[1] P. B. Bochev and D. Ridzal. Additive Operator Decomposition and Optimization-Based Reconnection with Applications. In I. Lirkov, S. Margenov, and J. Wasniewski, editors, Large-Scale Scientific Computing: Proceedings of LSSC 2009, volume 5910 of Lecture Notes in Computer Science, pages 645-652. Springer Verlag, 2010. [ bib | DOI ]
[2] P. B. Bochev and D. Ridzal. An Optimization-Based Approach for the Design of PDE Solution Algorithms. SIAM J. Numer. Anal., 47(5):3938-3955, 2009. [ bib | DOI | http ]
[3] P. Bochev and D. Ridzal. Finite Element Solution of Optimal Control Problems Arising in Semiconductor Modeling. In I. Lirkov, S. Margenov, and J. Wasniewski, editors, Large-Scale Scientific Computing: Proceedings of LSSC 2007, volume 4818 of Lecture Notes in Computer Science, pages 235-242. Springer Verlag, 2008. [ bib | DOI ]
[4] P. B. Bochev and D. Ridzal. Rehabilitation of the Lowest-Order Raviart-Thomas Element on Quadrilateral Grids. SIAM J. Numer. Anal., 47(1):487-507, 2008. [ bib | DOI | http ]
[5] M. Heinkenschloss and D. Ridzal. Integration of Sequential Quadratic Programming and Domain Decomposition Methods for Nonlinear Optimal Control Problems. In U. Langer, M. Discacciati, D. Keyes, O. Widlund, and W. Zulehner, editors, Domain Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering, pages 69-80, Berlin, Heidelberg, New York, 2008. Springer Verlag. [ bib | DOI ]
[6] M. Heinkenschloss and D. Ridzal. An Inexact Trust-Region SQP Method with Applications to PDE-Constrained Optimization. In Numerical Mathematics and Advanced Applications: Proceedings of ENUMATH 2007, pages 613-620. Springer Verlag, 2008. [ bib | DOI | http ]
[7] R. A. Bartlett, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders. Domain decomposition methods for advection dominated linear-quadratic elliptic optimal control problems. Comput. Methods Appl. Mech. Engrg., 195:6428-6447, 2006. [ bib | DOI ]
[8] P. Bleher and D. Ridzal. SU(1,1) Random Polynomials. J. Statist. Phys., 106(1-2):147-171, 2002. [ bib | DOI ]
[9] R. C. Y. Chin and D. Ridzal. Generating orthogonal polynomials for exponential weights on a finite interval. In Special functions (Hong Kong, 1999), pages 42-56. World Sci. Publishing, River Edge, NJ, 2000. [ bib ]

This file was generated by bibtex2html 1.95.