
UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Research Article

Received: 5 April 2010, Revised: 8 June 2010, Accepted: 14 June 2010, Published online in Wiley Online Library: 2010

(wileyonlinelibrary.com) DOI: 10.1002/cem.1335

A scalable optimization approach for fitting
canonical tensor decompositions
Evrim Acara, Daniel M. Dunlavyb and Tamara G. Koldac∗

Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools
for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as CANDE-
COMP/PARAFAC (CP), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude
of applications such as chemometrics, signal processing, neuroscience and web analysis. The task of computing CP,
however, can be difficult. The typical approach is based on alternating least-squares (ALS) optimization, but it is not
accurate in the case of overfactoring. High accuracy can be obtained by using nonlinear least-squares (NLS) methods;
the disadvantage is that NLS methods are much slower than ALS. In this paper, we propose the use of gradient-
based optimization methods. We discuss the mathematical calculation of the derivatives and show that they can
be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the
gradient-based optimization methods are more accurate than ALS and faster than NLS in terms of total computation
time. Copyright © 2010 JohnWiley & Sons, Ltd.

Keywords: tensor decomposition; tensor factorization; CANDECOMP; PARAFAC; optimization

1. INTRODUCTION

A tensor is a multidimensional or N-way array. The canonical
tensor decomposition [1,2] is a higher-order (i.e., N ≥ 3) gener-
alization of the matrix singular value decomposition (SVD) and
has proved useful in many applications such as chemometrics,
signal processing, neuroscience and web analysis; e.g., see Ref-
erences [3,4] for recent surveys of work in this area. We refer to
the canonical decomposition as CANDECOMP/PARAFAC (CP) to
recognize the original names given to it by Carroll and Chang [1]
and Harshman [2], respectively.

CP is an analogue of the matrix SVD because it decomposes a
tensor into the sum of component rank-one tensors. To under-
stand CP, suppose that Z is a real-valued three-way tensor of size
I × J × K and of rank R, meaning that it can be expressed as the
sum of no fewer than R components. Then its CP factorization is

Z =
R∑

r=1

ar ◦ br ◦ cr ,

where ◦ denotes the vector outer product, and ar ∈ RI , br ∈
R

J and cr ∈ RK for r = 1, . . . , R. Each element in the summa-
tion, ar ◦ br ◦ cr , is a rank-one tensor because it is the outer
product of vectors. The factor matrices of CP are defined
by A = [a1 a2 · · · aR], B = [b1 b2 · · · bR] and C =
[c1 c2 · · · cR], and the factors refer to the columns of the
factor matrices. Specifically, the factors in mode one refer to the
columns ofA, the factors in mode two to the columns ofB, and so
on. The factors are analogous to the singular vectors in the SVD;
however, a major difference is that CP factors are not orthonor-
mal in each mode. In fact, it is possible that the rank is greater
than the largest dimension, i.e., R > max{I, J, K}, meaning that
the factors in each mode are necessarily linear dependent. There

is a well-known example of a 2 × 2 × 2 tensor with rank three
(see Reference [4§3.1]); since A is of size 2 × 3, its columns are
necessarily linearly dependent. Therefore, in general, there is no
guarantee of linear independence of the factors in each mode.
Further, we do not assume that the factors are normalized to
length one, although CP can be formulated in this way; we assume
for convenience that any multiplier is absorbed into the factors.
Despite CP’s lack of orthogonality or even linear independence
of factors in each mode, Kruskal [5] and others (see Reference
[4§3.2] for a survey) have shown that it does have the advantage
of uniqueness, up to permutation and scaling, under mild con-
ditions. In contrast, it is well known that uniqueness of the SVD
(up to sign) is due to its orthogonality constraints and even then
is not unique when multiple singular values are equal. It is per-
haps because of CP’s uniqueness property that it often correctly
describes underlying generating phenomena in data; this is par-
ticularly true in the modeling of fluorescence excitation-emission
measurements [6] commonly used in chemistry.

In terms of computing CP, the first question, not directly
addressed in this paper, is the choice of R, the number of compo-

* Correspondence to: Tamara G. Kolda, Sandia National Laboratories, MS 9159,
P.O. Box 969, Livermore, CA 94551-0969, USA.
E-mail: tgkolda@sandia.gov

a E. Acar
National Research Institute of Electronics and Cryptology (TUBITAK-UEKAE),
Gebze, Turkey

b D. M. Dunlavy
Computer Science & Informatics Department, Sandia National Laboratories,
Albuquerque, NewMexico, USA

c T. G. Kolda
Informatics and Systems Assessments Department, Sandia National Laborato-
ries, Livermore, California, USA

J. Chemometrics (2010) Copyright © 2010 John Wiley & Sons, Ltd.

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

E. Acar, D. M. Dunlavy and T. G. Kolda

nent rank-one tensors. We generally do not know the tensor rank
and its computation is NP-complete [4]. Since we cannot know
the rank in advance, we often face the problem of overfactoring,
i.e., computing CP when R is greater than the rank of the tensor.
In practice, the user tries different values of R and picks the ‘best’
based on some criteria e.g., model fit and the core consistency
(CORCONDIA) diagnostic [7]. However, there is a trade-off
between the model fit and core consistency for noisy data sets.
Core consistency should be low for values of R exceeding the nec-
essary number of component rank-one tensors to describe the
low-rank multilinear structure in the data, so increasing values of R

are tested until the core consistency drops. On the other hand, as
R increases, the model fit typically improves. In practice, one must
balance the improvement of fit with the drop in core consistency
resulting in the very real possibility of choosing a larger value of
R than is needed to capture the underlying multilinear structure.
As an example of using the core consistency diagnostic, see Ref-
erence [8] for further discussion in the context of extracting brain
activities through the analysis of EEG (electroencephalography)
signals without any prior information about the number of activi-
ties. Another issue, not addressed in this paper, is that computing
CP can be difficult because some tensors may have approxima-
tions of a lower rank that are arbitrarily close in terms of fit; this
leads to degeneracy and can cause problems in practice [9–12].

In this paper we focus on the question of how to compute the
CP factor matrices for a given value of R (not necessarily equal
to the rank of the tensor). The typical method for finding the
CP components is alternating least-squares (ALS) optimization, as
proposed in the original CP papers [1,2]. The essential idea in ALS
is to start with an initial guess for the factor matrices, solve a least-
squares problem for Awhile holding B and C fixed, then fix C and
the new A to solve for B, and so on. This is the method of choice
because of its speed and ease of implementation. Unfortunately,
ALS often fails to obtain the underlying structure in the data, espe-
cially in the case of overfactoring. Another promising alternative
that we discuss is a nonlinear least-squares (NLS) formulation; the
NLS approach is superior to ALS in terms of finding the underlying
structure, but significantly slower. Here, we propose using a gen-
eral gradient-based optimization (OPT) formulation. We present
the objective function, formulate the derivatives, and discuss
computational issues such as regularization. Numerical studies
indicate that OPT is faster than NLS in terms of total computation
time without sacrificing accuracy.

Before we continue, we direct the reader to other alternative
algorithms that have been proposed over the years with a goal of
improving the convergence rate of ALS and its robustness to over-
factoring. Faber, Bro and Hopke [13] compared ALS with a number
of competing algorithms: direct trilinear decomposition (DTLD)
[14–20], alternating trilinear decomposition (ATLD) [21], self-
weighted alternating trilinear decomposition (SWATLD) [22,23],
pseudo-alternating least-squares (PALS) [24], alternating coupled
vectors resolution (ACOVER) [25], alternating slice-wise diagonal-
ization (ASD) [26] and alternating coupled matrices resolution
(ACOMAR) [27]. It is shown that while none of the algorithms
is better than ALS in terms of the quality of solution, ASD may
be an alternative to ALS when the computation time is a pri-
ority. Recently, Tomasi and Bro [28] have compared ALS with
some of the algorithms mentioned above (DTLD, ASD, SWATLD)
as well as two NLS approaches, PMF3 [29] and dGN (damped
Gauss–Newton) [30,28]. The performance results show that ASD,
the best alternative in the previous study [13], is not as good as
ALS in terms of the accuracy of the solution. On the other hand,

current NLS-based approaches outperform ALS in terms of accu-
racy (specifically in the case of overfactoring) but at the expense
of memory and time overhead, making NLS-based approaches
intractable for large data sets. We use the experimental method-
ology of Reference [28] as the basis for the numerical results in this
paper in which we compare ALS and NLS and an implementation
of our proposed OPT methods. Tomasi [31] has also compared ALS
and NLS along with both first-order (nonlinear conjugate gradi-
ent method) and second-order (Newton’s method) optimization;
we contrast his results with ours in the conclusion.

Other approaches have been proposed in the literature as
well but not yet compared numerically in studies such as the
ones mentioned above. De Lathauwer, De Moor and Vandewalle
[32] cast CP as a simultaneous generalized Schur decomposition
(SGSD) and this approach has been applied to overcoming the
problem of degeneracy [12]. De Lathauwer [33] also developed a
method based on simultaneous matrix diagonalization. Vorobyov
et al. [34] formulated the CP problem using an objective function
based on least absolute error instead of least-squares error in
order to compute CP robustly in the presence of non-Gaussian
noise.

The main contributions of this paper are summarized as follows:

� Exploring the formulation of CP as a general optimization
problem, with a particular focus on first-order optimization
methods, which promise better scalability. This formulation
uses regularization in order to directly address the scaling
indeterminacy.

� Directly calculating the gradient (without recourse to the Jaco-
bian) for the general optimization formulation of CP and
showing that the derivatives can be computed efficiently. The
analysis can be used to obtain analogous formulations for other
tensor decompositions.

� Extensively comparing the performance of several methods
for computing CP on both real and synthetic third-order data.
These studies indicate that the OPT approach advanced in this
paper has advantages in comparison with ALS and NLS.

This paper is structured as follows. Section 2 presents the nota-
tion and basic operations used throughout the paper. The ALS
method is reviewed in Section 3. The OPT method is presented
in Section 4, with a focus on the formulation of the required
derivatives, as well as discussion of practical issues such as regu-
larization. We contrast the NLS approach in Section 5. We follow
the experimental procedure of Tomasi and Bro [28] to compare
the methods; the details of the methods that are employed
and the results are presented in Section 6. Conclusions are dis-
cussed in Section 7. Detailed numerical results are available in
Appendix B.

2. NOTATION

We generally use the notation of Reference [4], which was
adapted from Reference [35]. Scalars are denoted by lowercase
letters, e.g., a. Vectors are denoted by boldface lowercase letters,
e.g., a. Matrices are denoted by boldface capital letters, e.g., A.
Higher-order tensors are denoted by boldface Euler script letters,
e.g., X. The ith entry of a vector a is denoted by ai , element (i, j)
of a matrix A is denoted by aij , and element (i, j, k) of a third-
order tensor X is denoted by xijk . The jth column of a matrix A is
denoted aj . Indices typically range from 1 to their capital version,
e.g., i = 1, . . . , I. The nth element in a sequence is denoted by a

wileyonlinelibrary.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics (2010)

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Fittingcanonical tensordecompositions

superscript in parentheses, e.g., A(n) denotes the nth matrix in a
sequence.

The inner product of two same-sized tensors X, Y ∈ RI1×I2×···×IN

is the sum of the products of their entries, i.e.,

〈X, Y〉 =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1 i2···iN yi1 i2···iN .

The norm of a tensor X ∈ RI1×I2×···×IN is the square root of its inner
product with itself, i.e.,

‖X‖ =
√

〈X, X〉.

For matrices (i.e., second-order tensors), ‖ · ‖ refers to the anal-
ogous Frobenius norm, and, for vectors (i.e., first-order tensors),
‖ · ‖ refers to the analogous two-norm.

An N-way tensor X ∈ RI1×I2×···×IN is rank one if it can be written
as the outer product of N vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N).

The symbol ‘◦’ represents the vector outer product. This means
that each element of the tensor is the product of the correspond-
ing vector elements:

xi1 i2···iN = a(1)
i1

a(2)
i2

· · · a(N)
iN

for all 1 ≤ in ≤ In.

The Khatri–Rao product† [36] is the ‘matching columnwise’
Kronecker product. Given matrices A ∈ RI×K and B ∈ RJ×K , their
Khatri-Rao product is denoted by A
 B. The result is a matrix of
size (IJ) × K and defined by

A
 B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK].

Recall that the Kronecker product of two vectors a ∈ RI and b ∈
R

J is a vector of length IJ defined by

a⊗ b =

⎡
⎢⎢⎢⎢⎣

a1b

a2b

...

aIb

⎤
⎥⎥⎥⎥⎦ .

The Khatri-Rao product has the following property [36]:

(A
 B)T(A
 B) = ATA ∗ BTB,

where ∗ denotes the elementwise product. Furthermore, the
pseudo-inverse of the Khatri–Rao product has special form [36]:

(A
 B)† = ((ATA) ∗ (BTB))†(A
 B)T,

† We use the Khatri–Rao product as defined in Reference [38,36], which cor-
responds to columnwise Kronecker product. The Khatri–Rao product has also
been defined as a block Kronecker product in the literature [39].

where A† denotes the Moore–Penrose pseudo-inverse of A [37].
Recall that the pseudo-inverse of the transpose is the transpose
of the pseudo-inverse, so

((A
 B)T)† = (A
 B)((ATA) ∗ (BTB))†. (1)

Further, because the Khatri-Rao product is associative, this prop-
erty can be extended to more than two matrices; see Reference
[36] for further details.
Matricization, also known as unfolding or flattening, is the pro-

cess of reordering the elements of an N-way tensor into a matrix.
The mode-n matricization of a tensor X ∈ RI1×I2×···×IN is denoted
by X(n) and arranges the mode-n one-dimensional ‘fibers’ to be
the columns of the resulting matrix. Specifically, tensor element
(i1, i2, . . . , iN) maps to matrix element (in, j) where

j = 1 +
N∑

k=1
k �=n

(ik − 1)Jk, with Jk =
k−1∏
m=1
m�=n

Im.

Note that Jk = 1 if k = 1 or if k = 2 and n = 1. Since matricization
is just a rearrangement of the elements, clearly ‖X‖ = ‖X(n)‖ for
n = 1, . . . , N; see Reference [4§2.4] for further details on matri-
cization.

The n-mode (vector) product of a tensor X ∈ RI1×I2×···×IN with a
vector v ∈ RIn is denoted by X ×n v. The result is of order N − 1,
i.e., the size is I1 × · · · × In−1 × In+1 × · · · × IN . Elementwise,

(X ×n v)i1···in−1 in+1 ···iN =
In∑

in=1

xi1 i2···iN vin .

A tensor may be multiplied by multiple vectors at once. For exam-
ple, assume v(n) ∈ RIn for n = 1, . . . , N. Then we use the new
notation ✕ to denote multiplication in multiple modes. Multi-
plication in all modes results in a scalar, i.e.,

X
N

✕
n=1
v(n) ≡ X ×1 v

(1) ×2 v
(2) · · · ×N v

(N)

=
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1 i2···iN v (1)
i1

v (2)
i2

· · · v (N)
iN

.

Multiplication in every mode except mode n results in a vector of
length In, i.e.,

X
N

✕
m=1
m�=n

v(m) = X(n)v
(−n),

where

v(−n) ≡ v(N) ⊗ · · · ⊗ v(n+1) ⊗ v(n−1) ⊗ · · · ⊗ v(1).

We also note that multiplication in every mode except n and p

results in a matrix of size In × Ip.

3. CP ANDALTERNATING LEAST-SQUARES

In the introduction, we presented CP for three-way tensors. Here,
we present CP for general N-way tensors. Let Z be a real-valued

J. Chemometrics. (2010) Copyright © 2010 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

E. Acar, D. M. Dunlavy and T. G. Kolda

N-way tensor of size I1 × I2 × · · · × IN . Given R (the number of
components), our goal is to find a CP factorization [1,2] such that

Z ≈
R∑

r=1

a(1)
r ◦ · · · ◦ a(N)

r ,

where a(n)
r ∈ RIn for n = 1, . . . , N and r = 1, . . . , R. Note that this

formulation does not have scalar weights for each component
rank-one tensor; these are assumed to be absorbed into the
factors. We use the ‘Kruskal operator’ shorthand notation of [40]:

[[A(1), . . . ,A(N)]] ≡
R∑

r=1

a(1)
r ◦ · · · ◦ a(N)

r ,

where the factor matrices are defined as

A(n) = [
a(n)

1 · · · a(n)
R

]
and so are of size In × R, for n = 1, . . . , N. The columns of A(n) are
the factors for mode n. It is useful to note that [[A(1), . . . ,A(N)]] can
be written in matricized form (see, e.g., Reference [40]) as(

[[A(1), . . . ,A(N)]]
)

(n)
= A(n)(A(−n))T,

where

A(−n) ≡ A(N)
 · · ·
 A(n+1)
 A(n−1)
 · · ·
 A(1).

The problem of computing CP is, given a tensor Z and a choice
for R (not necessarily the rank of Z), find the factor matricesA(n) of
size In × R for n = 1, . . . , N. Using the ‘Kruskal operator’ notation
defined above, we can formulate the problem of fitting CP as a
least-squares optimization problem:

min f (A(1), . . . ,A(N)) ≡ 1

2

∥∥Z − [[A(1), . . . ,A(N)]]
∥∥2

. (2)

The ALS method for CP was proposed in the original papers
by Carroll and Chang [1] and Harshman [2], and still remains the
primary workhorse algorithm today due to its speed and ease
of implementation [28]. In this section, we derive ALS as it is
typically done in the tensor factorization community; the next
section includes an alternate derivation. The premise is to iter-
atively optimize one factor matrix at a time, rather than solving
(2) for A(1) through A(N) simultaneously. We can think of this as a
block nonlinear Gauss–Seidel approach because we are solving a
nonlinear equation for a block of variables while holding all the
other variables fixed. Therefore, at each inner iteration, the goal is
to solve

min
A(n)

f (A(1), . . . ,A(N)), (3)

for some particular fixed n, while holding all the other factor
matrices constant. We can rewrite the equation in matrix form
as

min
A(n)

1

2

∥∥Z(n) − A(n)(A(−n))T
∥∥2

.

With all but one factor matrix fixed, the problem reduces to a
linear least-squares problem, and the exact solution is given by

A(n) = Z(n)

(
(A(−n))T

)†
.

Naively, this requires computing the pseudo-inverse of a matrix
of size

∏N
m=1
m�=n

Im × R. However, from (1), this can be simplified as

follows. Define

ϒ(n) = A(n)TA(n) for n = 1, . . . , N. (4)

Then

A(n) = Z(n)A
(−n)(�(n))†, (5)

where

�(n) = ϒ(1) ∗ · · · ∗ ϒ(n−1) ∗ ϒ(n+1) ∗ · · · ∗ ϒ(N). (6)

Note that this formulation only requires computing the pseudo-
inverse of a matrix of size R × R. The ALS procedure for CP is well
known; see, e.g., Reference [36].

4. OPTIMIZATION FOR CP

As an alternative to the ALS approach for CP, we propose solving
for all the factor matrices simultaneously using a gradient-based
optimization approach. (It is of course also possible to exploit the
least-squares structure of the problem via an NLS method; this is
discussed in Section 5.) We can consider the CP objective function
f in (2) as a mapping from the cross-product of N two-dimensional
vector spaces toR, i.e.,

f : RI1×R ⊗ RI2×R ⊗ · · · ⊗ RIN×R �→ R.

Therefore, we have a function of

P = R

N∑
n=1

In (7)

variables. Although f in (2) is written as a function of matrices, it
can be thought of as a scalar-valued function where the param-
eter vector x comprises the vectorized and stacked matrices A(1)

through A(N), i.e.,

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
1

...

a(1)
R

...

a(N)
1

...

a(N)
R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

In this view, f : RP �→ R, and it is straightforward to derive the
gradient, which we do in Section 4.1. We note that computation

wileyonlinelibrary.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics (2010)

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Fittingcanonical tensordecompositions

of the Hessian of f is also straightforward (see, e.g., Reference [41]
for details) and can be used for higher-order optimization meth-
ods, but we do not address this in our paper. We discuss the effect
of the scaling and permutation indeterminacies of CP in Sec-
tion 4.2, explaining the benefits of regularization and deriving the
derivatives of the regularized objective. Once the derivatives are
known, any first-order optimization method can be used. We use
a generic nonlinear conjugate gradient (NCG) method and test
its numerical performance in Section 6. Harshman has discussed
using gradient-based optimization for computing CP, which at
that time was impractical due to the limited computing resources
[2]. Both Paatero [42] and Wang and Hopke [43] have previously
proposed using specialized NCG methods for CP, although neither
presented numerical studies. Our implementation is different, as
described in Section 6.

4.1. CP gradient

We can assemble the gradient, a vector of size P, by calculating
the partial derivative with respect to each a(n)

r for r = 1, . . . , R and
n = 1, . . . , N. Note that the partial derivative ∂f

∂a(n)
r

is a vector

of length In. Theorem 4.1 specifies the partial derivative; the
same result has appeared in Reference [44] in the context of
non-negative tensor factorizations.

Theorem 4.1. The partial derivatives of the objective function f in
(2) are given by

∂f

∂a(n)
r

= −
(

Z
N

✕
m=1
m�=n

a(m)
r

)
+

R∑
�=1

� (n)
r� a

(n)
� , (9)

for r = 1, . . . , R and n = 1, . . . , N, with � (n)
r� defined as

� (n)
r� ≡

N∏
m=1
m�=n

a(m)T
r a(m)

� . (10)

Proof. It will prove useful to rewrite the objective function in (2)
as three summands:

f (x) = 1

2
‖Z‖2︸︷︷︸

f1(x)

− 〈Z, [[A(1), . . . ,A(N)]]〉︸ ︷︷ ︸
f2(x)

+ 1

2

∥∥[[A(1), . . . ,A(N)]]
∥∥2︸ ︷︷ ︸

f3(x)

. (11)

The first summand does not involve the variables; therefore,

∂f1

∂a(n)
r

= 0,

where 0 is the zero vector of length In. The second summand is
the inner product between the tensorZ and its CP approximation,
given by

f2(x) = 〈Z, [[A(1), . . . ,A(N)]]〉

=
〈

Z,

R∑
r=1

a(1)
r ◦ · · · ◦ a(N)

r

〉

=
R∑

r=1

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

zi1 i2···iN a(1)
i1ra

(2)
i2r · · · a(N)

iN r

=
R∑

r=1

(
Z

N

✕
m=1

a(m)
r

)

=
R∑

r=1

(
Z

N

✕
m=1
m�=n

a(m)
r

)T

a(n)
r .

Writing f2 this way makes it obvious that

∂f2

∂a(n)
r

=
(

Z
N

✕
m=1
m�=n

a(m)
r

)
. (12)

The third summand is

f3(x) =
∥∥[[A(1), . . . ,A(N)]]

∥∥2

=
〈

R∑
r=1

a(1)
r ◦ · · · ◦ a(N)

r ,

R∑
r=1

a(1)
r ◦ · · · ◦ a(N)

r

〉

=
R∑

k=1

R∑
�=1

N∏
m=1

a(m)T
k a(m)

�

=
N∏

m=1

a(m)T
r a(m)

r + 2

R∑
�=1
��=r

N∏
m=1

a(m)T
r a(m)

�

+
R∑

k=1
k �=r

R∑
�=1
��=r

N∏
m=1

a(m)T
k a(m)

� .

Therefore,

∂f3

∂a(n)
r

= 2

⎛
⎝ N∏

m=1
m�=n

a(m)T
r a(m)

r

⎞
⎠ a(n)

r

+ 2

R∑
�=1
��=r

⎛
⎝ N∏

m=1
m�=n

a(m)T
r a(m)

�

⎞
⎠ a(n)

�

= 2

R∑
�=1

⎛
⎝ N∏

m=1
m�=n

a(m)T
r a(m)

�

⎞
⎠ a(n)

� . (13)

Combining (12) and (13) yields the desired result. �

Observe that � (n)
r� is indeed the (r, �) entry of the matrix �(n)

defined in (6). These values can be computed as follows. Compute
the following R × R matrices ϒ(n) from (4) (one per mode), and
then it is clear that

�(n) = ϒ(1) ∗ · · · ∗ ϒ(n−1) ∗ ϒ(n+1) ∗ · · · ∗ ϒ(N)

for n = 1, . . . , N. (14)

In fact, we can rewrite the gradient in matrix form, as the following
corollary shows.

J. Chemometrics. (2010) Copyright © 2010 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

E. Acar, D. M. Dunlavy and T. G. Kolda

Corollary 4.2. The partial derivatives of the objective function f

in (2) are given by

∂f

∂A(n)
= −Z(n)A

(−n) + A(n)�(n), (15)

for n = 1, . . . , N, where�(n) is defined in (6).

Proof. Equation (9) in Theorem 4.1 can be rewritten as

∂f

∂a(n)
r

= −Z(n)a
(−n) + A(n)� (n)

r ,

for r = 1, . . . , R. Note that this expression exploits the fact that
�(n) is symmetric. Associating each r = 1, . . . , R with the column
of a matrix yields (15). �

Corollary 4.2 can also be derived starting from an NLS formula-
tion, as has been done by Tomasi [31, Paper III, Equation (35)]. We
show this derivation in the next section.

Here we also see an alternative derivation of the ALS updates.
Setting the gradient of f with respect to A(n) equal to zero yields

A(n)�(n) = Z(n)A
(−n).

The ALS equation for updating A(n) given in (5) then follows
immediately.

4.2. Regularizing the optimization formulation of CP

CP is known to be unique when it satisfies, e.g., the Kruskal con-
ditions [5] (see Reference [4§3.2] for a survey), but only up to
permutation and scaling of the factor matrices. In other words, a
CP factorization is unchanged by permutation, i.e.,

[[A(1),A(2), . . . ,A(N)]] = [[A(1)�,A(2)�, . . . ,A(N)�]]

where � is an R × R permutation matrix. Likewise, CP is
unchanged by scaling, e.g.,

[[A(1),A(2), . . . ,A(N)]] =
[[

2A(1),
1

2
A(2), . . . ,A(N)

]]
.

The scaling indeterminacy means that there is a continuous
manifold of equivalent solutions, which makes it difficult for opti-
mization methods to find the solution because there is not just
one. In fact, the Hessian of f (see Reference [41]) is singular at
a solution. This lack of a locally unique solution can be cor-
rected by modifying the objective function to include a Tikhonov
regularization term:

f̂ (A(1), . . . ,A(N)) ≡ 1

2

∥∥Z − [[A(1), . . . ,A(N)]]
∥∥2 + �

2

N∑
n=1

∥∥A(n)
∥∥2

.

(16)

This is the same approach proposed by Paatero in his NLS formu-
lation [29]. The regularization has the effect of encouraging the
norms of the factor matrices to be equal, i.e.,∥∥A(1)

∥∥ =
∥∥A(2)

∥∥ = · · · =
∥∥A(N)

∥∥ .

To justify our claim of equal norms, we prove in Appendix A that if
the factor matrices are fixed (e.g., a solution with perfect fit) except
for scaling, then the effect of the regularization is to equalize the
magnitude of the vectors within each component. Obviously the
situation where the factors are not fixed is more complicated and
the value of � must be chosen carefully so that the regularization
term does not negatively impact the fit. The permutation inde-
terminacy does lead to multiple equivalent minimizers of f , but
they are isolated minimizers and so do not negatively impact the
optimization.

Corollary 4.3. The partial derivatives of the objective function f̂

in (16) are given by

∂f̂

∂A(n)
= −Z(n)A

(−n) + A(n)�(n) + �A(n), (17)

for n = 1, . . . , N, where�(n) is defined in (6).

The proof is straightforward and so is omitted. We compare
both regularized and unregularized formulations in Section 6.
We should note that regularized formulation may also mitigate
the effect of degeneracy; however, it does not fully resolve the
problem based on our preliminary tests. We do not address the
degeneracy problem in this paper and leave the effect of regular-
ization on degeneracy as a topic of future research. It is also worth
noting that there are other regularization approaches that can be
explored; for example, Navasca et al. [45] use regularization in
the context of ALS, penalizing the change between factor matri-
ces across iterations and varying the regularization parameter at
each iteration.

5. NONLINEAR LEAST-SQUARES
APPROACH FOR CP

Paatero [29] and Tomasi and Bro [31,30,28] have formulated the
CP problem as an NLS problem, explicitly computing its Jacobian
J or the normalized form JTJ.

In this case, consider the CP problem as a nonlinear equation

F(A(1), . . . ,A(N)) ≡ Z − [[A(1), . . . ,A(N)]] = 0. (18)

Thus, we have

F : RI1×R ⊗ RI2×R ⊗ · · · ⊗ RIN×R �→ R
I1×I2×···×IN .

Clearly (18) has a solution when the data is noise-free and R is the
rank of Z. More generally, this can be solved in a least-squares
sense using NLS approaches. The f from (2) is equivalent to the
least-squares objective function, i.e., f (x) = 1

2 F(x)TF(x), with x as
defined in (8). The derivative of F is given elementwise as follows.

Theorem 5.1. The first partial derivative of (18) with respect to
a(n)

jr is a tensor of size I1 × I2 × · · · × IN defined elementwise as

(
∂F

∂a(n)
jr

)
i1 i2···iN

=

⎧⎪⎨
⎪⎩

−
N∏

m=1
m�=n

a(m)
imr if j = in,

0 if j �= in.

wileyonlinelibrary.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics (2010)

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Fittingcanonical tensordecompositions

The proof is straightforward, and so it is omitted. Unfortunately, it
is difficult to express this in tensor notation.

Instead, we can vectorize the input and output arguments in
order to think of F as a simpler mapping:

F : RP �→ R
Q,

where

Q =
N∏

n=1

In. (19)

Let J denote the Jacobian of F . Then we can write J as a blocked
matrix where

J = [J(1) J(2) · · · J(N)],

and J(n) is of size Q × RIn for n = 1, . . . , N. The matrix J(n) is in turn
divided into a series of R submatrices:

J(n) = [J(n1) J(n2) · · · J(nR)],

where

J(nr) = −a(1)
r ⊗ · · · ⊗ a(n−1)

r ⊗ I⊗ a(n+1)
r ⊗ · · · ⊗ a(N)

r ,

and I is the identity matrix of size In × In. The blocks J(n) can be
computed efficiently as described in Reference [31].

The matrix Jhas NR structural nonzeros per row, i.e., the product
of the number of modes in the tensor with the number of com-
ponents in the factorization. For example, if Z is a tensor of size
5 × 4 × 3 and there are R = 2 components, then the Jacobian
nonzero pattern is shown in Figure 1. It has Q = ∏3

n=1 In = 60

rows, P = R
∑3

n=1 In = 24 columns, and NRQ = 360 nonzeros.
Note that this figure is similar to Figure 1 in Reference [29] but the
columns are ordered differently, corresponding to our methodol-
ogy for vectorizing a set of factor matrices as in (8).

Figure 1. Jacobian nonzero pattern for a tensor of size 5 × 4 × 3 with
R = 2.

Using the Jacobian, (18) can be solved in an NLS sense via the
Gauss–Newton method. This, however, requires solving a system
with Jacobian matrix J, which can be extremely large (size Q × P,
even though it is relatively sparse). Thus, Tomasi and Bro [30,28]
have argued that it is preferable to work instead with JTJ using
a Levenberg–Marquardt (LM) method. In this case, the matrix is
only of size P × P and can be computed efficiently by exploiting
the structure of J [31]. Moreover, the inclusion of a multiple of the
identity matrix in the LM method serves a regularization function
similar to that in (16).

As an aside, we note that the Jacobian can also be regarded as
an operator. In particular, consider JT as a mapping from ‘tensor’
space to ‘factor matrix’ space:

JT : RI1×I2×···×IN �→ R
I1×R ⊗ RI2×R ⊗ · · · ⊗ RIN×R.

Therefore, if JT is applied to a U, an N-way tensor of size I1 ×
I2 × · · · × IN , then the result is a set of matrices V(1) through V(N)

defined by

V(n) = U(n)A
(−n).

For example, it is well known that ∇f (x) = −J(x)TF(x). The ‘vector’
F is really a tensor of size I1 × I2 × · · · × IN , so we will denote it by
F to make that clear. Likewise, the ‘vector’ ∇f is really a set of N

matrices of size In × R for n = 1, . . . , N, so we will denote them
by G(1) through G(N). Then we have

G(n) = −F(n)A
(−n) =

(
−Z(n) + A(n)

(
A(−n)

)T
)
A(−n)

= −Z(n)A
(−n) + A(n)�(n).

This is, as expected, the gradient in (15).

6. NUMERICAL RESULTS

We compare the ALS, OPT and NLS approaches for computing CP,
employing the data generation methodology of Reference [28].
The data, described in Section 6.1, is a collection of randomly
generated three-way tensors with different ranks, varying levels of
collinearity (defined below) between the factors, and multiple lev-
els of homoscedastic and heteroscedastic noise. For each tensor,
we compute a CP factorization with the number of components
equal to the rank of the tensor and equal to one more than its rank
(overfactoring). The details of the implementations and parame-
ter settings are given in Section 6.2. In Section 6.3, we analyze the
results. Our comparisons of ALS and NLS are consistent with Refer-
ence [28]. ALS can be remarkably fast‡ but is not always accurate,
whereas NLS is accurate but is slower in our experiments. Our OPT
methods are as accurate as NLS but faster. Timing comparisons
are based on total computation time of each algorithm rather
than iteration counts, since the expense of one iteration of each
algorithm is different as discussed in detail in Section 6.2. We note
that we do not consider Tucker compression (see, e.g., Reference
[28]) in this paper, but compression can certainly be used with the
OPT method as it has been for ALS and NLS.

‡ With a more strict stopping criterion, e.g., lower threshold for relative change
in function value, ALS may get extremely slow.

J. Chemometrics. (2010) Copyright © 2010 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

E. Acar, D. M. Dunlavy and T. G. Kolda

6.1. Data

We test our methods by factorizing artificially generated tensors
of varying size and rank. Specifically, we consider three-way cubic
tensors of sizes 20, 50, 100 and 250. We let Rtrue denote the rank of
the tensor (before adding noise) and use Rtrue = 3 and Rtrue = 5 in
our tests. Following Reference [28], we factorize the test tensors
using R = Rtrue and R = Rtrue + 1 (overfactoring).

We generate test tensors following the procedures and param-
eters in Reference [28]. We randomly generate factor matrices,
A(1), A(2) and A(3) of appropriate size so that the collinearity of the
factors in each mode is set to a particular value, C . This means
that

a(n)T
r a(n)

s

‖a(n)
r ‖‖a(n)

s ‖ = C (20)

for r �= s, r, s = 1, . . . , Rtrue, and n = 1, . . . , N. We use C = 0.5 and
C = 0.9 in our experiments and generate 20 sets of factors matri-
ces for each combination of C and Rtrue; higher values of C make
the problem more difficult. The goal is to recover these underly-
ing factor matrices once they have been assembled into a tensor
and noise has been added.

From each set of factor matrices, nine test tensors are cre-
ated by adding different levels of homoscedastic (i.e., constant
variance) and heteroscedastic (i.e., differing variance) noise as
follows. We set �1 = 1, 5, 10 and �2 = 0, 1, 5 to be the desired
noise ratios of homoscedastic and heteroscedastic noise, respec-
tively (corresponding to the values used in Reference [28]). Let
N1, N2 ∈ RI1×I2×···×IN be tensors with entries randomly chosen
from a standard normal distribution. Then the test tensors are
generated as follows. The original tensor is:

Z = [[A(1), . . . ,A(N)]].

Homoscedastic noise is added to produce:

Z′ = Z + (100/�1 − 1)−1/2 ‖Z‖
‖N1‖N1.

Finally, heteroscedastic noise is added and results in

Z′′ = Z′ + (100/�2 − 1)−1/2 ‖Z′‖
‖N2 ∗ Z′‖N2 ∗ Z′.

The tensor Z′ is used when �2 = 0. Note that when �2 = 0, only
Gaussian noise has been added.

To summarize, we generate a total of 720 cubic three-way test
tensors for sizes 20, 50, 100 and 250; and we do a total of 1440
CP calculations (using R = Rtrue and R = Rtrue + 1). The 720 test
tensors come from 2 true ranks (Rtrue = 3, 5), 2 collinearity levels
(C = 0.5, 0.9), 20 sets of factor matrices per combination of C

and Rtrue and 9 noise level combinations (�1 = 1, 5, 10 and �2 =
0, 1, 5). These parameters are summarized in Table I.

6.2. Implementation details

In this section, CPALS, CPOPT(R) and CPNLS denote the imple-
mentations of the methods presented in Sections 3, 4 and 5,
respectively. All experiments were performed using MATLAB v7.6.
The details of the implementation of each method, as well as the
expected computational cost, are discussed below. Initial points

Table I. Summary of parameters used to generate data for
experiments

Parameter Variants Values

Size (I × I × I) 4 20, 50, 100, 250
True Rank (Rtrue) 2 3, 5
Collinearity (C) 2 0.5, 0.9
Replicates 20 Random
Homoscedastic Noise (�1) 3 1, 5, 10
Heteroscedastic Noise (�2) 3 0, 1, 5
Number of Components (R) 2 Rtrue, Rtrue + 1

for all tests were generated using the n-mode singular vectors of
the tensor (i.e., the nvecs command in the Tensor Toolbox [46]).
We note that none of the optimization methods discussed here is
guaranteed to find a global minimum—we can at best hope for a
stationary point in the case of OPT and NLS. The convergence of
ALS to a stationary point has not been proven [4].

6.2.1. CPALS

ALS is implemented in the parafac als code from the Tensor
Toolbox [47,46]. We used the default settings for the code except:
(1) output to the screen was disabled and (2) the stopping condi-
tions specified in Section 6.2.4 were used. Each iteration requires
the computation of A(n) for n = 1, . . . , N (see Equation 5). Since
R is generally small in comparison to the size of the tensor, i.e.,
R � In for n = 1, . . . , N, it is assumed that the dominant compu-
tation in (5) is the matricized-tensor times Khatri–Rao product,
i.e.,

Z(n)A
(−n). (21)

There is a special function for this computation in the Tensor
Toolbox called mttkrp. The primary cost in (21) is multiplying
the matrix Z(n) of size In × (Q/In), where Q is defined in (19), by
the Khatri–Rao product of size (Q/In) × R. Therefore, the compu-
tational cost, measured in terms of the number of operations,
is O(QR). Consequently, the cost of each outer iteration of ALS,
which contains N computations of (21), is O(NQR).

There are other versions of ALS in the literature such as the ones
accelerated with different line searches or optimized implemen-
tations as suggested in Reference [39]. Much of the work on line
searches for ALS has focused on either linear [48,2,31] or nonlin-
ear [49] extrapolation of factor matrices from previous iterations
aimed at speeding up the convergence of the algorithm and not
at improving accuracy of the method. The ALS implementation
we use is already the fastest algorithm in comparison to OPT
and NLS approaches in our experiments; therefore, we have not
included these possible alternatives.

6.2.2. CPNLS

For NLS, the damped Gauss–Newton (dGN) method for three-way
arrays in PARAFAC3W [50] was used to solve CP formulated as
in (18). We used the default settings for the dGN code except:
(1) output to the screen was disabled, (2) compression was dis-
abled and (3) the stopping conditions specified in 6.2.4 were
used with all others disabled. This code implements the Leven-
berg and Marquardt (LM) method [51], which modifies the normal

wileyonlinelibrary.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics (2010)

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Fittingcanonical tensordecompositions

equations, i.e.,

(
JTJ+ �I

)
�x = −JTF, (22)

updating � each iteration. The Jacobian J is singular due to the
scaling indeterminacy of CP [29,42,30,28]; therefore, the modified
normal equations in the LM approach can be thought of as a
form of regularization as discussed in Section 4.2 for the OPT
approach. As noted in Section 5, the Jacobian is sparse and has
a specific structure; therefore, JTJ can be computed efficiently
but JTF still requires O(NQR) operations. For three-way arrays, the
primary expense at each iteration of NLS is solving the system
in (22) at a cost of O(P3) operations, where P is as defined in (7).
The dGN method in the PARAFAC3W code was selected because
it implements LM as described in Reference [28] and is freely
available.

6.2.3. CPOPT

The OPT and OPTR methods were implemented using the Tensor
Toolbox. At each iteration, the function in (2) and the gradient
in (15) for n = 1, . . . , N must be computed. This is similar to the
computation of the ALS update in (5). The pseudo-code for the
computation is shown in Figure 2. As with ALS, the matricized-
tensor times Khatri-Rao product (mttkrp) computation given

Figure 2. MATLAB code for calculating function value (f) and gradient
(G) for CPOPT for a given tensor Z and factorization [[A(1), . . . ,A(N)]]. We
assume the squared norm of Z has been precomputed and is stored as
nrmZsqr.

in (21) dominates the expense of the calculation in the OPT
methods. Therefore, the cost per function/gradient evaluation is
O(NQR). Recall that the only difference in OPTR is the addition of
the regularization term in the function and gradient, which has
little impact on the cost per evaluation; see (16) and (17).

Gradient-based optimization is performed using our own
implementation of the nonlinear conjugate gradient (NCG)
method with Hestenes–Stiefel (HS) updates in Poblano
Toolbox [52]. The Moré–Thuente line search from MINPACK§ was
used for globalization of the NCG method [53]. Exact line search
methods have also been studied in computing CP using ALS
[31], where 2N − 1 function values are required. However, in our
experiments, the Moré–Thuente line search averaged only 2.5
function evaluations per iteration, so we have not explored exact
line searches in this work. For all experiments, the Moré–Thuente
line search parameters used were as follows: 10−4 for the function
value tolerance, 10−2 for the gradient norm tolerance, a starting
search step length of 1 and a maximum of 20 iterations. Note that
any first-order optimization could potentially be substituted for
NCG. We have also employed a limited memory quasi-Newton
method using BFGS updates (L-BFGS) [54] for this problem, but
the differences between this method and NCG were negligible
in our experiments. For NCG (and also L-BFGS in the form of the
initial guess for the Hessian), preconditioning is extremely impor-
tant when the variables are of different magnitudes. A treatment
of preconditioning for NCG can be found in Reference [55]. In
the experiments of the present work, no preconditioning was
needed in the form of scaling the variables, because all values
were of same order of magnitude.

We noted previously that both Paatero [42] and Wang and
Hopke [43] proposed using specialized NCG, and here we make
a few observations on the differences. CPOPT uses HS updates in
contrast to Fletcher–Reeves (FR) updates for both of their meth-
ods. In our preliminary tests, HS outperformed FR. Both of their
methods also use backtracking line searches, in contrast to CPOPT,
which uses the more sophisticated Moré–Thuente line search.

It is important to observe that the cost per function/gradient
evaluation in OPT is equivalent to one outer iteration of ALS;
therefore, even though we cannot predict how many iterations
of ALS or function evaluations in OPT we require for a given CP
factorization, we might expect the overall computational costs of
OPT and ALS to be on the same order of magnitude.

For CPOPTR, the regularization parameter was selected to
be � = 0.02 for experiments with C = 0.5 and � = 0.0001 for
experiments with C = 0.9. More work is needed to investigate
how to best choose � or how to best modify � per iteration as in
Reference [45].

6.2.4. Stopping conditions

In order to produce comparable results, all implementations were
modified to share a common stopping criterion, the one com-
monly used for termination in ALS methods, which is the relative
change in the function value of f in (2). Specifically, the algorithm
stops when

|fcurrent − fprevious|
fprevious

≤ 10−6,

where fcurrent and fprevious are the values of f at the current and
previous iterations, respectively.

§ Adapted for MATLAB by Dianne P. O’Leary.

J. Chemometrics. (2010) Copyright © 2010 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

E. Acar, D. M. Dunlavy and T. G. Kolda

Table II. Speed and accuracy comparison with collinearity C = 0.5

Time (sec)

Size CPALS CPNLS CPOPT CPOPTR

20 × 20 × 20 0.5 ± 1.0 0.3 ± 0.3 0.3 ± 0.2 0.2 ± 0.1
50 × 50 × 50 0.3 ± 0.3 2.0 ± 2.6 0.7 ± 0.5 0.5 ± 0.1
100 × 100 × 100 1.7 ± 1.1 11.5 ± 11.5 5.6 ± 3.6 4.3 ± 1.3
250 × 250 × 250 26.6 ± 9.1 143.9 ± 125.0 83.5 ± 35.2 81.9 ± 22.8

Accuracy (%)

Size CPALS CPNLS CPOPT CPOPTR

20 × 20 × 20 78.8 99.0 99.9 100.0
50 × 50 × 50 65.7 99.0 100.0 100.0
100 × 100 × 100 63.5 97.9 100.0 100.0
250 × 250 × 250 62.2 99.0 100.0 100.0

In addition to the relative change in the function value, we
use the following stopping conditions for the individual solvers.
For CPALS, the maximum number of iterations is set to 104. For
CPNLS, the tolerance on the infinity norm of the gradient is set to
10−9, and the maximum number of iterations is set to 103 based
on the values used in Reference [28]. For CPOPT and CPOPTR,
the tolerance on the two-norm of the gradient divided by the
number of entries in the gradient is set to 10−8, the maximum
number of iterations is set to 103 and the maximum number of
function evaluations is set to 104. We note that all runs stopped
by satisfying the condition for the relative change in the function
value, except for five runs where CPOPT reached the tolerance for
the gradient.

6.3. Analysis

Detailed numerical results are provided in Appendix B. In this sec-
tion, we consider the results summarized according to different
experimental parameters.

All timings are reported for a Linux Workstation with a Quad-
Core Intel Xeon 2.5GHz processor and 9GB RAM. Throughout,
we report the time per CP calculation, and timings are written as
a ± b where a is the average time and b is the sample standard
deviation.

The accuracy is the percentage of runs that a given imple-
mentation is able to recover the original set of factor matrices.
Specifically, we say that the factors have been recovered if
the congruence for every component is above a threshold of
0.97 (≈ 0.993). The congruence between two rank-one tensors,
X = a ◦ b ◦ c and Y = p ◦ q ◦ r, is defined as [28]:

cong(X, Y) = |aTp|
‖a‖‖p‖ × |bTq|

‖b‖‖q‖ × |cTr|
‖c‖‖r‖ . (23)

Since there is sign ambiguity among the vectors comprising
each component rank-one tensor, i.e., a ◦ b ◦ c = (−a) ◦ (−b) ◦ c,
absolute values are used in the numerators of (23). Since CP is
unique only up to a permutation of the component rank-one ten-
sors, we consider all permutations, choosing the one that results
in the greatest sum of congruences.

6.3.1. Tensor size

Across all sizes, CPOPT is more accurate than CPALS and faster
than CPNLS. Table II shows accuracy and timing results with
C = 0.5 held constant; this means that each cell in the table
corresponds to 360 test tensors and 720 factorizations.

Figure 3. Speed and accuracy comparison for extracting the number of true underlying components (blue) and overfactoring (red) on tensors of size
50 × 50 × 50 and collinearity C = 0.5.

wileyonlinelibrary.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics (2010)

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Fittingcanonical tensordecompositions

Figure 4. Factors corresponding to the emission mode of the amino acid fluorescence data set [48,56]. Plots are shown for CPALS (left) and CPOPT
(right).

Recall that the cost for one iteration of CPALS is equal to that for
one gradient calculation for CPOPT. Therefore, it is not surprising
that the cost in time for these methods is of the same order
of magnitude. In general, it seems that CPOPT is about three
times slower than CPALS. Further, CPOPTR is slightly faster than
CPOPT through the use of regularization. CPNLS is slower than
the other methods because it must solve the modified Gauss–
Newton equation at each inner iteration; moreover, it has a large
standard deviation. The results in the next subsection indicate
that it is slower in the case of overfactoring.

In terms of accuracy, both CPNLS and CPOPT are essentially
perfect, but CPALS only obtains accuracies of 62-79%. Once again,
results in the next subsection indicate that the accuracy of CPALS
suffers in the case of overfactoring.

6.3.2. Number of components in the factorization

Many of the differences in the speed and accuracy of the methods
can be attributed to their performance in the case of over-
factoring (R = Rtrue + 1). Figure 3 illustrates the accuracy and
timing results for tensors of size 50 × 50 × 50 with C = 0.5,
separating the R = Rtrue (blue) and R = Rtrue + 1 (red) cases.
Observe that the accuracy of CPALS is 100% in the case that
R = Rtrue but falls to 30% when R = Rtrue + 1. All the methods
are more computationally expensive in the case of overfactoring
because it takes more iterations/function evaluations to con-
verge for each method. Regularization helps with overfactoring
(for C = 0.5) and the increase in the number of function eval-
uations for CPOPTR is, on average, less than the increase for
CPOPT.

Table III. Norms of the component rank-one tensors and timings in the case of correct R and overfactoring for the results shown in
Figure 4

CPALS CPOPT

Component Norm (×104) Time (sec) Component Norm (×104) Time (sec)

R 1 2 3 4 5 1 2 3 4 5

3 3.3 2.3 2.1 0.5 3.3 2.3 2.1 1.5
4 3.3 1.1 2.1 1.4 6.2 3.3 2.3 2.1 10−4 1.7
5 4.3 2.3 2.3 2.7 1.5 60.0 3.3 2.3 2.1 10−4 10−4 1.9

J. Chemometrics. (2010) Copyright © 2010 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

E. Acar, D. M. Dunlavy and T. G. Kolda

Table IV. Speed and accuracy comparison with collinearity C = 0.9

Time (sec)

Size CPALS CPNLS CPOPT CPOPTR

20 × 20 × 20 1.1 ± 0.8 0.5 ± 0.5 0.7 ± 0.3 0.7 ± 0.3
50 × 50 × 50 1.8 ± 0.9 3.3 ± 3.4 1.5 ± 0.7 1.5 ± 0.6
100 × 100 × 100 14.2 ± 5.5 19.2 ± 20.4 12.9 ± 5.0 12.9 ± 4.8
250 × 250 × 250 242.1 ± 99.9 198.7 ± 171.8 231.5 ± 82.8 229.3 ± 82.7

Accuracy (%)

Size CPALS CPNLS CPOPT CPOPTR

20 × 20 × 20 29.0 31.8 32.2 32.6
50 × 50 × 50 65.6 69.9 69.9 69.9
100 × 100 × 100 73.1 77.5 79.4 79.7
250 × 250 × 250 79.9 87.1 89.6 89.4

To further explore the overfactoring phenomena, we consider
publicly available data [56] comprising five chemical samples
measured by fluorescence at 61 excitation and 201 emission
wavelengths forming a third-order tensor with the following
modes: samples, emission wavelengths, and excitation wave-
lengths. Each of the five samples contains different amounts of
three amino acids [48]. It is known that the number of true under-
lying components in the data is three; therefore, the spectra of
these chemicals in emission and excitation modes are accurately
captured by computing a CP factorization with R = 3 compo-
nents. Even though R = 3 corresponds to the number of true
underlying components in the data, there is an artifact due to
the Rayleigh scatter [48] such that an extra component may par-
tially capture it. We compute CP factorizations with R values of
1 through 5 to show the effects of both underfactoring and
overfactoring.

Figure 4 plots the emission-mode factors—i.e., the columns of a
CP factor matrix corresponding to the mode containing emission
wavelengths—scaled by the norm of the corresponding compo-
nent. Ideally, these are the emission spectra of the chemical ana-
lytes in the sample. We can see that both CPALS and CPOPT extract
the same emission factors for R = 1, 2, 3. For R = 1, we capture
a sort of average of the first three factors. For R = 2, one factor is
resolved, but the remaining two are still somewhat merged. The
R = 3 case corresponds to the correct emission spectra of under-
lying chemical analytes. In the case of overfactoring, for R = 4, 5,
the factors for CPALS change, especially the smallest factor. For
CPOPT, however, the first three factors for R = 4, 5 are the same
as the ones for R = 3 and the extra factors are close to zero.

The norms of the components and timings of the methods
for R = 3, 4, 5 are reported in Table III. The extra components
computed by CPOPT are small in magnitude. Moreover, CPOPT is
actually faster than CPALS in both cases of overfactoring.

We have also tested CPOPT on data sets from Reference [57]
that are considered to be more difficult. Our experiments show
that CPOPT is also robust to overfactoring on these problems.

6.3.3. Collinearity

The performance of all four methods degrades as the collinearity
of the factors in each mode, see (20), is increased. With higher

collinearity, the problem is more difficult because there is more
overlap in the factors. Table IV shows results with C = 0.9,
which can be contrasted to those in Table II with C = 0.5. The
higher collinearity problems take more time to solve and are
less accurate. Furthermore, unlike the low collinearity case where
CPOPTR is slightly faster than CPOPT, regularization does not
help in terms of computation time in the high collinearity case.
The reason for this is that a small regularization parameter
(� = 0.0001) is used at the high collinearity level in order to
keep the regularization error down and the accuracy levels
comparable for CPOPTR compared with the other methods.

In Table IV, we also note that accuracies of all algorithms
increase as the data set size increases. The underlying reason
is that for the same R value, the ratio of the data entries, i.e.,
I × I × I, to the number of degrees of freedom in a rank-R CP
model increases as the data set size increases. This ratio can be
considered as an indicator of the difficulty of the problem. Since
this ratio is higher, the problem is easier for larger data sets, even
in the case of higher levels of noise.

Figure 5 shows a breakdown of speed and accuracy results for
tensors of size 50 × 50 × 50. In comparison to Figure 3 where
C = 0.5, the accuracies of the methods are low even if R = Rtrue.
A comparable result is presented in Reference [28]. Accuracy
actually improves for CPNLS, CPOPT and CPOPTR in the case of
overfactoring (red), although the times are all more expensive.
The reason for the increase in accuracy is that the extra factor cap-
tures the effects of the noise, which we discuss in more detail next.

6.3.4. Noise level

As noise level increases, the accuracy generally decreases. Figure 6
plots the accuracies for all combinations of homoscedastic and
heteroscedastic noise for R = Rtrue (left column) and R = Rtrue + 1
(right column). For R = Rtrue, all the methods perform similarly.
Furthermore, we know that the accuracy is perfect for all methods
at C = 0.5 when R = Rtrue (see Figure 3), so the dropoff at higher
noise levels is due to the more difficult problems with C = 0.9.

For R = Rtrue + 1, the performance of CPALS is worse. Inter-
estingly, the performance improves for �2 = 1 for CPALS. We
hypothesize that the extra component is then modeling the noise,
but for �2 = 5 the performance degrades again.

wileyonlinelibrary.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics (2010)

tgkolda
Inserted Text
, [comma]

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Fittingcanonical tensordecompositions

Figure 5. Speed and accuracy comparison for computing the number of true underlying components (blue) and overfactoring (red) for tensors of size
50 × 50 × 50 and collinearity C = 0.9.

Figure 6. Accuracy of different methods for computing CP for R = Rtrue (left) and R = Rtrue + 1 (right) at increasing levels of noise for tensors of size
50 × 50 × 50 taking into consideration both collinearity levels, C = 0.5 and C = 0.9. The numbers on the horizontal axes indicate (�1, �2) pairs. Each
subplot presents results where the homoscedastic noise ratio (�1) is held constant while the heteroscedastic noise ratio (�2) changes.

Figure 7. Speed for Rtrue = 3 and Rtrue = 5 for tensors of size 50 × 50 × 50 at C = 0.5.

J. Chemometrics. (2010) Copyright © 2010 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

E. Acar, D. M. Dunlavy and T. G. Kolda

Figure 8. Accuracy for Rtrue = 3 and Rtrue = 5 for tensors of size 50 × 50 × 50 at C = 0.5.

6.3.5. Rank

The main effect of the rank of the tensor is in the computation
time. Figure 7 splits out the timing results for tensors of size 50 ×
50 × 50 with C = 0.5. On the left are timings for Rtrue = 3 (blue
is R = Rtrue and red is R = Rtrue + 1), and on the right are the
corresponding timings for Rtrue = 5. We see that the computation
time of CPNLS increases significantly as the rank increases. This is
as expected, however, due to the O(P3) cost of the method, where
P depends linearly on R (see Section 5 for more details).

We also consider the effect of rank on accuracy in Figure 8.
In terms of accuracy, all methods except CPALS perform close
to 100%, while CPALS suffers from overfactoring. Interestingly,
CPALS computes more accurate factorizations in the case of over-
factoring for Rtrue = 5 compared with those for Rtrue = 3. Further
studies are needed to determine whether this trend continues as
the tensor rank increases.

At high collinearity (i.e., C = 0.9), as the rank of the original
tensor increases from Rtrue = 3 to Rtrue = 5, the accuracy of all
methods decreases. Table VIa in Appendix B illustrates this trend
for the high collinearity case, which is not present in the low
collinearity case (i.e., C = 0.5).

7. CONCLUSIONS

Although both ALS [1,2] and NLS [29,31] are optimization-based
approaches to solving the CP problem, we revisit the problem and
consider another alternative. The OPT approach proposed here is
a first-order gradient-based optimization method to solve the CP
optimization problem in (2); specifically, we demonstrate the per-
formance of OPT using a nonlinear conjugate gradient method.
Compared to ALS, OPT solves for all factor matrices simultane-
ously and our numerical results show that this leads to increased
accuracy in the case of overfactoring. In contrast to NLS, which
uses (approximate) second-order information, OPT uses only first-
order derivative information; the overall speed of OPT is faster
in the experiments presented here due to a reduced cost per
iteration.

Our results are consistent with those of Tomasi [31], who con-
sidered the scalability of the methods for tensors of order three
(168 × 168 × 168) through seven (9 × 9 × 9 × · · · × 9). Like we

have observed, the results in Reference [31] for order three show
that OPT is higher than NLS. As the order grows, NLS becomes
slightly faster than OPT, but this is to be expected because the
number of variables in the optimization problem is shrinking and
the cost of the matrix factorization is consequently less significant.

Key to the good performance of OPT is the efficient tensor
formulation of the first derivative of (2). This formulation can serve
as a model for deriving analogous formulas for derivatives of other
tensor decomposition objective functions. This work makes clear
the connection between the gradient and the ALS method: ALS
sets the gradient to zero for just one factor matrix at a time,
whereas the optimization approach sets the gradient to zero for
all factor matrices simultaneously. This connection between ALS
and OPT further means that the same methods to making ALS
applicable to large-scale problems [47] can be applied to OPT.
Future work will consider the scalability of OPT to large-scale
sparse problems.

One of the major difficulties of solving the CP problem is
addressing the scaling and permutation indeterminacies. The
OPTR method includes a Tikhonov regularization term, which
addresses the scaling indeterminacy. We have illustrated the con-
nections between OPTR and the implicit regularization in the
Levenberg–Marquardt method in NLS. In our numerical exper-
iments, OPTR gave no advantage in accuracy but was faster
than OPT in the case of low (C = 0.5) collinearity; however, this
advantage did not persist in the high (C = 0.9) collinearity case.
Future work will investigate how to choose the best regularization
parameter.

The formulation of the CP problem in (2) can be extended to
include non-negativity or sparsity constraints, and we propose
that OPT can be extended in a straightforward way to incor-
porate such constraints. We note, however, that the subject of
initialization would need to be addressed when using such con-
straints, since we currently use the n-mode singular vectors. This
is another avenue of future investigation.

Acknowledgements

We thank Dianne O’Leary for helpful conversations on regu-
larization. We also thank Rasmus Bro, Giorgio Tomasi and the
anonymous referees for carefully reading earlier versions of the
manuscript and providing helpful ideas for improvement.

wileyonlinelibrary.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics (2010)

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Fittingcanonical tensordecompositions

This work was supported by Advanced Scientific Computing
Research Applied Mathematics Program at the United States
Department of Energy and the Laboratory Directed Research and
Development program at Sandia National Laboratories. Sandia
is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of
Energy’s National Nuclear Security Administration under Contract
DE-AC04-94AL85000.

REFERENCES

1. Carroll JD, Chang JJ. Analysis of individual differences in multidi-
mensional scaling via an N-way generalization of “Eckart-Young”
decomposition. Psychometrika 1970; 35: 283–319.

2. Harshman RA. Foundations of the PARAFAC procedure: Models
and conditions for an “explanatory” multi-modal factor analysis.
UCLA working papers in phonetics 1970; 16: 1–84. Available at
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf.

3. Acar E, Yener B. Unsupervised multiway data analysis: A literature sur-
vey. IEEE Transactions on Knowledge and Data Engineering 2009; 21(1):
6–20.

4. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM
Review 2009; 51(3): 455–500.

5. Kruskal JB. Three-way arrays: rank and uniqueness of trilinear decom-
positions, with application to arithmetic complexity and statistics.
Linear Algebra and its Applications 1977; 18(2): 95–138.

6. Andersen CM, Bro R. Practical aspects of PARAFAC modeling of fluores-
cence excitation-emission data. Journal of Chemometrics 2003; 17(4):
200–215.

7. Bro R, Kiers HAL. A new efficient method for determining the number
of components in PARAFAC models. Journal of Chemometrics 2003;
17(5): 274–286.

8. Acar E, Bingol CA, Bingol H, Bro R, Yener B. Multiway analysis of epilepsy
tensors. Bioinformatics 2007; 23(13): i10–i18.

9. Mitchell BC, Burdick DS. Slowly converging PARAFAC sequences:
Swamps and two-factor degeneracies. Journal of Chemometrics 1994;
8(2): 155–168.

10. Paatero P. Construction and analysis of degenerate PARAFAC models.
Journal of Chemometrics 2000; 14(3): 285–299.

11. Rayens WS, Mitchell BC. Two-factor degeneracies and a stabilization
of PARAFAC. Chemometrics and Intelligent Laboratory Systems 1997;
38(2): 173.

12. Stegeman A, De Lathauwer L. A method to avoid diverging compo-
nents in the Candecomp/Parafac model for generic I × J × 2 arrays.
SIAM Journal on Matrix Analysis and Applications 2009; 30(4): 1614–
1638.

13. Faber NKM, Bro R, Hopke PK. Recent developments in CANDE-
COMP/PARAFAC algorithms: A critical review. Chemometrics and
Intelligent Laboratory Systems 2003; 65(1): 119–137.

14. Faber K. Short communication: On solving generalized eigenvalue
problems using matlab. Journal of Chemometrics 1997; 11(1): 87–91.
Cited by Reference [13].

15. Faber NM, Buydens LMC, Kateman G. Generalized rank annihilation
method. I: Derivation of eigenvalue problems. Journal of Chemometrics
1994; 8(2): 147–154. Cited by Reference [13].

16. Faber NM, Buydens LMC, Kateman G. Generalized rank annihilation
method. III: Practical implementation. Journal of Chemometrics 1994;
8(4): 273–285. Cited by Reference [13].

17. Gerritsen M, Tanis H, Vandeginste B, Kateman G. Generalized rank anni-
hilation factor analysis, iterative target transformation factor analysis,
and residual bilinearization for the quantitative analysis of data from
liquid chromatography with photodiode array detection. Analytical
Chemistry 1992; 64(18): 2029–2035. Cited by Reference [13].

18. Li S, Hamilton J, Gemperline P. Generalized rank annihilation method
using similarity transformations.Analytical Chemistry 1992;64(6): 599–
607. Cited by Reference [13].

19. Lorber A. Features of quantifying chemical composition from two-
dimensional data array by the rank annihilation factor analysis
method. Analytical Chemistry 1985; 57(12): 2395–2397. Cited by Refer-
ence [13].

20. Sanchez E, Kowalski B. Generalized rank annihilation factor analysis.
Analytical Chemistry 1986; 58(2): 496–499. Cited by Reference [13].

21. Wu HL, Shibukawa M, Oguma K. An alternating trilinear decomposition
algorithm with application to calibration of HPLC–DAD for simultane-
ous determination of overlapped chlorinated aromatic hydrocarbons.
Journal of Chemometrics 1998; 12(1): 1–26.

22. Chen ZP, Wu HL, Jiang JH, Li Y, Yu RQ. A novel trilinear decomposi-
tion algorithm for second-order linear calibration. Chemometrics and
Intelligent Laboratory Systems 2000; 51(1): 75–86.

23. Chen ZP, Wu HL, Yu RQ. On the self-weighted alternating trilinear
decomposition algorithm—the property of being insensitive to excess
factors used in calculation. Journal of Chemometrics 2001; 15(5): 439–
453.

24. Chen ZP, Li Y, Yu RQ. Pseudo alternating least squares algorithm for
trilinear decomposition. Journal of Chemometrics 2001; 15(3): 149–
167. Cited by Reference [13].

25. Jiang JH, Wu HL, Li Y, Yu RQ. Alternating coupled vectors resolution
(acover) method for trilinear analysis of three-way data. Journal of
Chemometrics 1999; 13: 557–578. Cited by Reference [13].

26. Jiang J, Wu H, Li Y, Yu R. Three-way data resolution by alternating slice-
wise diagonalization (ASD) method. Journal of Chemometrics 2000;
14(1): 15–36.

27. Li Y, Jiang J, Wu H, Chen Z, Yu R. Alternating coupled matrices
resolution method for three-way arrays analysis. Chemometrics and
Intelligent Laboratory Systems 2000; 52(1): 33–43. Cited by Reference
[13].

28. Tomasi G, Bro R. A comparison of algorithms for fitting the PARAFAC
model. Computational Statistics & Data Analysis 2006; 50(7): 1700–
1734.

29. Paatero P. A weighted non-negative least squares algorithm for
three-way “PARAFAC” factor analysis. Chemometrics and Intelligent
Laboratory Systems 1997; 38(2): 223–242.

30. Tomasi G, Bro R. PARAFAC and missing values. Chemometrics and
Intelligent Laboratory Systems 2005; 75(2): 163–180.

31. Tomasi G. Practical and computational aspects in chemometric data
analysis. Ph.D. thesis, Department of Food Science, The Royal Vet-
erinary and Agricultural University, Frederiksberg, Denmark 2006.
Available at http://www.models.life.ku.dk/research/theses/.

32. De Lathauwer L, De Moor B, Vandewalle J. Computation of the canon-
ical decomposition by means of a simultaneous generalized Schur
decomposition. SIAM Journal onMatrix Analysis and Applications 2004;
26(2): 295–327.

33. De Lathauwer L. A link between the canonical decomposition in multi-
linear algebra and simultaneous matrix diagonalization. SIAM Journal
onMatrix Analysis and Applications 2006; 28(3): 642–666.

34. Vorobyov SA, Rong Y, Sidiropoulos ND, Gershman AB. Robust iterative
fitting of multilinear models. IEEE Transactions on Signal Processing
2005; 53(8-1): 2678–2689.

35. Kiers HAL. Towards a standardized notation and terminology in multi-
way analysis. Journal of Chemometrics 2000; 14(3): 105–122.

36. Smilde A, Bro R, Geladi P.Multi-Way Analysis: Applications in the Chemi-
cal Sciences. Wiley: West Sussex, England, 2004.

37. Golub GH, Van Loan CF. Matrix Computations. Johns Hopkins Univ.
Press 1996.

38. Khatri CG, Rao CR. Solutions to some functional equations and their
applications to characterization of probability distributions. Sankhya:
The Indian Journal of Statistics, Series A 1968; 30(2): 167–180.

39. Tomasi G, Bro R. Multilinear models: Iterative methods. In Comprehen-
sive Chemometrics, vol. 2, Brown S, Tauler R, Walczak R (eds). Elsevier:
Oxford, 2009; pp. 411–451.

40. Kolda TG. Multilinear operators for higher-order decompositions. Tech.
Rep. SAND2006-2081, Sandia National Laboratories, Albuquerque,
New Mexico and Livermore, California 2006.

41. Acar E, Kolda TG, Dunlavy DM. An optimization approach for fitting
canonical tensor decompositions. Tech. Rep. SAND2009-0857, Sandia
National Laboratories, Albuquerque, NM and Livermore, CA 2009.

42. Paatero P. The multilinear engine: A table-driven, least squares pro-
gram for solving multilinear problems, including the n-way parallel
factor analysis model. Journal of Computational andGraphical Statistics
1999; 8(4): 854–888.

43. Wang JH, Hopke PK. Equation-oriented system: an efficient program-
ming approach to solve multilinear and polynomial equations by the
conjugate gradient algorithm. Chemometrics and Intelligent Labora-
tory Systems 2001; 55(1–2): 13–22.

44. Shashua A, Hazan T. Non-negative tensor factorization with applica-
tions to statistics and computer vision. In ICML 2005: Proceedings of the
22nd International Conference onMachine Learning 2005; pp. 792–799.

J. Chemometrics. (2010) Copyright © 2010 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

tgkolda
Inserted Text
the

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

E. Acar, D. M. Dunlavy and T. G. Kolda

45. Navasca C, De Lathauwer L, Kinderman S. Swamp reducing tech-
nique for tensor decompositions. In EUSIPCO’08: Proceedings of the
16th European Signal Processing Conference 2008; .

46. Bader BW, Kolda TG. Tensor Toolbox for MATLAB, version 2.2
last accessed November, 2008. http://csmr.ca.sandia.gov/∼tgkolda/
TensorToolbox/.

47. Bader BW, Kolda TG. Efficient MATLAB computations with sparse and
factored tensors. SIAM Journal on Scientific Computing 2007; 30(1):
205–231.

48. Bro R. PARAFAC. Tutorial and applications.Chemometrics and Intelligent
Laboratory Systems 1997; 38(2): 149–171.

49. Rajih M, Comon P, Harshman RA. Enhanced line search: A novel method
to accelerate parafac. SIAM Journal on Matrix Analysis and Applications
2008; 30(3): 1128–1147.

50. Tomasi G. INDAFAC and PARAFAC3W last accessed March, 2009.
http://www.models.kvl.dk/source/indafac/index.asp.

51. Madsen K, Nielson HB, Tingleff O. Methods for non-linear least squares
problems, 2nd edition. Informatics and Mathematical Modelling, Tech-
nical University of Denmark 2004.

52. Dunlavy DM, Kolda TG, Acar E. Poblano v1.0: A Matlab toolbox
for gradient-based optimization. Tech. Rep. SAND2010-1422, Sandia
National Laboratories, Albuquerque, New Mexico and Livermore, Cali-
fornia 2010.

53. Moré JJ, Thuente DJ. Line search algorithms with guaranteed suf-
ficient decrease. ACM Transactions on Mathematical Software 1994;
20(3): 286–307.

54. Nocedal J, Wright SJ. Numerical Optimization. Springer 1999.
55. Hager WW, Zhang H. A survey of nonlinear conjugate gradient meth-

ods. Pacific Journal of Optimiation 2006; 2(1): 35–58.
56. Bro R. Amino acids fluorescence data last accessed December, 2008.

http://www.models.kvl.dk/research/data/Amino Acid fluo/index.asp.
57. Hopke PK, Paatero P, Jia H, Ross RT, Harshman RA. Three-way (parafac)

factor analysis: examination and comparison of alternative computa-
tional methods as applied to ill-conditioned data. Chemometrics and
Intelligent Laboratory Systems 1998; 43: 25–42.

58. Nash SG, Sofer A. Linear and Nonlinear Programming. McGraw–Hill:
New York, NY, 1996.

APPENDIX A: DETAILED REGULARIZATION
DISCUSSION

We motivate the role that regularization plays in defining a unique
solution to (3). Suppose that a minimizer of (3) is given by

[[A(1), . . . ,A(N)]] =
R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r .

Then a continuous manifold of equivalent minimizers are given
by

R∑
r=1

ˇ1r

a(1)
r

‖a(1)
r ‖ ◦ ˇ2r

a(2)
r

‖a(2)
r ‖ ◦ · · · ◦ ˇNr

a(N)
r

‖a(N)
r ‖

for any set of ˇ-values satisfying

N∏
n=1

ˇnr = �r ≡
N∏

n=1

‖a(n)
r ‖ for r = 1, . . . , R.

This defines an infinite family of solutions.
Consider the case that the matrices (A(n)) are fixed and only

the ˇ values are allowed to change. Then the regularized opti-
mization problem in (16) (ignoring the constant in the objective)

reduces to

min
�

2

R∑
r=1

N∑
n=1

ˇ2
nr subject to

N∏
n=1

ˇnr = �r

for r = 1, . . . , R. This clearly separates into R independent prob-
lems so we can drop the r subscript and just consider the problem

min

N∑
n=1

ˇ2
n subject to

N∏
n=1

ˇn = �. (24)

Theorem A.1. The vector ˇ∗ defined by ˇ∗
n = N

√
� for n =

1, . . . , N is a strict local minimizer of (24).

proof.‖ The Lagrangian of (24) is defined by

L(ˇ, ω) =
N∑

n=1

ˇ2
n − ω

(
N∏

n=1

ˇn − �

)
,

where ω is the Lagrangian multiplier for the single constraint.
Consequently, the first-order optimality conditions are:

2ˇn − ω

N∏
m=1
m�=n

ˇm = 0 for n ∈ {1, N} and

N∏
n=1

ˇn − � = 0.

This is satisfied by ˇ∗ with ω∗ = 2�
2−N

N . Thus, ˇ∗ is a constrained
extremum point of (24).

Let H(ˇ, ω) and g(ˇ) denote, respectively, the Hessian of the
Lagrangian and the gradient of the constraint with respect to
ˇ. Further, let H∗ = H(ˇ∗, ω∗) and g∗ = g(ˇ∗). The second-order
optimality conditions state that ˇ∗ is a strict local minimizer of
(24) if zTH∗z > 0 for all z such that zTg∗ = 0. Since the elements

of the vector g∗ are all equal (i.e., g∗
n = �

N−1
N for all n = 1, . . . , N),

the null space with respect to the constraint gradients is defined
by

N∗ =
{
z |

∑
zn = 0

}
.

Thus, if z lives in the nullspace of the constraints, then it must be
the case that(

N∑
n=1

zn

)2

= 0 ⇒
N∑

n=1

z2
n + 2

N∑
n=1

N∑
m=n+1

znzm = 0

⇒ 2

N∑
n=1

N∑
m=n+1

znzm < 0.

It is also straightforward to show that

h∗
ij =

{
2 if i = j,

−2 if i �= j.

‖ The proof follows the proofs and examples on optimality conditions for
constrained optimization problems given in Reference [58].

wileyonlinelibrary.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics (2010)

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Fittingcanonical tensordecompositions

Table V. Detailed results for 20 × 20 × 20 tensors

(a) Accuracy
Accuracy (%)

Rank (Rtrue) 3 5

Collinearity (C) 0.5 0.9 0.5 0.9

Extr. Components (R) 3 4 3 4 5 6 5 6

CPALS 100.0 47.2 49.4 45.6 100.0 67.8 11.1 10.0
CPNLS 100.0 98.3 51.7 51.1 100.0 97.8 11.1 13.3
CPOPT 100.0 100.0 52.2 52.2 100.0 99.4 11.1 13.3
CPOPTR 100.0 100.0 52.8 53.3 100.0 100.0 11.1 13.3

(b) Computation time for Rtrue = 3
Time (sec)

Rank (Rtrue) 3

Collinearity (C) 0.5 0.9

Extr. Components (R) 3 4 3 4

CPALS 0.1 ± 0.0 1.0 ± 1.4 0.7 ± 0.3 1.0 ± 0.7
CPNLS 0.1 ± 0.0 0.3 ± 0.2 0.1 ± 0.1 0.4 ± 0.2
CPOPT 0.1 ± 0.0 0.4 ± 0.2 0.4 ± 0.1 0.6 ± 0.2
CPOPTR 0.1 ± 0.0 0.2 ± 0.0 0.4 ± 0.1 0.6 ± 0.2

(c) Computation time for Rtrue = 5
Time (sec)

Rank (Rtrue) 5

Collinearity (C) 0.5 0.9

Extr. Components (R) 5 6 5 6

CPALS 0.1 ± 0.0 0.9 ± 1.2 1.2 ± 0.7 1.6 ± 1.1
CPNLS 0.1 ± 0.0 0.6 ± 0.3 0.6 ± 0.5 1.0 ± 0.6
CPOPT 0.2 ± 0.0 0.5 ± 0.2 0.8 ± 0.2 1.0 ± 0.4
CPOPTR 0.2 ± 0.0 0.3 ± 0.1 0.8 ± 0.2 1.0 ± 0.4

Thus, for any vector z ∈ N∗ we have

zTH∗z = 2

(
N∑

n=1

z2
n − 2

N∑
n=1

N∑
m=n+1

znzm

)
> 0.

Hence, the claim. �

From the previous theorem, we can see that if we fix the solu-
tion of (16) except for scaling, then the best solution is given when
all N vectors for the rth component are scaled to equal size, i.e.,

∥∥a(1)
r

∥∥2 =
∥∥a(2)

r

∥∥2 = . . . =
∥∥a(N)

r

∥∥2
.

When that is the case for all R components, the Frobenius norms
of the factor matrices are also equal.

APPENDIX B: DETAILED NUMERICAL
RESULTS

The experimental set-up described in Section 6.1 results in 23,040
individual experiments. In this appendix, we provide summaries
across a range of parameters in Table V-VIII, but we cannot pro-
vide all possible break-downs due to space limitations. Therefore,
we provide full results (timing and accuracy) of the individual
experiments as a downloadable MATLAB MAT-file (data.mat)
along with a MATLAB M-file (data exploration.m)¶ showing
examples of how to process the data to produce some of the fig-
ures and tables in the paper. In the results presented here, each
cell corresponds to twenty sets of factor matrices and nine lev-
els of noise (as described in Section 6.1) for a total of 180 test
tensors.

¶ These files are available on http://csmr.ca.sandia.gov/∼tgkolda/cpopt2010/.

J. Chemometrics. (2010) Copyright © 2010 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

E. Acar, D. M. Dunlavy and T. G. Kolda

Table VI. Detailed results for 50 × 50 × 50 tensors

(a) Accuracy
Accuracy (%)

Rank (Rtrue) 3 5

Collinearity (C) 0.5 0.9 0.5 0.9

Extr. Components (R) 3 4 3 4 5 6 5 6

CPALS 100.0 13.9 73.9 67.8 100.0 48.9 60.0 60.6
CPNLS 100.0 98.3 68.3 80.6 100.0 97.8 65.0 65.6
CPOPT 100.0 100.0 74.4 82.8 100.0 100.0 60.0 62.2
CPOPTR 100.0 100.0 73.9 83.3 100.0 100.0 60.0 62.2

(b) Computation time for Rtrue = 3
Time (sec)

Rank (Rtrue) 3

Collinearity (C) 0.5 0.9

Extr. Components (R) 3 4 3 4

CPALS 0.1 ± 0.0 0.2 ± 0.3 1.2 ± 0.5 1.7 ± 0.7
CPNLS 0.3 ± 0.1 2.1 ± 1.2 0.8 ± 0.6 2.4 ± 1.3
CPOPT 0.3 ± 0.1 0.9 ± 0.4 0.9 ± 0.3 1.3 ± 0.4
CPOPTR 0.3 ± 0.1 0.4 ± 0.1 0.9 ± 0.3 1.3 ± 0.3

(c) Computation time for Rtrue = 5
Time (sec)

Rank (Rtrue) 5

Collinearity (C) 0.5 0.9

Extr. Components (R) 5 6 5 6

CPALS 0.2 ± 0.0 0.5 ± 0.5 2.1 ± 1.0 2.3 ± 0.8
CPNLS 0.8 ± 0.3 4.9 ± 3.6 2.9 ± 2.5 7.0 ± 4.0
CPOPT 0.4 ± 0.1 1.2 ± 0.6 1.7 ± 0.5 2.1 ± 0.7
CPOPTR 0.5 ± 0.1 0.6 ± 0.1 1.7 ± 0.5 2.1 ± 0.6

wileyonlinelibrary.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics (2010)

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Fittingcanonical tensordecompositions

Table VII. Detailed results for 100 × 100 × 100 tensors

(a) Accuracy
Accuracy (%)

Rank (Rtrue) 3 5

Collinearity (C) 0.5 0.9 0.5 0.9

Extr. Components (R) 3 4 3 4 5 6 5 6

CPALS 100.0 11.1 91.7 72.8 100.0 42.8 66.7 61.1
CPNLS 100.0 96.7 81.1 94.4 100.0 95.0 67.2 67.2
CPOPT 100.0 100.0 89.4 96.7 100.0 100.0 64.4 67.2
CPOPTR 100.0 100.0 89.4 96.7 100.0 100.0 65.6 67.2

(b) Computation time for Rtrue = 3
Time (sec)

Rank (Rtrue) 3

Collinearity (C) 0.5 0.9

Extr. Components (R) 3 4 3 4

CPALS 1.2 ± 0.1 1.2 ± 0.6 13.6 ± 3.2 11.2 ± 3.5
CPNLS 2.3 ± 0.8 11.5 ± 5.1 4.8 ± 2.3 12.5 ± 6.3
CPOPT 3.2 ± 0.8 5.9 ± 3.3 10.5 ± 2.8 8.8 ± 2.3
CPOPTR 3.6 ± 0.8 3.2 ± 0.6 10.5 ± 2.6 8.9 ± 2.4

(c) Computation time for Rtrue = 5
Time (sec)

Rank (Rtrue) 5

Collinearity (C) 0.5 0.9

Extr. Components (R) 5 6 5 6

CPALS 1.5 ± 0.1 2.8 ± 1.6 15.5 ± 6.2 16.6 ± 6.7
CPNLS 5.6 ± 1.8 26.7 ± 12.2 19.7 ± 18.1 39.8 ± 25.0
CPOPT 4.0 ± 0.7 9.3 ± 4.3 14.0 ± 3.3 18.5 ± 4.6
CPOPTR 4.5 ± 0.7 5.9 ± 0.8 14.2 ± 3.3 18.2 ± 4.4

J. Chemometrics. (2010) Copyright © 2010 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

E. Acar, D. M. Dunlavy and T. G. Kolda

Table VIII. Detailed results for 250 × 250 × 250 tensors

(a) Accuracy
Accuracy (%)

Rank (Rtrue) 3 5

Collinearity (C) 0.5 0.9 0.5 0.9

Extr. Components (R) 3 4 3 4 5 6 5 6

CPALS 100.0 7.2 100.0 58.9 100.0 41.7 81.1 79.4
CPNLS 100.0 99.4 80.0 91.7 100.0 96.7 83.3 93.3
CPOPT 100.0 100.0 100.0 100.0 100.0 100.0 74.4 83.9
CPOPTR 100.0 100.0 100.0 100.0 100.0 100.0 73.9 83.9

(b) Computation time for Rtrue = 3
Time (sec)

Rank (Rtrue) 3

Collinearity (C) 0.5 0.9

Extr. Components (R) 3 4 3 4

CPALS 22.2 ± 1.5 19.8 ± 4.5 264.9 ± 54.9 167.5 ± 51.8
CPNLS 42.1 ± 13.8 135.4 ± 65.0 65.2 ± 21.8 140.4 ± 54.7
CPOPT 62.4 ± 13.1 70.2 ± 28.3 200.3 ± 46.2 154.2 ± 33.0
CPOPTR 70.5 ± 13.9 60.7 ± 9.5 197.1 ± 44.6 155.6 ± 33.3

(c) Computation time for Rtrue = 5
Time (sec)

Rank (Rtrue) 5

Collinearity (C) 0.5 0.9

Extr. Components (R) 5 6 5 6

CPALS 26.5 ± 1.5 37.7 ± 11.0 294.4 ± 98.0 241.7 ± 126.3
CPNLS 97.0 ± 27.8 301.1 ± 141.5 199.6 ± 105.0 389.6 ± 214.6
CPOPT 77.0 ± 13.7 124.4 ± 38.2 255.6 ± 69.7 315.7 ± 68.8
CPOPTR 85.9 ± 13.9 110.2 ± 14.7 250.7 ± 68.9 313.9 ± 73.7

wileyonlinelibrary.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics (2010)

UNCORRECTED P
ROOFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Tensor decompositions are higher-order analogues of matrix decompositions and have
proven to be powerful tools for data analysis. For fitting the CANDECOMP/PARAFAC
tensor decomposition, we propose the use of gradient-based optimization methods
such as nonlinear conjugate gradients. Computational experiments demonstrate that
the gradient-based optimization methods are more accurate than the standard alter-
nating least-squares (ALS) and faster than second-order optimizaion in terms of total
computation time.

E. Acar, D. M. Dunlavy and T. G. Kolda*
. xxx–xxx

A scalable optimization approach for fitting
canonical tensor decompositions

