te>1
7> 0.

This system has a special structure because the linear constraints involve only two variables

each. The Jacobian has a sparse structure that should be exploited.

The QP corresponding to (3.44) is

min %pTHp + ng + 70

p,0
p+0e>1
0> —,

where | = [ —  — Te. The Jacobian for all the constraints is

o

(3.46)

=
= 0

We are interested in J , the Jacobian of the working set. Since J corresponds to equality
constraints, they are all active. Only some of the elastic simple bounds will be active.
(Since a bound pair can be violated only in one direction at any given point, the working
set would contain at most one row from each bound pair. Thus we have lost no generality
by considering only lower bounds.) We will assume the constraint # > —7 is not active,
since otherwise we can set 7 = 0 in the next iteration, and a feasible point is obtained.

Hence the Jacobian of the working set must have the following structure:

. J 0
(), o

where I is a subset of the rows of the identity matrix, and e is a correspondingly shorter
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vector of ones. We now reorder the free variables before the fixed variables. Redefine J

such that
R J Jo 0
J=["" 2 , (3.48)
0 I e

where [J; Jo] is a column permutation of J.

In dense methods, we assume an orthogonal basis Z; for the null space of J; is available.
This is reasonable because such a Z; would have been computed by a standard algorithm.

We seek a Z that is a basis for the null space of J. It is easy to verify that

Z1 v
Z=10 -—e (3.49)
0 1
satisfies JZ = 0 when v is chosen such that
J1’U = J2€. (350)

In order for the columns of Z to be orthogonal, Z{v = 0 is required. Consequently, we

J1 . J2€
(1) (%) .

A simple scaling of the last column in Z such that it has unit norm makes Z orthogonal.

define v to be the solution of

Specifically, let a = (UT’U +k+ 1)71/ 2, where k is the number of active bound constraints.
Then

71 ow
Z=10 -ce (3.52)
0 o

is an orthogonal basis for the null space of the Jacobian.

Null-space based optimization algorithms require access to the reduced gradient, Z7g,

and the reduced Hessian, ZTHZ. These quantities can be calculated fairly simply in our
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case. Assume as before that we order the free variables before the fized variables, and that

the elastic variable comes last. Assume the Hessian approximation H is of the form

Hy, H2T1 0
H=|Hy Hyp 0|, (3.53)
0o 0 H

where some blocks are zero because there is no coupling between 7 and the original variables.

Similarly, let the gradient g be partitioned as

g1
9=192]- (3.54)
Y
We find that
ZTHZ _ Z{anl QZT(HHU — HZTle) (3 55)
Oz(Hll’U — Hgle)TZ1 012 (’UTHH’U — 26TH21’U + BTHQQG + HT) ’

and the reduced gradient is

ZT
77T = L1 . (3.56)
o (UTgl —elgy + 7)

These quantities cost only slightly more to compute than Z{Hy1Z; and Z{g;, which are

computed in a standard algorithm.

3.7 More on elastic bounds

Consider the NLP

min F(z) (3.57)
s.t. e < c(zr) < wue (3.58)
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where we have separated the simple bounds and the general constraints. This formulation is
equivalent to (1.2), where the linear constraints have been merged into ¢(z). By introducing

slack variables s, we get

mmin F(z) (3.60)
s.t. c(z) —s=0 (3.61)
le <s<u, (3.62)
lo < 2 < ug, (3.63)

The simple bounds can now be made elastic. Making the bounds on s elastic corresponds

to elastic bounds on the nonlinear constraints (3.58).

At first one may think that elastic variable bounds are no different from elastic slack
variable bounds, but this is not quite true. We compare several cases. First consider the

following simple version of NLP:

min F(z) (3.64)
s.t. ¢(z) —s=0 (3.65)
s> 0. (3.66)

Let A be the Jacobian of ¢(z). The working-set Jacobian, Ji, is

Jy = (g‘ _I_I> , (3.67)

where I is a row subset of the identity matrix I. We want to find Z;, a basis for the null
space of Ji. This can be done in a standard fashion by identifying sets of basic, superbasic,

and nonbasic variables. With a suitable permutation P, we have

. (Ap —Iy As —I
=78 B TS TN p (3.68)
0o 0 0 I

where A and —I have been partitioned into two submatrices each, and B = (Ap, —Ip) is

square and nonsingular. From Section 3.6.1 we know that a basis matrix for the null space
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of Jj is
—B_IAS
Z1 =P I . (3.69)
Consider next the elastic variation

mitn F(z) +~e't (3.70)

s.t. c(z) —s=0 (3.71)

s+t>0 (3.72)

t > 0. (3.73)

The slack bounds (essentially, the nonlinear constraints) have been made elastic, while there

are no simple bounds on z. The working-set Jacobian, Js, is

. (A —T 0
Jo = R (3.74)
0 I I

An advantage of this variation is that there is a null space matrix, Zs, that has a simple
form derived from (3.69):

VAl
Zy=P|lo I|, (3.75)
0 0

where I’ is a modification of the identity matrix such that II’ = 0. I' may easily be
constructed by taking the identity matrix I and eliminating all the rows contained in I. Let
us verify that JoZ9 = 0. Note that Jy = (jl f), where 17 = (O fT). Then

JoZ = <j1 f) (i ?/) = (0 fI_') =0, (3.76)

because 11 = II' = 0.

The number of columns of Z, is greater than that of Z;, and consequently the size of
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the reduced Hessian ZTHZ will increase. However, the additional work introduced in a

reduced Hessian algorithm is modest because of the simple structure of Z.

Consider next the case where there are simple bounds on x and the nonlinear constraints

are equalities (slack variables s may be introduced to handle inequalities):

le,ltn F(z) (3.77)
s.t. c(z) =0 (3.78)
z > 0. (3.79)

Suppose we wish the simple bounds be elastic, but not the general nonlinear constraints.

This gives
mitn F(z) + velt (3.80)
aj’
s.t. ¢(z) =0 (3.81)
z+t>0 (3.82)
> 0. (3.83)

Now the working-set Jacobian has the form

Jz = (;1 3) : (3.84)

Unlike with (3.67) or (3.74), it is not simple to obtain a sparse or structured Z, because A
is coupled with I. Compared to the original problem, my, elastic variables have been added,
where my is the number of simple bounds on variables. Let k be the number of active
bounds. Typically, k < mj. The size of the null space Z and the reduced Hessian ZTHZ
increases by roughly my — k. Consequently, algorithms that operate on the reduced Hessian

may incur (substantially) more work and run slower than in standard (nonelastic) mode.

So far in this section, we have discussed only [;-elastic formulations. Let us consider the
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lo-elastic version of (3.80)—(3.83).

min F(z) + 7 (3.85)

x,T

s.t. ¢(z) =0 (3.86)
z+T1e>0 (3.87)
>0, (3.88)

Now the working-set Jacobian has the form

Jy = (’}1 2) . (3.89)

In this case, only one elastic variable is introduced, and the size of the null space increases
by at most one. This holds no matter how large m; and k become. We conclude that the [
formulation has an advantage over the /; formulation when it comes to simple bounds. A
simple example illustrates our point. Consider an optimization problem of the form (3.77)
with n variables, n/2 nonlinear constraints, and n/2 violated bounds. In the /; version, n/2
elastic variables are added, so the degrees of freedom (number of variables minus number of
active constraints) are n+n/2—n = n/2. In comparison, with the /5, version only one elastic
variable is introduced, hence there is only one degree of freedom (because n+ 1 —n = 1).
Another way to appreciate the advantage of the [, approach is to realize that all the
violated simple bounds have the same optimal value. In other words, instead of a possibly

large number of ¢; values, only a single scalar 7 is required.
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Chapter 4

Directions of negative curvature

4.1 Overview
In this chapter, we consider the unconstrained minimization problem

min F(z), zeR", (4.1)

T

where the function F(z) is assumed to be at least twice differentiable. As before, we denote
the gradient of F' by g and the Hessian (or an approximation thereof) by H. It is implied
that these quantities are evaluated at the same point (the current point).

For many optimization algorithms, one can only prove convergence to first-order points.
That is, we may find a saddle point while we are really seeking a minimizer. Any method
for minimization that can be shown to converge to a point that satisfies the second-order
necessary conditions must explicitly or implicitly compute a direction of negative curva-
ture of an indefinite matrix. In this and the following chapter we study how to compute
good directions of negative curvature and show that this problem is closely related to the
symmetric eigenvalue problem.

This chapter is only loosely related to the earlier chapters, and is largely self-contained.
Nevertheless, there is a link to the preceding work. When trying to reduce the infeasibilities
we may end up at a saddle point for the infeasibilities, so there is no descent direction. We
then need to compute a direction of negative curvature to move away from the saddle point.
Using directions of negative curvature earlier in the process helps avoid such saddle points,

and may aid faster convergence to minimizers.

61
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We begin this chapter by describing the importance of directions of negative curvature
when we want to find second-order points. In Section 4.2 we examine the distribution of the
Rayleigh quotient, which tells us how difficult it is to find a direction of negative curvature.
This leads us to the symmetric eigenvalue problem (Section 4.3). In Chapter 5 we describe
algorithms for computing directions of negative curvature. We consider both direct and
iterative methods, and suggest a new hybrid based on combining a direct and iterative

approach.

4.1.1 Why do we need directions of negative curvature?

Given a function F(z) € C?,z € R, with gradient g = g(z) = VF(z), a descent direction
d has the property that
gld < 0.

Similarly, let the Hessian V2F(z) be denoted by H (or H(x) when the argument is relevant).

A direction of negative curvature, d, has the property that
d"Hd < 0.

Any method for minimization (such as a linesearch method, a trust-region method, or a
gradient flow approach) for which convergence to second-order optimality conditions can
be shown, must either explicitly or implicitly compute a direction of negative curvature.
Suppose the current estimate is a point satisfying the first-order but not the second-order
conditions. To proceed, such algorithms must determine a point in the neighborhood of the
saddle point that has a lower value than the current iterate. Such points must lie along a
direction of negative curvature. It is also our contention that the relevance of computing
directions of negative curvature grows with the dimension of the problem. This latter
hypothesis is based on the probability that a direction of negative curvature occurring by
chance decreases significantly (exponentially) with increasing dimension. For example, we
will show that the probability of a random direction being a direction of negative curvature
for a matrix with 99 eigenvalues of 1 and one of —1 is less then 10715,

In this chapter we discuss methods to compute directions of negative curvature when n
is large. We desire the effort to compute the direction to be similar to or less than that of
computing the direction of descent.

An interesting property of directions of negative curvature not possessed by directions
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of descent, is that we can define precisely what is meant by a good direction simply by
comparing it with the best possible. The best possible is the one that minimizes d"H d/ d'd,
and that is given by the eigenvector corresponding to the smallest (leftmost) eigenvalue of
H. Clearly the problem of computing a direction of negative curvature is similar to that of
computing an eigenvector corresponding to the smallest eigenvalue. It differs in two ways;
first we do not need it to be accurate, and secondly we may have additional information
as a result of computing a direction of descent. Moreover, we shall be concerned with
computing a sequence of directions, and the matrices that arise typically have very few

negative eigenvalues.

A key property that is required to prove convergence to second-order KKT points is
that of a sufficient direction of negative curvature. Formally, a sequence of directions, {dj},
is said to be sufficient if any nonzero dj, is a non-ascent direction of negative curvature, i.e.,
gldy <0, dFHpdy < 0, where zy, is the kth iterate. Further, ||dj| must be bounded and the

curvature must be sufficient in the sense that
lim dLHd; = lim inf Amin (Hy) > d limd; =0, 4.2
lim dj; Hyd 0 = im i (Hg) > 0 an lim d 0 (4.2)

where S is any subsequence. In practice, Api, is not known, so this has come to require
that if d; satisfies d{dk =1 then

dngdk S BAmina (43)

where (8 is some scalar between zero and one (e.g., 8 = 0.1) and Api, is the smallest
eigenvalue of Hy. In other words, relative to the best possible direction of negative curvature,
dy, is not arbitrarily poor. Computing such a direction is not easy. Both direct and iterative
methods have been proposed, but this process is usually only a small part of an optimization
algorithm, so we do not wish to spend much effort. This implies we are not willing to use
pivoting in a direct method (reordering affects the sparsity pattern), and we may only be
willing to perform relatively few matrix—vector products in an iterative method.

It should be noted that the strictures placed on the direction of negative curvature by
the need to prove convergence in a linesearch method, while important, are not overriding.
The likelihood of the modified Cholesky algorithm failing to obtain a direction of sufficient
negative curvature is small (because § may be small). Our interest is in obtaining good

directions of negative curvature, if this can be done routinely. By “good” we mean that g is



64 CHAPTER 4. DIRECTIONS OF NEGATIVE CURVATURE

not too small, say 8 > 0.1. We believe that this will enhance the efficiency of minimization

algorithms that use such directions.

4.2 The probability distribution of the Rayleigh quotient

4.2.1 Motivation

Let A be a real symmetric matrix. If we pick a random vector v, what is the probability that
vIAv < 0? Clearly this depends on the eigenvalues A(A) of A. Our interest in this question
stems from wanting to know how difficult it is to find a direction of negative curvature.
More specifically, we would also like to know how likely it is that by chance a direction of
non-ascent that has been computed is a direction of negative curvature. These questions
lead to a more general question. In linear algebra, the Rayleigh quotient of v with respect
to A is defined as R(v) = v Av/v"v. The field of values is the range of the function R(v).
A natural next question is what is the probability density function (pdf) of R(v)? And
what is the cumulative density function (cdf)? We will assume v is uniformly distributed
on the unit sphere. (We can always normalize v because the Rayleigh quotient is invariant
under scaling of v.) The answer to the questions posed can be deduced from the study
of quadratic forms in random variables. These results have received little attention in the
numerical linear algebra and optimization communities. In the following sections, we review
some results from statistics and reformulate them in terms of linear algebra. We then apply

these results to the questions of interest.

4.2.2 Random vectors on the sphere

In order to proceed, we need to know some properties about random vectors of unit length.

Lemma 8 Pickx € R" such that each x; is chosen independently from the standard normal
distribution (i.e., the mean is zero and the variance is one). Then v = z/||z| is a unit

random vector uniformly distributed on the unit sphere S"~!1 C R™.

Proof: Let Q be any orthogonal matrix of dimension n. Let z be a vector with nor-
mally distributed elements as described above, and v = z/||z||. Define & = Qz. Then
0 = &/||z|| = Qz/||z||. Clearly v and ¥ have the same distribution on the unit sphere. Since

@ can be any orthogonal matrix, the distribution must be uniform. O
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This result has been known at least since 1956 [40, p.130]. The uniform distribution over
an (n-dimensional) sphere is sometimes referred to as the Haar distribution. The lemma
immediately gives an algorithm for how to construct random unit vectors. (We assume a
pseudo-random number generator is available.) There is a generalization of Lemma 8 for
random orthogonal matrices. To generate a random orthogonal matrix, start with a square
matrix with normally distributed elements and compute the QR factors. The resulting @)
is a random orthogonal matrix. This algorithm requires O(n?®) operations, but it is possible
to reduce the work to O(n?) by using Householder transformations [75].

A consequence of Lemma 8 is that we can assume in our analysis that the random
vectors have each component independently chosen from a standard normal distribution

(because the Rayleigh quotient is invariant under scaling).

4.2.3 Quadratic forms in random variables

Statisticians have studied quadratic forms in random variables extensively; see [47] and [37,
Ch.29] for an overview. A very extensive bibliography on the distribution of quadratic forms
in normal variables has been collected by Dumais and Styan [14]. We first show that the
distribution of the Rayleigh quotient can be derived from the distribution of a quadratic

form. Observe that

T,

Pr (wj‘ix < a) = Pr (z7(A - al)z <0). (4.4)

We are interested in the case where z; are normally distributed with mean zero. No
assumptions on the definiteness of A are made. The interesting case is when A — af is

indefinite, otherwise the probability is trivially zero or one.

The distribution function (cdf), Fr(«), for the Rayleigh quotient is

Fr(a) = Pr (f;f:” < a) . (4.5)

Many distributions have no simple closed-form distribution function, but there is often a

formula for the corresponding characteristic function ¢, defined by

o(t) = /00 eWdF(y), (4.6)

— 00
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where i = v/—1 and ¢ is real. It has been shown [47] that the characteristic function for the
quadratic form Q(z) = ZJ LA :c2 is

1

(1— 2iAjt)73. (4.7)
1

n

J

To determine the corresponding distribution function Fg we need to invert this formula.

Gil-Pelaez [23] has derived the formula

1 1

Fo(y; M) = 5 /0 oot—ljm [e™™ g (t)] dt. (4.8)

We examine the case y = 0, in which case the previous formula expands to

1 1 [ -
Fo(\) =2 — —/0 tom | JJ1 — 2i\t)77 | dt. (4.9)

2 0w
j=1

This formula is centered at the middle of the distribution and is not suitable for numerical
evaluation when Fp = 0 or Fp =~ 1 due to cancellations. We are interested in the cases
when Fg is small and would therefore like a formula expanded around the left tail. When
A > 0, the quadratic form is positive definite, and thus Fg(A) = 0. From (4.9) it follows
that

-

n
-1 . -1 _r
/0 Jm 1;[ (1—2it)"2 | dt = 5 (4.10)

when all A\; > 0. After we combine (4.9) and (4.10) and group terms with positive and

negative eigenvalues, we find that

o
Fo(\) = —/ tte | JT (1 —2in0) 2| om | [T (@ +2000) 2| at. (4.11)
0 A;>0 A; <0

Imhof [35] found a formula that only involves real arithmetic and is more suitable for
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numerical integration:

du. (4.12)

Fol) 1 1 /oo sin (% die1 tan_l()\ju))
Q =57 1
2 =

° ulliy (1 + )\?’U,Q) !

™

Again, we exploit the fact that Fiy(A) = 0 when all A\; > 0 and obtain

Fo(h) = » / * sin (3 3 tan (|[u) —sin (3 X tan 1 (Aw) (4.13)
- T
0 ull, (1 + /\gu2) !
1 /°° sin (a + b) — sin (a _1b) du, { a = l%z,\po tan_ll(/\ju), (4.14)
7 Jo ull}_, ( + )\2u2)z b= 325 <otan™ (=Aju),
x
_ l/ 2 cos(a) sin(b) du (4.15)
m™Jo 4

i1 (1 + )\?uz)
2 /oo cos (% D50 tan_l(Aju)) sin (% Do <0 tan_l(—)\ju))
0

‘ ; du. (4.16)
u]Ti— (1 + /\§u2) !

™

We are now ready to state our main result.

Theorem 9 Let A be a real symmetric matriz with eigenvalues A = (A1, Ag,... ,\n). Then
the probability distribution function Fr(a; ) of the Rayleigh quotient over all vectors x € R"

with unit norm (i.e., x is uniformly distributed on a sphere) is

du. (4.17)

| 1 oosin (% S0 tan () — a)u))
FR(O‘;A):§__/ - T
TJo w]li (T4 (A — a)?u?)
This theorem follows directly from the Imhof formula (4.12). Formula (4.17) is well suited
for numerical integration because the integrand is smooth and decays rapidly as u — oc.
However, a drawback is that the numerical round-off error can be significant when Fg is

small because the formula is centered around one half. Therefore, we propose the equivalent
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formula

Fa(as ) = /oo cos (% 2o >a tan=1((\; — a)u)) sin (% Z)‘j<la tan=!((a — Aj)u)) .
™ Jo “H?:1 (1 + ()\j _ a)2u2)1

(4.18)

Formula (4.18) has better numerical properties when Fp, is small. This formula can be evalu-
ated by any standard method for numerical integration, for example (Gaussian) quadrature.
Since the integrand decays rapidly, the domain of integration can be truncated to a finite
interval and the truncation error will be small. The formula is still not perfectly suited for
numerical evaluation, since in some cases the integrand oscillates around zero and again

cancellations may give numerical errors. However, for our purposes it proved good enough.

4.2.4 Numerical experiments

As an illustration we evaluate the probability that v7A,v < 0 when A,, has one eigenvalue
at —1 and the remaining n — 1 at 1. We evaluated formulae (4.17) and (4.18) numerically
using the NAG library. In both cases we asked for a relative accuracy of 1072. We used
the integration routine DO1AKF, a Gauss-Kronrod quadrature method, and the integration
interval was truncated at 100. The results are shown in Table 4.1. The error estimates
shown come from the NAG routine. We see that expression (4.18) is the more stable one
and we were able to determine the probabilities up to n = 100 before too much precision
was lost. If we plot the probabilities as a function of n, we get an almost straight line on
a logarithmic scale (Figure 4.1). From these data, we have estimated that the probability
of negative curvature, Fr(A4,), is approximately proportional to n%70. Clearly for large n,

encountering a direction of negative curvature by chance is exceedingly small.

4.3 The symmetric eigenvalue problem as an optimization

problem

The linear eigenvalue problem Az = Az is one of the most studied problems in mathematics.
The problem of finding the smallest (or largest) eigenvalue can be viewed as an optimization

problem. We are only concerned with the case when A is real and symmetric, and the
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n

Formula (4.17)

Formula (4.18)

10
20
30
40
50
60
70
80
90
100

1.50e-02 + 3.8e-04
3.38e-04 + 2.4e-05
8.70e-06 + 2.2e-07
2.37e-07 + 2.5e-04
6.63e-09 + 2.8e-08
1.90e-10 =+ 9.9e-07
5.49e-12 + 2.7e-05
1.57e-13 £ 1.8e-03
5.53e-13 + 2.2e-03
2.78e-16 + 1.9e-08

1.50e-02 + 2.2e-07
3.38e-04 + 5.7e-09
8.70e-06 + 9.9e-15
2.37e-07 + 1.2e-10
6.63e-09 + 2.7e-16
1.90e-10 £ 2.6e-16
5.50e-12 + 2.5e-16
1.61e-13 £ 2.3e-16
4.74e-15 + 2.0e-16
1.36e-16 £ 1.8e-16

Table 4.1: Probabilities for negative curvature of A, with one negative eigenvalue.
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Figure 4.1: Plot of probabilities for negative curvature of A, with one negative eigenvalue.
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optimization problem is then

T

' Az
in R =
Imr;r?o1 (z) Ty

; (4.19)

where R(x) is known as the Rayleigh quotient. We note that the scaling of the eigenvector
does not matter. Any multiple of a given z will give the same Rayleigh quotient and hence
the same eigenvalue. Thus any minimizer for R(x) is a weak minimizer, and the Hessian at
a minimizer must be singular. This creates difficulties for many optimization algorithms,
so we would like to change the problem to have a unique minimizer. A standard way of

achieving this is to add a constraint on the norm of z, typically

Ty =1. (4.20)

min z7Az st. z
X

There is now a unique minimizer, assuming that the smallest eigenvalue is a simple eigen-
value. The Hessian has full rank at the minimum. Only the smallest eigenvalue produces a
minimum; the others produce saddle points, except for the largest eigenvalue which gives a

maximum.

The use of (4.19) or (4.20) to compute an extreme eigenvalue has been extensively
studied in the literature [81, 58, 66]. A third option that is less studied is to use a penalty
function to convert the constrained problem (4.20) into an unconstrained problem. The [y,

quadratic, and augmented Lagrangian penalty functions give

Pi(z) = z"Az+ plz’z -1, (4.21)
Py(z) = zTAz+ p(alz —1)?, (4.22)
La(z,p) = zlAz —p(z'z —1) + p(zTz —1)2 (4.23)

In the last equation we have called the Lagrange multiplier u to avoid confusion with the

eigenvalue A (though at the optimum they have the same value).

In the following sections we review various methods for solving these unconstrained
optimization problems. We remark that the most popular method today for finding extreme
eigenvalues, the Lanczos algorithm, is not derived from the optimization point of view,

though it has some optimal properties.
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4.3.1 Line search methods

Some popular methods for unconstrained minimization are steepest descent, conjugate gra-
dients, and Newton’s method (see e.g. [27] or [46]). All these methods are iterative and
of the form zx,1 = xx + agpk, where p is called the search direction and « is the step
length. (As usual, we skip subscripts when these are not important.) In the method of
steepest descent p is the negative gradient, while in conjugate gradient methods the search
directions are orthogonal with respect to an inner product related to the Hessian, H. In
the standard Newton method, p = —H 'g and o = 1. All the three methods mentioned
can be made more flexible by choosing other values for a. This is called line search. An
ezact line search is when we select o to minimize the function along the line x + ap. The
value of « will therefore in general change for every iteration. For general problems, solving
this one-dimensional minimization problem may be quite expensive, so inezact line search

is preferred.

However, the Rayleigh quotient R(z) is a special function where a closed form expression
for the optimal step length « exists. This is easy to show. Dropping the subscripts, we

want to minimize R(z + ap) for given z and p.

(z + ap)TA(z + ap)

(z + ap)T(z + ap)
B zTAz + 2pT Az + pTApo?
2Tz 4+ 2pTxa + pTpa?

R(z + ap) = (4.24)

(4.25)

We differentiate this with respect to a and solve %R(w + ap) = 0. Keeping only the

numerator we find that
(pTAp plz—plp pTAx) o’ + (pTAp oz —p'p a:TAa:) @
+ (pTAz 2™z — 2TAz p'z) = 0. (4.26)
This is a quadratic equation in « so it can be solved analytically. Note that for certain

choices of p, some terms are zero and the expression simplifies. Solving this equation yields

two roots but only one of them corresponds to a minimizer.
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4.3.2 Line search on the sphere

It is easy to adapt line search methods from unconstrained optimization to the case where
there are linear constraints. The search direction must lie in the null space of the constraints.
But in nonlinear optimization, there is no way to stay feasible with respect to a nonlinear
constraint while moving along a straight line. There are several ways to tackle this problem.
One approach is to accept that the iterates do not satisfy the nonlinear constraints during
the iteration process, as long as all constraints are satisfied in the limit. A different approach
is to ensure feasibility at each iteration by projecting the next iterate onto the feasible set in
some way. Examples of this approach are gradient projection methods and the generalized
reduced gradient method, GRG. These methods tend to work well when the constraints are

nearly linear but often work poorly with highly nonlinear constraints.

A spherical constraint, e.g. ||z|| = 1, is a special case because the feasible set is a smooth
surface (a differentiable manifold). The analogue of a line search is to search along a great
circle on the sphere, also called geodesic search. This way the iterates z; will always stay
on the sphere and remain feasible. We now describe a geodesic search on the sphere for
the Rayleigh quotient. Note that on the sphere the Rayleigh quotient is simply a quadratic

form.

Assume we are given a point z, ||z|| = 1, and a search direction p. Locally around
x, the surface of the sphere is almost linear (flat) and the tangent space orthogonal to z.
Therefore we can orthogonalize p against x and obtain a corresponding search direction on
the sphere. More formally, we seek the projection, p, of p onto the tangent space of the

sphere at z. This is given by

P=y=—"=F "
1P — (")

We wish to search along the sphere from z in the direction p. The great circle of interest is

uniquely defined by the points x, p, and the origin. A parametric equation for this curve is
s(#) =z cos@+psing, 6¢€ (—m,x]. (4.28)

We could also have derived this equation by saying we want to search the intersection of
the plane span {z,p} and the sphere |z|| = 1. Noting that span {z,p} = span{z,p}, we
arrive at (4.28).
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The quadratic minimization problem on the curve (4.28) is

mian< (2 cos O + psin@)T A(z cos 6 + psinh) (4.29)
—n<0<m

=T Az cos® 0 + 2pT Az cosOsin® + pTAp sin® 9 (4.30)

We differentiate with respect to 6 and get

—227Ax cos0sinf + 2 pT Az(cos? § — sin® 0) + 2pTAp sinfcosh =0 (4.31)
= (pTAp — 2T Az) sin 20 4 2pT Az cos 20 = 0 (4.32)
20T Az
20 = 77—+ 4.33
= tan 260 Az — pTAp’ ( )
which gives
1. 2pT Az
== — ] - 4.34
o 2 tan (:BTA:B —pTAp (4.34)

Note that @ + 7 are also possible solutions. In the special case zTAz = pTAp, cos20 = 0, so
0 =m/4

In general this curvilinear search will yield a different point than the regular line search
followed by a projection. Observe that since the projection of any point onto the unit sphere
does not alter the Rayleigh quotient, we may at each iteration of a line search method obtain
a point on the sphere by projection, with no change in the objective value. We wish to
examine how this strategy compares to the geodesic search. The projection of a line onto a
sphere is a geodesic curve on the “visible” half of the sphere. It is easily recognized that this
curve is (4.28) with —7/2 < @ < 7/2. The search curve for the projected line search method
is the same as for the geodesic search, except when the search goes longer than /2 (we
ignore this case because it will rarely happen reasonably close to a minimizer). It follows
that an exact line search procedure will generate the same iterates if the objective function
has the property that F(z) = F(fz) for any 3, i.e. F is radially invariant. This property
holds for the Rayleigh quotient R(z). Thus we conclude that performing the exact line
search (4.26) and projecting the step onto the sphere is equivalent to doing the exact line
search on the sphere (4.34). Note that an inexact line search procedure will in general not

produce the same iterates when the parametrizations of the two search curves are different.

There is a simpler way to do quadratic minimization on a k-dimensional sphere. Consider
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again the problem of minimizing the Rayleigh quotient over the subspace spanned by two

vectors z and p. Let & = (a1, a2) be a vector of unit length.

alyTAY &

S 4.
FYIYVG (4.35)

min R(a1z + agp) = min
o] (o]
where Y = [z,p]. Y'Y is diagonal when z and p are orthogonal. This minimization problem

is a generalized eigenvalue problem with the solution
& = Amin(YTAY, YTY). (4.36)

This technique can easily be generalized to k¥ dimensions. In this case, & is determined by

a generalized eigenvalue problem of dimension .

4.3.3 Coordinate search

A simple method that is rarely considered for eigenvalue problems is to search along the
coordinate axes, i.e., p = e; for some j. This is called coordinate search or coordinate
relaxation. The method was applied to the eigenvalue problem in the 1950s and has been
analyzed in [17, Sec.61] and [38]. Convergence can be proven under mild assumptions, but
the convergence rate may be poor.

For our purposes, an attractive feature of the method is that each iteration is very
inexpensive because taking inner products with e; is trivial. Inserting p = e; into (4.26) we
get the following equation for the exact step length a:

(ajjz; — a;‘-Fw) a® + (ajjup) a + pa?x —pzj =0, (4.37)

T

where u = z7Az and p = z’x. A key observation is that the value of y can easily be

updated at each iteration:

finew = (z + aej)TA(z + aej) (4.38)
= p+ 2az’aj + o?ajj. (4.39)

Consequently, no matrix—vector product is required in this algorithm. The most expensive
step is to compute the inner product :I:Taj, which is O(n).

Exploiting the special properties of the search directions e;, we obtain the following
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algorithm:

Algorithm 4.3.3: Coordinate search.

Input: z, an initial vector

p=zlAx

p=2xlx

for k=1,2,3...
Pick a search direction e;
v = z'la,

Solve for a: (ajjz; — 7)a? + (ajjp— wa+ (yp—pzj) =0
Select the better «

p=p+2azx; + o?

p=p+ 20y + a2ajj

T =2+ aej

end

We have dropped the subscript & on the iterates, so z; refers to the jth component of z.
In this algorithm there are two possible roots for @ and we need to choose the one that
corresponds to a minimizer.

For small n, the roots of the quadratic equation become relatively expensive to compute
compared to the other operations. Therefore it has been suggested to use an approximate
value of « that is faster to compute [38, 17]. Such an inexact line search method is faster
overall if the number of iterations is not much higher than for exact line search.

A remaining question is how to pick the search directions e;. Not much is known about
this, but the convergence proofs rely on cycling through all the indices. Two natural choices
are to cycle through the indices from 1 to n, or backwards from n down to 1. In the so-called
Aitken double sweep method one searches along ej,es, ..., e, and then comes back in the
order e,—1,...,e1. It has also been suggested that one search along the axis where the
gradient has its largest component. This strategy requires that the gradient be accessible
at each iteration.

The work in n iterations of coordinate search, commonly called a sweep, is about the
same as one matrix—vector product. This estimate holds also when A is sparse because then
the columns a; are sparse, too, and sparse inner products can be utilized.

Finally we discuss the start-up cost. Before the iteration starts, we need to compute
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z'z and z7Az for the initial . In general this requires one matrix—vector product and

two inner products, but often the initial z has some structure we can exploit. One case
of particular interest is when x = d, the direction of negative curvature determined by
the modified Cholesky factorization. (We are jumping ahead here; modified Cholesky is
described in Section 5.1.) The modified Cholesky factorization is of the form A+ E = LL7,
where F > 0 is diagonal. The vector d is defined by

LTd = e, (4.40)
where + is such that ||d|| = 1. It follows that

d"Ad=d"LL"d —d"Ed =" =) e;d;. (4.41)

i
We only need to sum over the terms where e; # 0, that is, the modified elements. Hence
the cost of this calculation is negligible. Since we assume d has already been scaled to have

unit norm, we know that =’z = d'd = 1.

4.3.4 Overrelaxation and SOR

The coordinate search method described in the previous section is known as a relazation
method in numerical linear algebra. For linear systems, it is well known that successive
overrelaxation (SOR) is usually more effective than exact relaxation. The key feature of
overrelaxation is that one takes steps that are larger than the (locally) optimal a. It is
natural to ask if overrelaxation is useful for eigenproblems as well. The answer is yes. SOR
methods for the symmetric eigenvalue problem were described and analyzed by Ruhe in
[67]. He derived the optimal relaxation parameter, w, when the matrix has property A.
He showed the method converges for 0 < w < 2. His numerical experiments indicate that
overrelaxation is faster than exact search for many matrices if you choose a good relaxation
parameter w, typically 1.6 to 1.8, even for matrices that do not have property A. However,
the gain is modest. Both the analysis and the empirical results were based on the assumption
one wants high accuracy and can spend many sweeps to achieve this. We are interested in
the low accuracy case where only few sweeps (or even less) are performed. We are unaware
of any analysis of this case, but it is evident that in the first few (minor) iterations the best

Rayleigh quotient is achieved with exact search (relaxation). Therefore we decided not to



4.3. THE SYM. EIGENVALUE PROBLEM AS AN OPTIMIZATION PROBLEM 77

consider SOR-type methods any further.

4.3.5 Steepest descent

A well known optimization algorithm is the method of steepest descent, in which the search
direction p is chosen to be in the direction where the function decreases the most. This

direction is the negative gradient. For the Rayleigh quotient R(z), we have that

rTAz
VR(z) = % (Aac — :1:;:110 a:) = % (Az — R(z)x) . (4.42)

Thus we define our search direction p = Az — R(z)z. Computing p requires one matrix—
vector product and one inner product. Note that no matter how we choose ay, the iterates

xp, will lie in a k-dimensional Krylov space generated by A.

An exact line search requires the solution of
main R(z + ap). (4.43)
From (4.42) we see that plz = 0. It follows that
p Az = p"(Az — R(z)z) = p'p. (4.44)
Applying these two formulae in (4.26), we obtain
(pr)2 o — (pTAp iz — p'p :I:TA:I:) a—ppzlz =0, (4.45)
and dividing through by pp and z'z yields
= ao®+ (R(z) — R(p))a—1=0. (4.46)

Solving this quadratic equation gives the exact line search parameter c. One can show
that the smallest root should be chosen when one wants to minimize the Rayleigh quotient.
Convergence for other values of « (inexact line search methods) on this problem has been

studied in [17, Sec.74]. A special case is @ = 1/R(z), which gives the power method.



78 CHAPTER 4. DIRECTIONS OF NEGATIVE CURVATURE

Convergence

The asymptotic convergence properties of steepest descent are well known and were de-
scribed by Kantorovich [39, Ch.XV]. We quote a main result for a matrix A with eigenvalues
A1 < A2 < ... < A and corresponding eigenvectors vy, ... ,v,. Let zg be an initial vector,

and let z; be the kth iterate in the steepest descent method (with exact line search).

Theorem 10 If zy is not orthogonal to the eigenspace corresponding to A1, then R(zy) —
A1 and x, — v, where v is an eigenvector of A\1. Furthermore, the convergence rate is such

that

a—>»
B
R(xy) Al_(a+b

where a = A\, — A1, b= do — Aq,

2
) (1+ak)(R(ack_1)—)\1), k=1,2,...

and {ax} is a monotonically decreasing sequence that tends to zero.

It has later been shown [64] that the convergence rate of R(zy) to A; is indeed that of a

geometric progression.

We are not only interested in the convergence of the eigenvalue approximation, but also
that of the eigenvector. For simplicity, assume that \; is simple, such that v; is unique (up
to a scale factor). Let ¢y be the angle between z; and v;. Knyazev and Skorokhodov [42]

proved the following result.

Theorem 11 If tan ¢% < oo, then

b 2k
tanqﬁi < (1 — —) tan gb%,
a
where a = A\, — A1, b= Ay — A1.
This could be a useful result with respect to finding a direction of negative curvature because

if A1 < 0, there exists an angle ¢ such that any vector d with angle (d,v1) < § is a direction

of negative curvature.
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4.3.6 Conjugate gradients

There are several algorithms called “conjugate gradients” (one linear and various nonlinear
versions) and this sometimes causes confusion. Also, for the eigenvalue problem there is a
close relation to the Lanczos algorithm. The excellent paper by Edelman and Smith [16]
presents the relations between these methods. We summarize their findings here using their

terminology. Edelman and Smith group the CG methods into three categories:

LCG: Linear Conjugate Gradients. A standard method for solving Az = b where A is
symmetric positive definite. See [29, Ch.10] for a description. The method may also
be viewed as a minimization algorithm for the quadratic function F(z) = Jz7Az—bz.
The search directions py, are all A—orthogonal (or conjugate). No explicit line search

is required because there is a closed form expression for the optimal step length.

NCG: Nonlinear Conjugate Gradients. A well known algorithm for unconstrained
minimization, see [27, 20, 46]. Two consecutive search directions are conjugate with
respect to the current Hessian or some approximation thereof (different inner products

give rise to different versions). An inexact line search method is usually used.

ICG: Idealized Conjugate Gradients. A fictional algorithm introduced in [16] for
purposes of exposition. ICG is defined as an algorithm that generates iterates zj, that
satisfy F'(zy) = mingcx, F(z), where Ky, is a k-dimensional Krylov space. The search
directions py = xx41 — Tk are not necessarily conjugate with respect to any fixed inner
product, so the name is slightly misleading. “Optimal Krylov Method” might have

been a better name.

While the LCG and ICG algorithms are uniquely defined (given the initial data), there
are several versions of NCG. The most popular ones are the Fletcher-Reeves and the Polak-
Ribiere algorithms [13]. For the Rayleigh quotient the Hessian can be computed explicitly,
so one can then make the directions conjugate through the (free space) Hessian. A more
sophisticated approach is to take the unit length constraint into account and compute the
so-called constrained Hessian. One can then impose conjugacy through this constrained
Hessian, which is nonsingular.

The three CG algorithms are all equivalent when the objective is a convex quadratic
function (i.e., the Hessian is constant and positive definite). They all find the exact mini-

mizer in at most n steps. No such property holds in the nonlinear case. While LCG and
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NCG are ICG methods in the special convex quadratic case, no NCG algorithm is an ICG
method for general nonlinear functions.

When we apply CG-like methods to the Rayleigh quotient R(z) and compare to Lanczos
(which is described in Section 5.2.1), we find that:

e The Lanczos algorithm (including computation of the smallest eigenvalue of the tridi-
agonal matrix) is an ICG algorithm for the Rayleigh quotient. Lanczos will find the

exact eigenvalue in at most n steps.

e An NCG algorithm for the Rayleigh quotient will compute iterates in a Krylov space,
but the iterates are not necessarily optimal in their subspace. An NCG algorithm is

not an ICG algorithm. Such an algorithm is therefore not equivalent to Lanczos.

e There is no LCG algorithm for the Rayleigh quotient, but there is a connection be-
tween LCG applied to the quadratic form zTAz and the Lanczos algorithm. The
residual vectors computed by LCG are (up to normalization) Lanczos vectors that
tridiagonalize the matrix A. The link is through the tridiagonalization and not the

eigenvalue computation.

It is often claimed that CG is equivalent to Lanczos. This is only correct if the interpre-
tation is as in the last item. We emphasize that there is no CG-type method applied to the
Rayleigh quotient that is equivalent to Lanczos (apart from ICG, which is not a practical
algorithm).

A detailed historical overview of CG methods for eigen-like problems is given in [16].

4.3.7 Penalty function methods for %Az

Three common penalty functions applied to (4.20) give

Pi(z) = zTAz+ p|lzTz — 1| (4.47)
Py(z) = z"Az+ p(z'z —1)? (4.48)
La(z,p) = zlAz — p(aTe —1) + p(aTz — 1)2 (4.49)

The [ penalty function P; is exact for sufficiently large p, but it is nondifferentiable and
hence not suited for smooth optimization algorithms. We will not consider it any further.

The quadratic penalty function P is smooth but not exact for a fixed, finite p. For it to be



4.3. THE SYM. EIGENVALUE PROBLEM AS AN OPTIMIZATION PROBLEM 81

exact, we require p — oo. However, for our purposes a moderately large p should suffice. It

can be shown that
|z" — o] = O(1/p), (4.50)

where z* is the minimizer of (4.48) and v is the solution of (4.20), i.e. the sought eigenvector.

An error of O(1/p) in x leads to an error of O(1/p?) in the Rayleigh quotient.

The augmented Lagrangian L4 is an exact penalty function for suffiently large p. We
can eliminate the multiplier 4 by expanding it as a function of z. At an optimum the

gradient of the Lagrangian is zero, hence

zTAx

Ty’

24z — 2uz =0 = p= (4.51)

This is not surprising because the Rayleigh quotient is an eigenvalue when z is an eigen-
vector. If we treat p as a function of z and substitute 4 = R(z) into (4.49) we get
zTAz

Py(z) = ol p(alz —1)2 (4.52)

This is precisely the quadratic penalty function for the Rayleigh quotient. A minimizer of
P;(z) is an eigenvector for any value of p. The penalty parameter only affects the scaling
of z*. The standard approach is to minimize just the Rayleigh quotient, but adding the

penalty term makes the Hessian nonsingular at the solution, so this may have some virtue.

The unit length constraint on the eigenvector can be formulated in different ways. For
example, instead of 7z = 1 we could just as well write VzIz —1 = 0 or v2Tz — 1 = 0.

The augmented Lagrangian penalty function for the latter formulation is
Py(z) = 2TAz — pv/2Te — 1 + p(a’z — 1). (4.53)

Solving V,L(z) = 0, where L(z) = zTAz — p(z"2z — 1) is the Lagrangian, yields

2TAz

i

p=2vzTr—1 (4.54)
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Eliminating y, we get the function

xT Az

o e Az + p(a’z — 1). (4.55)

P4(.’E) =2

Observe that when 'z = 1, Py(z) = z7Az, as one would expect.

Lanczos is optimal

Suppose we apply the method of steepest descent to the penalty functions P;(z), ¢ > 1.

The gradients are

VPy(z) = 24z + 4p(z'z — 1)z, (4.56)
VPs(z) = g (Az — R(x)z) + 4p(2"2)x, (4.57)
VP(z) = % (Az — R(z)z) — 2Az + 2pz, (4.58)

where R(z) is the Rayleigh quotient as usual. An important observation is that the plane
spanned by z and VP;(z), i > 1, is span{z, Az} for all values of p. It follows from Section
4.3.2 that the corresponding search curves on the sphere are exactly the same, independent
of p. But the functions P;(z) are not independent of ||z||. We conclude that steepest
descent on P;(x) will generate iterates in the same Krylov subspace for all p. However, the

line searches will in general be different, so the resulting iterates will then also be different.

Both steepest descent and nonlinear CG generate iterates in the same Krylov space as
Lanczos, when starting with the same initial vector. Since Lanczos is known to be optimal in
the Krylov space (ICG), we know that steepest descent and NCG can never do better than
Lanczos in the same number of iterations, no matter how we tune the penalty parameter.
Any implementation of steepest descent or NCG on the Rayleigh quotient will require (at
least) one matrix—vector product per iteration. Thus the cost per iteration is comparable to
that of Lanczos. Consequently, methods based on unconstrained minimization of penalty
functions appear to be inferior to Lanczos. The only obvious advantage they have is that
you automatically obtain the desired vector, while in Lanczos one has to store the Lanczos

vectors or else regenerate them.
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4.3.8 Gradient-based methods based on other formulations

Algorithms based on gradient or conjugate-gradient methods may have other objective
functions than the ones we have described. One such algorithm was suggested by Blum and

Rodrigue [4]. They sought stationary points for the functional
1 2
§||A:v — R(z)z||”. (4.59)

Any stationary point is an eigenvector. The stationary points of this functional are not
isolated; therefore a gradient method to find so-called “C-stationary” points was developed
in [4].

There are surely other optimization problems that are equivalent to the linear eigen-
problem. We chose to focus on the ones that have simple and smooth formulations and/or

are closely related to penalty methods.
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Chapter 5

Computing directions of negative

curvature

The focus of this chapter is on algorithms for computing directions of negative curvature.
Specifically, we wish to develop algorithms that obtain good directions with relatively lit-
tle effort. First we review some well known direct and iterative methods, and then we

demonstrate that these techniques can be combined to form efficient hybrid algorithms.

5.1 Direct methods

All algorithms for computing eigenvalues are iterative, but if we are satisfied with finding a
direction of negative curvature, direct methods exist. These methods are based on either a
Cholesky-like positive definite factorization or an indefinite factorization.

When H is indefinite, it has no Cholesky factorization LLT because any matrix of the
form LLT is positive semidefinite. Gill and Murray suggested using a modified Cholesky
factorization [24], later refined in [27]. The main idea is to perform the standard outer-
product Cholesky algorithm until the diagonal element of the Schur complement, ika, is
negative or smaller than ¢ (where € is small and positive). In such cases the diagonal
element is replaced by a positive number, typically max {|ﬁkk|, e}, and the normal Cholesky
algorithm is resumed. However, this procedure may not be sufficient. Even if izkk > € it
may be necessary to increase the diagonal element of the modified factor to ensure that
subsequent diagonal elements are adequately bounded. This is achieved by ensuring that

all the off-diagonal elements in column k are bounded in magnitude by some constant [.

85
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The Gill-Murray algorithm produces a factorization
H+E=LL", (5.1)

where E > 0 is diagonal. If H is sufficiently positive definite (not almost singular), E = 0,
and the algorithm is equivalent to the standard Cholesky algorithm. Let s be the smallest
index for which A,y < ﬁkk, k=1,...,n. Let e; be the vector with a one in position s and

zeros otherwise. Define d by
L'd =e,. (5.2)

Then d can be proven to be a direction of negative curvature when ¢ = 0 [24, 27]. In
practice, d is usually a direction of negative curvature also when € is small but positive.
Unfortunately, d can be a very poor direction of negative curvature. In fact, the curvature
can be arbitrarily close to zero even when the smallest eigenvalue is bounded away from
zero, as was shown in [48].

Moré and Sorensen [48] suggested using an indefinite factorization H = LBLT, where
B is block diagonal with block sizes one or two. The most popular such factorizations are
the Bunch-Parlett and Bunch-Kaufman factorizations. From this it is possible to derive a
direction of negative curvature d that satisfies (4.3). A drawback of this method is that
one needs to employ (at least) partial pivoting, which in general would increase the density
of the factors. Just as critical is that the sparsity structure would vary at each iteration.
Recently, Cheng and Higham [7] described a modified Cholesky factorization based on the
bounded Bunch-Kaufman (BKK) method. One might also consider an algorithm based
on Aasen’s method [1], but no efficient way is known to compute a direction of negative
curvature from the tridiagonal matrix generated by Aasen’s method.

Forsgren, Gill, and Murray [21] proposed a method based on a partial Cholesky fac-
torization. This method also requires partial pivoting but is usually less expensive than
the method in [48]. It has been proven that the resulting direction of negative curvature d
satisfies (4.3) with # = O(47™!), where n; is the number of rows (columns) factored before
a nonpositive diagonal pivot was encountered. The problem with this bound is that n; can
be large (up to m), which gives a g close to zero. Although this bound is usually unduly
pessimistic, computational tests show that poor directions may be found.

Recently, Neumaier [53] has proposed a method that is based on a modified Cholesky
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factorization similar to the Gill-Murray factorization. The main difference is he has devised
a more complicated procedure for obtaining the vector d. This scheme is more expensive
but produces a better (or equally good) direction of negative curvature. It is shown' that
d satisfies (4.2), but the direction may still be relatively poor compared to the smallest
eigenvector because (4.3) is not shown to hold.

It is our belief that one can never guarantee a good direction of negative curvature
unless some type of pivoting is employed. We do not wish to do so for efficiency reasons.
A natural question is whether a direct—iterative hybrid method is possible: first do some
factorization without pivoting to obtain a direction of negative curvature, then improve it
by an iterative process. We describe this approach in Section 5.2.7 after we first examine

various iterative methods.

5.2 Iterative methods

Recall that the optimal direction of negative curvature is an eigenvector corresponding
to the smallest (leftmost) eigenvalue. An obvious approach is therefore to use an iterative
algorithm for finding extreme eigenvalues as an algorithm to compute a direction of negative
curvature. This strategy is appealing because we can rely on existing methods. As we do
not need much accuracy, the iteration process can be stopped much sooner than for the
eigenvalue problem. A difficult case when trying to compute a particular eigenvector is
when several eigenvalues are clustered closely together. In this case the algorithm may
converge to the “wrong” eigenvalue. This is not a concern for us, since if the eigenvalues
are very close we do not care which one we find. The curvature will be about the same
for all of them. A special case that can cause trouble is when the smallest eigenvalues are
clustered around zero, so we may find a positive eigenvalue when a negative one exists.
However, even this case is not of concern for us, because finding a direction of negative
curvature is only important if there exists a good one.

The two preferred algorithms today for finding extreme eigenvalues are the Lanczos
method and the Jacobi-Davidson method. If we have an estimate for the smallest eigenvalue,
inverse iteration or Rayleigh quotient iteration may also be used. We have also developed

a special version of the Chebyshev algorithm for this problem. In addition, all the iterative

! At the time of this thesis, there is some uncertainty about the validity of his proof because a counter-
example appears to exist.
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methods described in Section 4.3 can be used.

5.2.1 Lanczos

The Lanczos algorithm operates on a Krylov subspace, and computes optimal approxima-
tions in those subspaces (more precisely, it is a Rayleigh-Ritz procedure). A key feature of
the method is that one quickly obtains good estimates of the extreme eigenvalues.

Some authors distinguish between the Lanczos process, which constructs an orthogonal
basis for the Krylov subspace K;(A), and the Lanczos algorithm, which also estimates the
eigenvalues of A. When we write just Lanczos we will normally mean the latter. We show

a simple version of the Lanczos algorithm for a symmetric matrix A below.

Algorithm 5.2.1: Simple Lanczos.

Input: A, the matrix, and 7y, an initial vector.
Output: ();, the Lanczos basis, and \(T}),

estimates of the extreme eigenvalues of A.

Bo = [Iroll

9 =0

for j=1,2,...
g5 = 1j-1/Bj-1
rj = Agj — Bj-1¢j-1
o = qurj

i =1j = Q5g;

B = lIrsl

Compute selected eigenpairs of T = tridiag(f8, o, §) as desired.
if satisfied then ezit.

end

This algorithm reduces A to tridiagonal form assuming exact arithmetic and 3; > 0. After

n steps
T = Q"AQ, (5.3)

where T is tridiagonal and @ is orthogonal. Normally we perform much fewer than n
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iterations, and we have that
AQj — QjTj = ’I‘je?, (5.4)

where Q; = [q1,...,qj] is orthogonal and T} is tridiagonal. The eigenvalues 6, of the
tridiagonal matrix T are called the Ritz values. It is inexpensive to compute the Ritz
values because usually 7 < n. Using QR iteration to compute the p extreme eigenvalues of
T; requires only O(pj) operations. Selected eigenvalues of a tridiagonal matrix can also be
computed by bisection or by the divide-and-conquer method of Gu and Eisenstat [32]. The
extreme Ritz values approximate the extreme eigenvalues of the original matrix A. It can

be shown that

T4
.y Aay
Omin(T5) = 5.5
IIllIl( j) yglé?z yTy ? ( )

and similarly for Omax (7). Hence the Lanczos method is optimal in the Krylov subspace
(see also Section 4.3.6).

We note that the simple Lanczos algorithm described above requires us to store only
three vectors. This is sufficient to produce the desired eigenvalues. If one also wants one
or more eigenvectors, one either has to store all the Lanczos vectors or repeat the whole
Lanczos process to regenerate them. If only one or a few eigenvectors are sought, these can
alternatively be found by inverse iteration (see Section 5.2.3).

The Lanczos vectors are orthogonal in exact arithmetic, but in floating-point arithmetic
they can lose orthogonality quite rapidly. Hence, in practice some type of reorthogonal-
ization has to be used. Since full reorthogonalization is very expensive, several types of
selective or partial reorthogonalization have been developed [58, 10].

It has long been folklore in numerical analysis circles that the Lanzcos and similar
algorithms quickly determine the eigenvectors corresponding to extreme eigenvalues. Quite
how quickly is often omitted. Calculating only a few extreme eigenvalues and eigenvectors is
usually cheaper than determining all the eigenvectors, but it can typically take about 24/n
iterations [58, p.259] to compute them to machine precision. While that is low compared
to n it is more work than we wish to expend. For negative curvature we require less
accuracy, but numerical experiments indicate O(y/n) iterations may still be necessary (see
Section 5.2.8).

A detailed convergence analysis of Lanczos based on Chebyshev polynomials was first
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done by Kaniel and Paige [55]. A more recent paper is [68].

5.2.2 Jacobi-Davidson

A newer eigenvalue method that has gained popularity lately is the Jacobi-Davidson method
by Sleijpen and Van der Vorst [72]. This method combines features from the Davidson
method and an old algorithm proposed by Jacobi. One advantage of the method is that it
allows for preconditioning. The preconditioner is applied to a linear subproblem, not the

eigenvalue problem itself.

We give a very brief sketch of the Jacobi-Davidson method. Suppose we seek the eigen-
value of A closest to p and the corresponding eigenvector (extreme eigenvalues can be found
similarly). In each iteration of Jacobi-Davidson, we approximate the desired eigenvector
in a subspace. Let u; be the Ritz vector after k iterations. We then seek to update uy
with a correction w in u,ﬁ, the orthogonal complement of u;. This strategy is called JOCC

(Jacobi’s orthogonal complement computation). The restriction of A with respect to ufc- is

B = (I — upul ) A(T — g, Jugl] = 1. (5.6)
Then we solve
(B —plHw = —r, (5.7)

where r = Auy — puy is the kth residual. w is used to update ug, that is, ux41 = up+opw. A
key point in Jacobi-Davidson is that the equation for w need only be solved approximately,
typically by using only a few iterations of a Krylov subspace method. Note that the JOCC

is just a linear system, so we can use a preconditioner if we wish.

It can be shown [72] that the Jacobi-Davidson converges cubically for symmetric matrices
in a region around the solution. However, far from the solution the method can be quite
slow. One possible remedy is to start with another method and switch to Jacobi-Davidson
when a reasonably good approximation has been found [30]. In our application we expect

to have a fairly good initial guess, so such a strategy should not be necessary.

The Jacobi-Davidson method can be interpreted as an inexact Newton scheme [71].
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5.2.3 Inverse iteration and RQI

The preferred methods to compute the eigenvalue closest to a given number y are inverse
iteration and Rayleigh-quotient iteration (RQI). These are both based on the power method.
The power method finds the largest (in magnitude) eigenvalue of a matrix, so the idea is to

apply it to the matrix (A — pul)~L.

Input: z¢, an initial vector

and u, an approximation to the desired eigenvalue

for k=1,2,...
Solve (A — pl)yx = zx1
2k = Yr/llyxl

end

In plain inverse iteration the shift i is constant throughout the process. In RQI y is set
to the Rayleigh quotient of x; at each iteration. As the process converges, this will be a
better approximation to the eigenvalue of interest than the initial .

The convergence properties of inverse iteration [59, 58, 36] and RQI [54, 57] have been
well studied. Suppose we seek A1, and assume that A; is the eigenvalue closest to y. As
k — oo, z — vy linearly with convergence rate at worst |u — A1|/|p — A2|, where v; is an
eigenvector of A;. (We do not consider the case where )\ is a multiple eigenvalue, since that
is much more complicated.) The asymptotic convergence rate is of little importance when
low accuracy is required. Ipsen [36] has shown that a single iteration is usually sufficient to
obtain an approximate eigenvector with the same order of accuracy as u approximates ;.

It has been shown that RQI converges asymptotically cubically to an eigenvector [54, 58].
One difficulty with RQI is that the method is more sensitive to the initial vector, that is, it
converges fast but may converge to a different eigenvector than desired. This is a concern
in eigenvalue computations where the eigenvector is unknown, but is less of a concern to us
when we already have a good approximate direction.

In inverse iteration, the linear system can be solved either by direct factorization (LU
or Cholesky) or by an iterative procedure. Since the shift is fixed, the same matrix factors
can be reused througout the procedure. Therefore a direct method is typically employed.
With RQI the shift changes at every iteration, so either a new factorization is required, or

more realistically, an iterative solver has to be used for the linear system. One might think
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an iterative solver is inappropriate since the system is very ill-conditioned when the shift is
close to an eigenvalue, but in fact the vector y; tends to blow up in the desired direction.
See [59, 58] for a discussion of this.

We note that the matrix A— ul is symmetric but may be indefinite. Therefore we cannot
use CG but need a method like MINRES, SYMMLQ, or QMR. The overall algorithm is an
inner-outer algorithm, and as usual the question is how accurate do we need to solve the
inner problem. This has been studied in [76] and more recently in [22]. The answer appears
to be that a relatively loose tolerance in the inner problem is sufficient. Typically, only two
or three iterations are performed in each inner iteration.

RQI is not a Krylov subspace method. It is related to Newton’s method [59]. Inverse

iteration is a Krylov method with respect to (A—uI)~?! if the linear system is solved exactly.

In the negative curvature problem, we want to approximate the most negative eigen-
vector but usually we do not have a good estimate of the eigenvalue a priori. One possible
strategy is to fix p at say 4 = —1. If Apin > —1 the algorithm will converge to Apin.
Otherwise, Apin < —1 and we may find a different eigenvalue A;, where A, < —1 < Aj.
This is acceptable if ); is negative and bounded away from zero, because we then obtain
a reasonably good direction of negative curvature. The bad case is when we converge to
a value that is around zero or positive. This has to be considered a failure, so this simple
approach is not quite satisfactory.

In an optimization algorithm, if we have already computed a descent direction p we
can use this to choose a better shift for inverse iteration. We would like to determine
a direction of negative curvature, d, that gives better decrease in the objective function
than the descent direction. A possible strategy is therefore to choose the shift for inverse
iteration, i, depending on the predicted function decrease g’p. Unfortunately, this does not
easily produce an estimate for p because that requires an estimate for the function decrease
in the quadratic model in d, and an appropriate scaling of d is usually not known.

It has been suggested that inverse iteration be combined with RQI [76]. The argument
is that one should start with inverse iteration because the method is quite robust when the
initial vector is a poor approximation, and later switch to RQI to take advantage of the fast
local converge of RQI. This conclusion does not apply directly to the problem of finding
good directions of negative curvature. In a purely iterative scheme we have no estimate
of the eigenvector at first and should use inverse iteration initially. We expect the vectors

obtained from inverse iteration to be sufficiently good for our purpose, so the RQI phase is
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not necessary. On the other hand, if we have a vector at the beginning that is close to a

desired eigenvector in some measure, then it might be better to do only RQL.

Although we believe inverse iteration and RQI may be suitable algorithms for find-
ing directions of negative curvature in some situations, we have chosen to focus on other

methods.

Finally, we remark that the problem of finding the smallest eigenpair is a special case.
Earlier we stated that an indefinite solver has to be applied to the matrix A — ul. This
is not true when the smallest eigenvalue is desired. Suppose we apply CG to the system
A—pl. If p > Apin, then A — I is indefinite and CG may not work. If a CG search
direction has negative or zero curvature, we say that CG becomes unreliable since the
standard convergence theory no longer holds. (“unreliable” is not a standard term; some
people say CG breaks down in this case, but that is not quite accurate because the iteration
process may sometimes continue.) It should be mentioned that CG occasionally works on
indefinite systems; for example, it will converge to a solution if all iterates lie in a subspace
where the quadratic form is convex. Interestingly, if CG becomes unreliable, it will produce
a direction of negative curvature of A — ul. It follows that Amin < g and the direction of
negative curvature is a vector that can be used as the next iterate. For more details on CG
applied to indefinite systems, see Section 5.3.1 and Algorithm 5.2.6. We have not analyzed
how such a procedure compares to inverse iteration (or RQI) with a standard indefinite

solver.

5.2.4 Chebyshev iteration

We derive our Chebyshev algorithm from looking at polynomials over a Krylov subspace.

Any Krylov subspace method starting with ¢ can be expressed as
z, = Py(A)zo, (5.8)

where Py is a polynomial of degree k and Py = 1.

We seek a polynomial P, that gives good negative curvature, as measured by the
Rayleigh quotient. Let Ay < ... < A, be the eigenvalues of A. We are interested in
the case where A is indefinite, so we can assume A\; < 0 and A, > 0. Let v1,... ,v, be the

corresponding unit eigenvectors. We normalize xg to have unit length, and define ¢; = z v;.
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Then zg = ), ¢;v;, and

xf = x4 Pe(A) zo (5.9)
n
= div] Pr(4)%v; (5.10)
=1
n
=" $1P(N)%. (5.11)
=1
Similarly,
zi Azy, = 2§ Py(A) APy (A)xg (5.12)
n
=Y ¢iv] Py(A)*Av; (5.13)
=1
=3 7 P(X)* i, (5.14)
=1
and we get
T
A
R(zy) = £k (5.15)
Ty Tk

_ Z)\¢<0 ¢z2Pk(>‘i)2)\i ZAizo ¢’z2Pk()\i)2>\i
iy 92 P(N)? iy 92 P(N)?

(5.16)

The first aggregate term contains all the negative terms and the second contains the positive
terms. To get good negative curvature, we seek a polynomial that is small on the positive

eigenvalues but blows up for A < 0. The obvious candidate is a Chebyshev polynomial.

The Chebyshev polynomials Cy(z) can be defined by

Ck(z) = cos (kcos™(2)), —-1<z<1, (5.17)
= cosh (kcosh™'(2)), |z > 1. (5.18)

but a more practical definition is the recursive formula
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These polynomials are bounded in magnitude by one on [—1,1], but grow very rapidly
outside this interval. In our case, we seek polynomials Py that are small on [0, §], where p
is an upper bound for \,. Consequently, we define P, to be the Chebyshev polynomial of
degree k on [0, p], given by

2
Pi(z) = Cy (—1 + ?z) . (5.21)
The three-term recurrence for P is
4
Pyiq1(2) = (—2 + Ez> Pi(z) — Py_1(2), (5.22)

with initial conditions Py = 1, Pi(z) = %z — 1. Applying this to A gives the following
Chebyshev iteration algorithm:

2
Il = jA.CC() — I, (523)
i)
4
Tpy1 = EALE]C — 2z — xTp_1, k> 0. (5.24)

This formula is very efficient because each step only requires one matrix—vector product
and no inner products. Also note we only need to store three vectors.

In our experiments we used p = ||A||1 because the one—norm of a matrix is inexpensive
to compute, but it might be better to spend more effort to get a tighter bound. This should
give faster convergence. We believe a good choice is to run a few iterations of Lanczos, for
instance, and use the eigenvalue estimate obtained from that in a subsequent Chebyshev
procedure.

Another promising strategy is to use Chebyshev polynomials to accelerate some other
iterative method. This is known as the Chebyshev semi-iterative method and is described
in [79, Ch.5].

5.2.5 Practical use of direction of negative curvature

We wish to analyze and compare the cost of different ways to compute a direction of negative
curvature. In practice we rarely perform this procedure for its own sake, but rather as a
step within an optimization algorithm. Hence we need to assess what else is done in the

algorithm. For example, one should be aware which quantities have been computed and
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thus are readily available.

The standard approach in line search methods is first to compute a Newton-type descent
direction p by solving Hp = —g, where H ~ V?F(z). If H is determined to be indefinite,
a direction of negative curvature is also computed. Typically, a direct solver is used and
some factorization of H is computed. This factorization is then available when a direction of
negative curvature is sought. For very large problems, iterative solvers are usually preferred.
In this case we can extract useful information from the iterative solver. In the next section

we show how a direction of negative curvature can be found from the CG algorithm.

5.2.6 Negative curvature in CG

Suppose we attempt to solve Hp = —g using CG when H is indefinite. In such cases,
CG may fail. If all iterates lie in a subspace where the quadratic form is convex, CG may
find a satisfactory solution and we will not determine whether the matrix was definite or
indefinite. However, if one of the CG search directions has negative curvature, then the CG
process becomes unreliable (and may even break down). But in this case we have found a
direction of negative curvature, though it could be poor. When we use the CG algorithm,
we will either solve Hp = —g satisfactorily, or obtain a direction of negative curvature. The
algorithm is a straightforward modification of the standard CG algorithm. A minor defi-
ciency in the algorithm below is that it may terminate with a direction of zero curvature.
However, it is highly unlikely this will occur in floating-point arithmetic. Furthermore, even
a direction of zero curvature may be satisfactory if we later perform some type of iterative

improvement to obtain a better direction of negative curvature; see the next section.
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Algorithm 5.2.6: CG for possibly indefinite systems.

Input: H, g, ¢
Output: When H is spd: pg, a solution of Hp = —g with tolerance e,

otherwise: d, a direction of negative curvature.

po=0;70=—g; k=0
while ||rg[| > e([lg]| + [|1H][[[l])
k=k+1
ifk=1
€1 =To
else
B = Th_1Tk—1/Th—_oTk—2

¢k = Tk—1 + Brcr—1

end
if c{Ac;c <0

d = cy; exit
end

_ T T
Qp =T Th—1/CLACk
Pk = Pk—1 + QgCk
Tk =Tk—1 — ozkAck

end

There is a close relation between CG and Lanczos (Section 5.3.1), so it is possible to recover
the Lanczos vectors and the tridiagonal matrix from the CG vectors and coefficients. One
can then compute the smallest Ritz value and vector, which are optimal in the Krylov
subspace we work in. However, the work and storage requirements then become similar to

those of Lanczos, so we do not study that option any further.

5.2.7 A hybrid approach

A fairly natural idea for computing a direction of negative curvature is to combine a direct
method and an iterative method. A direct method like modified Cholesky will produce a
direction of negative curvature but it may be poor. We can then use this vector as the
initial vector in an iterative method. Murray reported in 1993 [50] that even one or two

iterations of the steepest descent algorithm could dramatically improve a poor direction of
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negative curvature when a good one exists. This has encouraged us to study such hybrid
methods in more depth. The first stage in a hybrid method does not necessarily have to be
a direct method, but could be an iterative method like CG that terminates with a (poor)
direction of negative curvature.

Obviously, any iterative method can be used in the refinement step. Since we already
have a fairly good initial vector we expect to do only a few iterations. A relative inexpensive
iterative method may be sufficient. We examine Lanczos, steepest descent, Chebyshev, and
coordinate search.

We expect iterative methods to perform quite well when the initial vector has close
to zero curvature. The main reason is that when H has only few negative eigenvalues, a
vector d with near-zero curvature is likely to have strong components in the direction of
the smallest eigenvectors. We prove this in Section 5.2.9. We know that this property leads
to quick convergence for many iterative methods, e.g., Chebyshev iteration and inverse
iteration (RQI).

5.2.8 Numerical results

We have tested the methods on a set of randomly generated indefinite matrices. (Some
preliminary results were reported in [5].) Within an optimization method it is essential
to obtain a relatively good direction of negative curvature whenever a significant direction
exists. When the smallest eigenvalue is close to zero it is often the case that a direction of
negative curvature need not be computed. Nonetheless we have included this case because it
represents a potentially hard case for the algorithms and may occasionally be required. Since
many iterative methods work extremely well on matrices whose eigenvalues are clustered,
such distributions of the eigenvalues were avoided. We also expect the hard case for iterative
methods to be when the negative eigenvalues are small in magnitude and there are also some
small but positive eigenvalues.

We tested a set of n x n random symmetric indefinite matrices with specified spectra.
Each test matrix was of the form H = QAQT with Q a random orthogonal matrix and A
a diagonal matrix with ¢ negative elements. We used the following distributions for the

eigenvalues; the semi-uniform distribution,

—aift = 1,... .t
/\,-:{ aift, P (5.25)

(i—1)/(n—1), i=t+1,....n
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where 0 < a < 1, and the semi-geometric distribution,

g1, i=1,...,n—t
=40 0, (5-26)
-6, i=n—t+1,...,n

where 0 < 8 < 1. Similar distributions were used in [21].

For each distribution we generated 10 different random matrices corresponding to ¢ =
1,...,10. A new @ was generated for each H. We used the matrix dimension n = 200 for
most tests. This is not very large, but our matrices are dense because a random orthogonal
matrix is dense. In fact, the time to set up the problems was longer than the time to solve
them. To test very large n one would need to generate matrices with similar properties
but for which the Cholesky factors were sparse. A sparse modified Cholesky code would be
required.

We tested three different types of initial vector:

1. Random initial vector.

2. Initial vector with negative curvature from modified Cholesky.
3. Initial vector with negative curvature from CG.

For the iterative improvement stage, we compared four of the methods described earlier:
coordinate search, steepest descent, Lanczos, and Chebyshev iteration. All the algorithms
were implemented in MATLAB. The Lanczos method was a simple implementation with no
reorthogonalization. (We also tried complete reorthogonalization and observed no difference
because the numbers of iterations are small.) All the methods except coordinate search
require one matrix—vector product per iteration. For coordinate search we counted one
sweep (n minor iterations) as one iteration because the work involved is comparable to
that of a matrix-vector product. For dense matrices, the work per iteration is roughly the
same for all the four methods considered here because vector-vector operations are lower
order terms and become insignificant. However, for sparse matrices, each iteration of the
Chebyshev method is cheaper than those of steepest descent or Lanczos because fewer scalar
products and saxpy operations are required.

In the figures we show the ratio of the Rayleigh quotient dFHdy/didy t0 Amin(H) as
a function of the number of iterations k. This ratio should go to one as £ — oo. For

each method, we plotted the minimum and maximum ratio over the ten trials. If the ratio
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was negative, the curvature was positive and the data points were not included in the
graphs. Each method is normally described by a pair of lines that shows the boundary of
the closure (envelope) of all the test runs. We chose to present the experiments this way
because plotting all the data would clutter the graphs.

In Figure 5.1 we show the semi-uniform distribution with & = 1 and « = 10~3 starting
with a random initial vector. We see that all the methods managed to find a direction of
negative curvature in 5 iterations or less with o = 1. In the harder case (o = 1073), the
number of iterations goes up dramatically. (Note that the scale on the horizontal axes is
different.) In the worst case, only Lanczos produces a good direction of negative curvature
in a reasonable number of iterations. For coordinate search and steepest descent, only the
best case shows up on the graph. This implies that in the worst case, negative curvature
was not found in 100 iterations. Chebyshev iteration did not show up even in the best case.

Figure 5.2 shows the same examples starting with the direction from modified Cholesky.
In this case, all four methods do well. Two peculiar effects are visible in the rightmost
graph. First, we observe that there was a big improvement for coordinate search in the
very first iterations. Second, we note that Chebyshev iteration does not always produce
a monotone curve. Unlike the other methods, Chebyshev is not a descent method for the
Rayleigh quotient.

In Figure 5.3 the initial vector is the one obtained from CG. The graph for a = 1
displays the same behavior as in Figure 5.2, while the leftmost graph (o = 10~3) looks
different. The initial curvature is weaker than that from modified Cholesky, but then the
relative improvement after a few iterations is better.

In Figure 5.4 we used the semi-geometric distribution with 8 = 0.95. This example is
an extremely hard case for any algorithm because the negative eigenvalues are very close
to zero (of order —1076). For smaller values of 3 the matrix becomes numerically positive
semidefinite in floating-point arithmetic, and eventually both modified Cholesky and our

iterative methods fail to give a direction of negative curvature.

From these experiments we conclude that when starting with a poor initial vector (e.g.
a random vector), our problem is similar to the symmetric eigenvalue problem and we
prefer the Lanczos method. But if we already have a direction of negative curvature, any
of the iterative methods we have considered will give much better negative curvature after
a few iterations. We prefer steepest descent over the Lanczos method because it requires

less memory and we obtain the desired vector directly (no need to store or regenerate
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Figure 5.1: Semi-uniform distribution, @ = 1 (left) and o = 1072 (right). Random initial
vector.
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from Modified Cholesky.
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Figure 5.3: Semi-uniform distribution, @ = 1 (left) and a = 1073 (right). Initial vector
from CG.
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Figure 5.4: Semi-geometric distribution with 8 = 0.95. Modified Cholesky initial vector
(left) and CG vector (right).

the Lanczos basis). The Chebyshev iteration is similar in cost to steepest descent but the
Rayleigh quotient is in general not monotonically decreasing, a desirable property that holds
for all the other methods. Overall Chebyshev iteration was the worst of the methods we
tried. The coordinate search method performed surprisingly well and was in fact usually
better than Lanczos early in the iteration process.

Consequently, coordinate search followed by steepest descent look to be the most attrac-
tive algorithms as a refinement step in a hybrid algorithm of the methods considered here.
When starting from a random vector, a more powerful method like Lanczos is required.

However, in an optimization algorithm we never start from a random direction.

5.2.9 The spectral composition of d

The matrices of interest have only one or a few negative eigenvalues. Assume that we

somehow obtain a vector d with negative or near-zero curvature, that is,
dTHd < e, (5.27)

where € > 0 is small. Let A; < ... < A, be the eigenvalues of H, and let vq,... ,v, be the

corresponding eigenvectors. In the following, we write the spectral decomposition of d as
n

d=)_ ¢ (5.28)
i=1

Theorem 12 Let H be an n by n matriz with only one negative eigenvalue \1. Suppose
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all the other eigenvalues are bounded away from zero such that

Ai > 0|Aq1, i > 1, (5.29)
for some 8 > 0 independent of n. If
dTHd
< .
T =6 (5.30)

then

N\ 2
B (ﬂ) 0 (5.31)
¢
fori>1 asn — oo, where £ denotes the expectation.

Proof: Assume without loss of generality that ||d|| = 1. From (5.30) we have

n
> ¢ <e
i=1

- ¢z’>2 i €
$iy Aoy
Pt <¢1 | A1 | A1|p?

Exploiting (5.29), we get

¢z’> €

9 R

;(m = e

1 (i)’ 1 €

n—1 (T) S 0m—1) (1+IA1I¢%>
2

() ] < (1 e)

—0asn— o

O
A corollary of this theorem is that |¢;/¢1| — 0 for ¢ > 1 with probability one as n — oo.

Note that Theorem 12 also holds under certain weaker conditions. For instance, we can

allow some eigenvalues to be arbitrarily close to zero as long as there is a finite number
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A1 mean(|¢1]) | std([41])
-1 0.54 0.03
0.1 | o081 0.03
-0.01 | 0.94 0.02
-0.001 | 0.995 0.005

Table 5.1: Distribution of |¢;| for the modified Cholesky direction from matrices of order
n = 100 with one negative eigenvalue

of them. Various extensions of the theorem hold when there is more than one negative

eigenvalue.

The theorem above tells us that, under the stated assumptions, any direction of negative
curvature will have a strong component in the direction of the eigenvector of the negative
eigenvalue when n is large. Another observation that can be made is that when Apj, is
small in magnitude, any direction of negative curvature must have a strong component
in the direction of an eigenvector of Apin,. We have observed this fact empirically using
random test matrices with only one negative eigenvalue (semi-uniform distribution from

Section 5.2.8). See Table 5.1. The positive eigenvalues were spread out between 0 and 1.

5.3 A modified Newton algorithm

In an optimization algorithm, computing a direction of negative curvature is only a small
part of the overall algorithm. It is important to look at the whole approach. In this section
we discuss a modified Newton method that relies on computing descent pairs (s,d) where
s is a direction of descent and d is a direction of negative curvature. If a good descent
direction is found, we do not need to compute a direction of negative curvature. When the
descent direction is poor, one should take advantage of the calculations done so far when a
direction of negative curvature is computed. Otherwise, a direction of negative curvature

is not required.

We are interested in the case where H is large enough to require iterative methods. In
truncated Newton algorithms, the direction p is found approximately by solving Hp = —g
iteratively. When H is determined to be indefinite, we wish to find a direction of negative

curvature.
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5.3.1 Lanczos and CG
After k iterations of the Lanczos method applied to the matrix A we have
AV, = ViTy + Brvkr1€; (5.32)

where Vi, = [v1 ... vg] is n by k and orthogonal, and T}, is tridiagonal. The Lanczos algorithm
computes eigenvalues, but with minor modifications it can also be used as an iterative

method for linear systems.

Consider the general linear system Az = b. Define the residual 7y to be b— Azy. Lanczos

is a Krylov subspace method, so we can write
Tk = o + Vi, (5.33)

where g, is undefined for now. To find the best possible approximation to the true solution

at every iteration, we impose the Galerkin condition
Vilry, =0, (5.34)

that is, the current residual be orthogonal to the current Krylov subspace. We have

Ty = b — AZEQ — Akak (535)
= ViBoer — (ViTk + Brvksier ) vk (5.36)
= Vi (Boer — Tkyk) — BrlkVk+1, (5.37)

where 7, = efyk. Choosing yj, to satisfy

Tyyr = Boer (5.38)

gives ry, = —BkNkVk+1, and then the Galerkin condition VkTrk = 0 holds if vg; is orthogonal
to Vi, or if ny, = efyk ~ 0. In exact arithmetic vg is truly orthogonal to Vi, but this may
not hold in practice. Equation (5.38) defines a tridiagonal system for vy, of order k, which

is fast to solve. The corresponding zj, is given by (5.33).

If A is symmetric and positive definite, T} also has those properties. Consequently, the

tridiagonal system can be solved by Cholesky factorization. Instead of waiting until the end
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to solve the tridiagonal system, one can incrementally update the current solution z;. The
resulting algorithm is equivalent to the conjugate gradients (CG) method. Lanczos and CG
are intimately related [56, 29]. Let Ry be the CG residual matrix after k iterations. From
the CG algorithm (5.2.6) we have ¢; = r;_1 + Bjcj—1, and it follows immediately that

Ry, = CyBy, (5.39)

where C}, is the matrix of CG search directions and By, is upper unit bidiagonal with (3;)
on the superdiagonal. One can further show [29, Sec. 10.2.6] that the CG residuals and the

Lanczos vectors are identical up to a constant factor. More precisely,

Vi, = RpA Y, (5.40)
where Ay is diagonal with diagonal elements

Aji = E|lrilla. (5.41)

Note that the Lanczos method for linear systems works for indefinite matrices, while CG in
general does not. In nonlinear optimization we seldom know in advance whether the Hessian
is positive definite or indefinite. It has been suggested [31, 45] to start with CG and switch to
Lanczos when necessary. This strategy is possible because of the close relationship between

the CG search directions and the Lanczos vectors.

An alternative is to start with the CG algorithm and, if a direction of negative curvature
is found, then switch to Lanczos but restart using the direction of negative curvature. More
precisely, suppose that we apply CG to a matrix H that is indefinite (but presumably
has few negative eigenvalues). As long as we stay in a subspace where the Hessian is
positive definite, CG works fine. Possibly the CG solver finds an adequate approximation
to the solution, p, for the descent direction without detecting that H is indefinite. On the
other hand, if CG generates a search direction c¢; such that cfH cx < 0, then CG becomes
unreliable but a direction of negative curvature is obtained. Here ¢ is the search direction
within CG; the search direction for the optimization algorithm would be py = S5 ac;.

Note that p; has no component along ¢, which has negative curvature.

One advantage of starting with CG instead of Lanczos is that we do not need to store

or regenerate the Lanczos vectors in order to construct a Ritz vector (eigenvector). The
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drawback is that we usually obtain a direction of poorer negative curvature. Observe that
¢, lies in the same k-dimensional Krylov subspace in which the Ritz vector from Lanczos is
optimal. Hence the Ritz vector will always have stronger negative curvature than the vector
obtained from the CG method. However, in practice the difference in quality appears to be
rather small (typically less than a factor two in the Rayleigh quotient), so both vectors can
be a useful starting point for further iterative improvement.

We show that the number of iterations needed to find a direction of negative curvature

is exactly the same with CG as with Lanczos.

Lemma 13 Consider the Lanczos algorithm (Table 5.2.1) and the CG algorithm (Ta-
ble 5.2.6) applied to an indefinite matriz H with the same initial vector. If the kth iteration
is the first for which the smallest Ritz value in Lanczos becomes monpositive, then this is

also the first iteration for which cchk <0 in CG, and vice versa.

Proof: The smallest Ritz value in a subspace is less than or equal to ¢} Hcy/(cicg) for any
¢ in that subspace. This proves one direction of the theorem. Let k be the smallest index
such that the Ritz value Amin(7%) < 0, where T} is the tridiagonal matrix generated by
Lanczos. Then T}, is positive definite, while T}, is not positive definite. Consequently, CG
will work normally for the first kK — 1 iterations, but will become “unreliable” in iteration k
with chck <0. O

Another way to obtain a direction of negative curvature from CG/Lanczos was proposed
by Nash [52]. He suggested using the spectral decomposition of the bottom 2 x 2 block of
a factorization of the tridiagonal matrix Tj. This can be viewed as a compromise between

using the whole of T} and just the last search direction.

5.3.2 Modified Lanczos and truncated Newton

In a Newton-type method we minimize a local quadratic model Q(p) = %pTH p+g'p. When
H is positive definite, the minimizer can be obtained by solving the linear system Hp = —g.
Note that when H is indefinite, such a p is of little interest because it is not a minimizer
of Q(p). Furthermore, Q(p) is unbounded below, so we would like to find a direction of
negative curvature for H. Let p; be the projection of p = —H~!g onto the Krylov subspace
K, i.e., the current iterate after k iterations of Lanczos/CG. If T}, is positive definite then

pi is a descent direction with positive curvature. But if T} is indefinite, then p; may not
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be a descent direction. Fortunately, in this case it is simple to find a direction of negative
curvature. Let A; < 0 be the smallest eigenvalue of T}, and u the corresponding eigenvector.
Then u is an optimal direction of negative curvature for Ty. The corresponding direction

of negative curvature for H is Vju.

One remaining question is how to obtain a descent direction when T}, is indefinite. A
simple approach is to let p = p;_1, where j is the smallest index such that T} is indefinite.
However, we may wish to continue the iterative procedure in order to obtain a better descent
direction and direction of negative curvature from a higher-dimensional subspace. Assume

we perform the Lanczos process k steps, where k > j (and j is defined as above).

To obtain a descent direction, we need to modify T} to become sufficiently positive
definite. This can be done in many ways, but two approaches are particularly natural. The
first is to apply a modified Cholesky algorithm to 7. Because T} is tridiagonal, one can
devise a special algorithm for this case. This was first done by Nash [52]. The other strategy

is to shift the eigenvalues of T}, by a positive scalar 6, i.e. let
Tx(0) =Ty + 01, (5.42)

where @ is 0, if T}, is positive definite, and @ > —A; otherwise. The latter case is the one
of interest. We wish to ensure that Ty (6) is not ill-conditioned, so the shifted eigenvalues

should be kept away from the origin. We suggest using
0 = max {0, -2\ (Tk), -1 (Tk) + 6} , (543)

where € is a small positive number. This choice ensures that the eigenvalues of the modified
matrix are greater than or equal to €, and does not make any unnecessary modifications.

We can easily compute the search direction
pr(0) = po + ViTy  (O)llroller (5.44)
because all we need to do is factorize and solve for (factorize) the tridiagonal matrix T (0).

The direction px(6) can be interpreted as a combination of the Newton direction and

the steepest descent direction in a subspace. In fact, the method described above attempts
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to compute a Newton direction p subject to the constraint
p'p <0, (5.45)

i.e., a trust-region constraint. By using CG/Lanczos to solve for p, we obtain an inezact or
truncated Newton method. These methods have been studied extensively in the literature
[11, 12, 52].

Let us summarize the overall algorithm. We attempt to solve Hp = —¢g by a Lanczos
process. If we successfully obtain a good descent direction, we are done. If at some point
we detect that the tridiagonal matrix T}, is indefinite, we can obtain a direction of negative
curvature from T}, and the Lanczos basis. We may either stop the iteration when this occurs,
or we can continue the Lanczos process in order to determine a better direction of negative

curvature. A descent direction is then available from (5.44).

5.3.3 Initial vector in Lanczos

We have not discussed the choice of initial vector for the Lanczos process, but tacitly
assumed it is a multiple of the right hand side —g. There are some advantages in this
choice, the most important being numerical stability. It has been shown [56] that the choice
—g is essential if the Lanczos vectors are not truly orthogonal, which is the case when no
reorthogonalization is used.

A difficult case, often called the hard case, is when p is nearly orthogonal to g. In
exact arithmetic, any Krylov method (like CG or Lanczos) will fail if the initial vector has
no component in the direction of the solution. This principle also holds when we seek an
eigenvector (or a direction of negative curvature). In the hard case, it would be better to
start with a different initial vector, for example a random vector. The probability that a

random vector is orthogonal to the desired solution vector is zero.

5.3.4 Practical Lanczos methods

Several times we have mentioned that a drawback of the Lanczos algorithm is that the
eigenvector is not easily obtained because access is required to all the Lanczos vectors.
Consequently, one must either store all the Lanczos vectors, or regenerate them. The first
option is usually prohibited by memory limits, while the second option almost doubles

the cost of the method. An alternative is to compute the desired eigenvector by inverse
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iteration. When we have a good estimate of the desired eigenvector, only a few (outer)
iterations are needed to compute the eigenvector to high accuracy. Since we only seek one
vector, this approach is attractive.

Another option is to use an implicitly restarted Lanczos method. Implicitly restarted
Lanczos and Arnoldi methods [43, 44] have become very popular over the last few years.
They work well when only a few eigenvalues/vectors are desired and memory is limited.
The algorithms require O(kn) storage to compute k eigenpairs. However, these methods
are fairly complex and constitute a research field of their own, so they are beyond the scope

of this thesis.

5.4 Preconditioning for eigen-like problems

For linear systems, it is well known that convergence can be accelerated by preconditioning
the problem. The fundamental idea is to solve M ~'Az = M ~'b instead of Az = b, where
M is called the preconditioner. M is an approximation to A chosen such that M 1A is
a “better” matrix than A in some sense. In the CG algorithm both A and M should be
positive definite, and one would like the eigenvalues of M~!A to be clustered around one.
Preconditioning for linear systems is quite well understood by now, especially the positive
definite case.

It is not easy to precondition eigenvalue problems; in fact, some people claim it is
impossible. (See [41] for an interesting discussion of preconditioned eigensolvers.) When you
precondition a matrix the eigenvalues change, and thus you have changed the problem itself!
However, once an eigenvalue approximation g ~ X is determined, one can precondition to

solve for the eigenvector:
M (A—pl)v=0. (5.46)

We are interested in computing good directions of negative curvature. As mentioned
before, this process usually follows that of solving a linear system with the same matrix.
Suppose we have solved Hp = —g using a Krylov method like CG or Lanczos with a
preconditioner. That is, we have solved Hp = —§, where H = M~ 'H. We require that
M Dbe positive definite while H can possibly be indefinite. In practice we wish to preserve
symmetry, so consider instead H = CTHC, sometimes called split preconditioning. Left,

right, and split preconditioning are essentially equivalent when the matrix is symmetric
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[29, 69]. If we apply the methods we have described to H, we find a direction of negative

curvature d for H. A direction of negative curvature for H is given by d = Cd, since
dTHd = d"CTHCd = d"Hd. (5.47)

Unfortunately, d may be a poor direction of negative curvature for H even if d is a good
direction of negative curvature for H. The reason for this is that a small eigenvalue of H
does not necessarily correspond to a small eigenvalue of H after preconditioning. A simple

example illustrates this. Let

0 6 0
H=16 1 o0 |, (5.48)
0 0 —1

where 6 is small and positive. Let C' = diag(8~'/2,1,1). Then

-1 02 0
H=C"™HC=|6¢? 1 0 |. (5-49)
0 0 -1
A good approximation to the smallest eigenvector of H is d = (1,—%01/ 2,0), because

d"Hd"/(d"d) = —1 — O(@). This gives d = Cd = (07'/2,-16'/2,0) and d"Hd/(d"d) =
—0—0(6?). Clearly Amin(H) = —1 with eigenvector v = (0,0, 1), so d becomes an arbitrarily

poor direction of negative curvature for H as 6 — 0.

5.4.1 Preconditioned gradient methods

Several authors have suggested gradient-type methods with a preconditioner for calculating
a desired eigenpair, see for instance Samokish [70], Knyazev [42], and D’yakonov [15, Ch.9].
The preconditioned steepest descent algorithm for the Rayleigh quotient can be written

as
Tpi1 = T — ag M1V R(zy), (5.50)

where M is some preconditioner. This method is closely related to steepest descent on the

Rayleigh quotient of the preconditioned matrix M ~'H. The main difference is that the line
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search is performed with respect to the Rayleigh quotient of H and not that of M ~'H.
We observe that when M is the Hessian V2R(z), this method is a variant of Newton’s
method. One difference from Newton’s method is that M stays fixed and is not updated at

every step.

5.4.2 More remarks on preconditioning

Just as standard Lanczos is closely related to CG with no preconditioning, there is a precon-
ditioned Lanczos method analogous to preconditioned CG. The (preconditioned) Lanczos
vectors are no longer orthogonal but M-orthogonal (where M is a positive definite precon-
ditioner), that is, VkTM Vi = I. The tridiagonal matrix T} = VkTH Vi does not approximate
the eigenvalues of H, but rather those of the preconditioned matrix M ' H. Consequently,
we cannot simply look at the extreme eigenpair of T}, to find a good direction of negative
curvature for H. Morgan and Scott [51] have suggested applying Lanczos to the matrix
W =L Y(A—uI)L™T, where p is an estimate of the desired eigenvalue and LL” is the fac-
torization of the preconditioner M. This technique can also be used to compute a direction
of negative curvature once an estimate of the smallest eigenvalue is known.

The Jacobi-Davidson method (described in Section 5.2.2) is an eigenvalue algorithm
that allows for preconditioning. A key feature of the method is that a linear subproblem
is preconditioned, not the eigenproblem itself. Hence, this method may be a good choice
if one needs an iterative method to compute a direction of negative curvature and little
information is known. However, we view this as an unlikely scenario because normally a
linear system first has to be solved to find a descent direction.

When a modified Cholesky factorization
H+E=LL"

is available, then M = LL”T is an obvious choice of preconditioner. The quality of this
preconditioner will depend on E. In the extreme case, when E = (0, we have a “perfect”
preconditioner.

However, if the modified Cholesky factors are available, a direction of negative curvature
can be obtained cheaply by a single backsolve, and preconditioning would only be of interest
in an iterative improvement phase. Since few iterations are performed in this phase, we

expect the effect of preconditioning to be rather small.
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A topic we have not studied is the possibility of using an incomplete modified Cholesky

factorization.

5.5 Summary and conclusions

Directions of negative curvature play an important role when second-order optimality points
are sought. We have shown that such directions are closely related to the smallest eigenvalue
and eigenvector pair of the Hessian, and the Rayleigh quotient. We have described the
distribution function of the Rayleigh quotient, and have shown how unlikely it is to find by
chance a direction of negative curvature for an indefinite matrix with only a few negative
eigenvalues. Several direct and iterative methods for computing a direction of negative
curvature have been described.

We have shown that a dramatic improvement in the quality of a direction of negative
curvature obtained from a direct method can be achieved using an iterative procedure. The
direct factorization used is usually available at no extra cost because it is also needed to
find a descent direction. No attempt was made to precondition the iterative procedures
using the available Cholesky factorization of H + E, though that is a good candidate for
future research. For problems with few negative eigenvalues it is typically the case that F is
of very low rank, which suggests the (modified) Cholesky factorization will be an excellent
preconditioner within a method such as the Jacobi-Davidson method [72].

For problems of the size studied here the use of a preconditioner is hardly merited
except for pathological examples, but for larger problems that may not be the case. For
very large problems, any explicit factorization will require too much storage, so a purely
iterative method must be used. In this case, an iterative method has normally already been
invoked to compute a descent direction and it should be possible to use information from
this iterative process when computing a direction of negative curvature. We have shown
how to exploit, for instance, the CG-Lanczos connection to achieve this.

We have discussed negative curvature issues in the context of unconstrained minimiza-
tion. More research is needed to determine how much of these findings apply to constrained

optimization.
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