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A one-dimensional local bend model is used to describe the variation of electronic properties of acetylene in
vibrational levels that embody large amplitude local motions on the S0 potential energy surface. Calculations
performed at the CCSD(T) and MR-AQCC levels of theory predict an approximately linear dependence of
the dipole moment on the number of quanta in either the local bending or local stretching excitation. In the
local mode limit, one quantum of stretching excitation in one CH bond leads to an increase of 0.025 D in the
dipole moment, and one quantum of bending vibration in the CCH angle leads to an increase of 0.068 D. The
use of a one-dimensional model for the local bend is justified by comparison to the well-established polyad
model which reveals a decoupling of the large amplitude bending from other degrees of freedom in the range
of Nbend ) 14-22. We find that the same one-dimensional large amplitude bending motion emerges from
two profoundly different representations, a one-dimensional cut through an ab initio, seven-dimensional
Hamiltonian and the three-dimensional (l ) 0) pure-bending experimentally parametrized spectroscopic
Hamiltonian.

I. Introduction

Even on well-isolated electronic potential surfaces, a large
amplitude nuclear motion can lead to significant distortion of
the electronic wave function. This is particularly true in the case
of electronic potential energy surfaces in the regions near bar-
riers to chemical rearrangement. Reese et al. have recently
demonstrated that electronic Stark spectroscopy may be used
to distinguish between conformational isomers on both ground
and excited electronic surfaces.1 For conformational iso-
mers, the changes in dipole moments are primarily due to the
relative orientations of functional groups. The electronic wave
function is even more severely deformed in the case of chem-
ical isomerization in which chemical bonds are broken and
new bonds formed, thereby altering the global electronic
structure.

A change in electronic structure associated with a particular
class of large amplitude motion may also serve as a spectro-
scopic signature to aid in the assignment of spectra of highly
vibrationally excited molecules. Determination of the electric
dipole moment has been proposed as a diagnostic of the
“isomerization states” that embody large amplitude bending
along the reaction coordinate of the HCNh HNC isomeriza-
tion.2 The exceptionally large amplitude bending states on the
HCN/HNC potential are electronically distinct from the vast
majority of nearly isoenergetic vibrational eigenstates in that
the isomerization states sample both the HCN and HNC
configurations, resulting in a partial cancellation of the op-
positely signed electric dipole moments. Since the vibrational
amplitude on both sides of the HCNh HNC barrier increases
with higher excitation in the bending/isomerization coordinate,
the measured magnitude of the dipole can be used as a measure
of progress along the reaction coordinate.

Eigenstates embodying large amplitude motion make up an
exceedingly small fraction of the total number of vibrational
states. The vast majority of vibrational states are highly
“dynamically mixed” or “ergodic” in the sense that internal
excitation is distributed among all vibrational degrees of
freedom3. The observable consequence of this type of vibrational
dynamics on electronic structure is distinct from that of the large
amplitude motion states. Because the vibrational energy is
distributed throughout the molecule, rather than being directed
along one particular large amplitude coordinate, the average
electronic structure does not significantly deviate from that of
the equilibrium nuclear configuration. The deviations are
statistical rather than causal. More physically, large amplitude
states are outliers by reason of dynamic mechanism rather than
statistical fluctuation.

Large-amplitude motion on the acetylene S0 surface is
considerably more complicated than in HCN, due to both the
increased number of vibrational modes and to the inversion
symmetry of the molecule. This symmetry results in normal
modes of vibration that are either symmetric (g) or antisym-
metric (u) with respect to inversion through the center of the
molecule. Many studies4-13 have demonstrated that the vibra-
tional eigenstates of acetylene and similar molecules undergo
a normal-to-local transition in which the normal modes ap-
propriate to describe small deviations from the equilibrium
geometry evolve into local modes in which the excitation is
isolated in a single C-H bond-stretch or CCH angle-bend. This
evolution of vibrational character is of particular interest for
acetylene bending vibrations because the local bending vibration
bears a strong resemblance to the reaction coordinate for
isomerization from acetylene to vinylidene (Figure 1a and b)
with one hydrogen migrating a large distance off the C-C bond
axis, while the other hydrogen remains relatively stationary.

Despite the large number of studies of the vibrational overtone
spectrum of acetylene, very little information is available
regarding the effect of an electric field on the vibrational levels
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of the S0 state of this molecule. This is perhaps not surprising
considering the symmetric nature of the acetylene molecule.
Not only does the definiteg/u symmetry of every rovibrational
level dictate that there can be no permanent dipole moment in
any field-free eigenstate, but the inversion symmetry of the
molecule further restricts the action of the dipole operator to
matrix elements off-diagonal in the vibrational quantum num-
bers. That is, there is no electric dipole moment in acetylene
that can lead to a pure rotational transition. These diagonal in
vibration but not rotation elements of the dipole operator, which
are necessarily equal to zero in a molecule with inversion
symmetry, are referred to aspermanentVibrational dipole
moments.

Despite the absence of a permanent vibrational dipole
moment, Barnes et al. have analyzed electric field-induced
perturbations inν1 + 3ν3 andν2 + 3ν3 bands of acetylene at
fields up to 300 kV/cm.14,15In both cases, the primary effect of
the electric field is to mix the optically bright vibrational state
with a near-degenerate optically dark state that differs from the
bright state by the exchange of one quantum of excitation in
the symmetric C-H stretching mode (ν1, g) for one quantum
of excitation in the antisymmetric C-H stretching mode (ν3,
u), or vice versa. The electric dipole moment function of S0

acetylene has also been studied by breaking the inversion
symmetry through isotopic substitution. Muenter and Laurie first
observed the pure rotational transitions of acetylene-d in the
ground vibrational state.16 Matsumura et al. subsequently
measured states excited in the CCH and CCD bending vibrations
and determined the variation of the dipole moment with
excitation in these modes to be 0.046 and-0.0336 D/quanta,
respectively.17

The present paper utilizes a one-dimensional reaction path-
like Hamiltonian to put our predictions of these dipole moments
on a quantitative basis. This reduced form of the full seven-
dimensional Hamiltonian is suitable for our calculations of
vibrationally averaged dipole moments of both local stretching
and local bending modes. Although multidimensional potential
energy surfaces and dipole moment functions of acetylene can
presently be calculated with excellent accuracy,18-22 we hope
to obtain physical insight from an effective, one-dimensional
ab initio calculation. Our approach to this enormous reduction
in phase space dimension is based on the observation that the
spectroscopic fitting Hamiltonian,Heff, exhibits extremely stable,
one-dimensional, pure local bending motions. Therefore, we
make use of an ab initio Hamiltonian parametrized by a single
internal coordinate in which the relevant large amplitude motion
is assumed to be decoupled from the other degrees of freedom.
Numerical comparisons with other models and experimental data
allow assessment of the physical relevance of this reduction.

II. Hamiltonian

The theory of the internal coordinate path Hamiltonian and
its variational solution has been described by Tew et al.23 Their
parametrization of a large amplitude motion with a single
internal coordinate is based on the work of Hougen, Bunker,
and Johns who were among the first workers to include large
amplitude motion in their semi-rigid bender model.24 Other
workers, such as Szalay, have extended this approach to account
for nonrigid effects of large amplitude internal motion in
general molecules.25 The formulation of Tew et al. is closely
related to the reaction path Hamiltonian introduced by Miller,
Handy, and Adams26 with the exception that the internal coor-
dinate path need not be exactly parallel to the minimum energy
path. When defining a path to parametrize a large amplitude

motion, it should be remembered that the minimum energy path
is defined as the steepest descent path from a transition state
toward reactants or products.27,28More rigorously, the minimum
energy path can be expressed by the solution of the differential
equation

wherex is a 3N component vector of mass-weighted Cartesian
coordinates,s̃ is the path length, andV is the potential energy
of N nuclear displacement vectors. When the minimum energy
path is located in mass-weighted coordinates as written in eq
1, it is called an intrinsic reaction coordinate.27,28 Since the
minimum energy path by definition follows the gradient vector
of the potential energy, the potential energy at any point on the
path can be expanded in terms of the normal coordinatesQk up
to second order:

where ωk
2(s̃) are the 3N-7 eigenvalues of a projected force

constant matrix.
To define a minimum energy path, one commences by

optimizing a saddle point on the potential energy surface and
then follows the negative gradient of the energy in mass-
weighted Cartesian coordinates. However, as Tew et al. have
stated, this algorithm is not a numerically sound technique. If
insufficiently small steps are taken along the reaction path, one
may be unable to locate the minimum accurately at the end of
the path. Furthermore, near the saddle point, the optimized
geometries may be inaccurate since the first step away from
this starting point is along a vector defined without reference
to any curvature. The internal coordinate path Hamiltonian used
in this work removes many of these problems by parametrizing
a path with a single internal coordinate such as a bond length
or a valence bend angle. This parametrization guarantees a
continuous variation with no numerical complexity since the
internal coordinate is a geometric variable and is always well-
defined at any point on the path. However, since this path is
obtained by scanning relaxed points on the potential surface
with a user-chosen internal coordinate, we have not necessarily
followed the gradient vector of the molecular potential energy.
Whereas the minimum energy path potential energy has no term
linear inQk, the internal coordinate path potential must have a
linear term:

wheres is a conveniently chosen geometric variable such as an
angle, a bond length, or a combination of angles and bond
lengths used to parametrize the large-amplitude path. For many
cases, the true reaction coordinate can be approximated by a
single internal coordinate, and the gradientgk will be small if
the internal coordinate is approximately in the same direction
ass̃. In other words, neglecting this gradient term is equivalent
to ignoring the minor off-diagonal matrix elements ofgk(s)Qk

in the small-amplitude harmonic quantum numbers.
In the present work, we use the internal coordinate path

method with an approximate treatment for the other small-
amplitude modes. The theory of the internal coordinate path
Hamiltonian for anN-atom molecule is expressed in terms of a

dx
ds̃

) - ∇V
|∇V|′ (1)

V̂ ) V0(s̃) + (1/2) ∑
k)1

3N - 7

ωk
2(s̃)Qk

2 (2)

V̂ ) V0(s) + ∑
k)1

3N - 7

gk(s)Qk + (1/2) ∑
k)1

3N - 7

ωk
2(s)Qk

2 (3)
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single large-amplitude coordinates, its conjugate momentum
p̂s () -ip{∂/∂s}), and the coordinatesQ ) {Q1,Q2,...,Q3N-7}
and momentaP̂ ) {P̂1,P̂2,...,P̂3N-7} ) -ip{∂/∂Q1,∂/∂Q2,...,
∂/∂Q3N-7} of the orthogonal small-amplitude vibrational modes.
The full quantum mechanical kinetic energy operator in these
coordinates is given by

Π̂ and π̂ are four-component operators given by

where Ĵx, Ĵy, and Ĵz are the components of the total angular
momentum operator, andBkl,x, Bkl,y, Bkl,z, and Bkl,s are the
“Coriolis coupling” matrices23 that are functions of the large-
amplitude coordinates. The symmetric tensor,µde, and its
determinant,µ, are also functions of the internal coordinates.

As reported previously,29 the following approximations allow
for the computation to be manageable: (1) the effective inertia
tensor depends weakly onQ, and only the terms that depend
on s are retained; (2) the Coriolis terms,π̂R, are linear in the
small-amplitude coordinates,Q, and their contribution to the
kinetic energy is neglected; (3) numerically enforcing the Eckart
conditions minimizes many of the coupling terms in eq 4. It
follows from these approximations that the kinetic energy
operator for total angular momentumJ ) 0 can be written in
the following form

whereI0ss
-1 andµ are given by

and I0 is the normal 3× 3 Cartesian inertia tensor along the
path. The vectorsai () mi

1/2r i) are the mass-weighted Cartesian
coordinates of theith atom at a point on the paths with respect
to the Eckart axis system, anda′i ) dai/ds. Finally, the operator
p̂s operates only within the parentheses in eq 6; that is, the next
to last term in eq 6 is a scalar term.

III. Ab Initio Calculations

All ab initio electronic structure calculations for the acetylene-
vinylidene isomerization were carried out with the Gaussian 03
package.30 Extensive theoretical studies have been carried out
on both the global potential energy surface20,21 and the one-
dimensional minimum energy path19 in the current literature.
One of the most recent theoretical studies on acetylene is the
investigation by Zou and Bowman.20 Their analysis includes
several high-level ab initio calculations of the six-dimensional

potential (seven-dimensional for linear geometries) performed
at the coupled cluster with single and double substitutions with
perturbative triples (CCSD(T)) level of theory. In their least-
squares fit of the potential energy surface, they obtained
eigenfunctions and eigenvalues of the exact Hamiltonian for
zero total angular momentum. The most consistent and accurate
ab initio energies are from their CCSD(T)/aug-cc-pVTZ calcula-
tions which yield a 15407 cm-1 energy difference between the
acetylene and vinylidene minima.

Since the goal of this work is to obtain an effective one-
dimensional cut of a seven-dimensional potential, we do not
intend to reproduce Zou and Bowman’s ab initio values exactly.
Instead we wish to obtain accurate results from computational
methods which do not require the evaluation of gradients or
Hessians. To this end, the relaxed geometry parameters were
analyzed using the CCSD level of theory with Dunning’s
augmented correlation consistent triple-ú basis, aug-cc-pVTZ.31

The geometry optimizations were carried out with extremely
tight convergence criteria with root-mean-square forces within
0.00001 atomic units and root-mean-square displacements within
0.00004 atomic units. CCSD(T) single-point energies were
subsequently performed with the cc-pVQZ basis set at the CCSD
optimized geometries.

For the acetylene-vinylidene isomerization, we are primarily
interested in the local-bender limit of the 1,2-hydrogen re-
arrangement process. The isomerization coordinate near the
linear acetylene global minimum corresponds to an HCC bend-
like motion and involves a periodic potential. Therefore, the
most appropriate choice for the large-amplitude parameters is
the internal HCC bend angle coordinate. While CC-HH
diatom-diatom coordinates are much better suited for describing
vinylidene and H-atom orbiting states,20,21 they are more
awkward to use at low energies below the vinylidene isomer-
ization barrier.32-34 For this reason, we obtained our internal
coordinate path by constraining the HCC angle at 5° increments
while optimizing all other internal coordinates to minimize the
total energy. At all intermediate geometries between theD∞h
acetylene global minimum and theC2V vinylidene local mini-
mum, molecular symmetry was constrained within theCs point
group. It should also be remembered that the domain for the
valence angles is (0, 2π); that is,s ) 0 corresponds to one
linear structure (HaCbCcHd), ands ) π corresponds to another
(HdCbCcHa). The permutational symmetry of the isomerization
path with respect to the interchange of the two H atoms (Pad)
was used to generate additional energies, dipole moments, and
geometries. Therefore, the fully symmetric internal coordinate
path can be constructed with only the information from
vinylidene to acetylene by using permutation group operations
in a local frame. The symmetrica-axis and antisymmetricb-axis
dipole moment components of acetylene at the CCSD(T)/
cc-pVQZ levels of theory are shown in Figure 2a. Since all
molecular geometries were constrained to lie in a plane, the
c-axis dipole moment is exactly zero, and only thea-axis and
b-axis dipole components are displayed. Finally, each resulting
geometry was translated to the center of mass frame, and all
energies, dipole moments, and geometries as a function ofs
were fit to a Fourier series. In this way, finite differences can
be used to solve iteratively for the Euler angles that rotate the
Cartesian axes in order to impose the Eckart conditions.

A converged set of eigenvalues and eigenvectors for the one-
dimensional Hamiltonian described in eq 6 were computed
using a discrete variable representation.35 For the acetylene-
vinylidene isomerization, the large-amplitude coordinate in-
volves a periodic potential, and the most natural choice for a

T̂ ) (1/2)∑
d,e)1

4

µ1/4(Π̂d - π̂d)µde µ-1/2(Π̂e - π̂e)µ
1/4 +

(1/2) ∑
k)1

3N - 7

µ1/4P̂k µ-1/2P̂k µ1/4 (4)

Π̂ ) (Ĵx,Ĵy,Ĵz,p̂s)

π̂ ) ∑
k,l)1

3N - 7

(Bkl,x(s),Bkl,y(s),Bkl,z(s),Bkl,s(s))QkP̂l (5)

T̂ ) (1/2)p̂s I0ss
-1 p̂s + (1/2)µ1/4(p̂s I0ss

-1 µ-1/2(p̂s µ1/4)) +

(1/2) ∑
k)1

3N - 7

P̂k
2 (6)

I0ss
-1(s) ) (∑

i)1

N

a′i(s)‚a′i(s))
-1 (7)

µ(s) ) I0ss
-1‚det(I0

-1) (8)
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complete orthogonal set of basis functions is the set of complex
exponentials

Analytical expressions for the kinetic energy, potential energy,
and dipole moment matrix elements are easily obtained from
their Fourier series expansion coefficients.

For the local C-H stretch of acetylene, we chose the
parameters to be the single bond distance between the carbon
and hydrogen atoms undergoing the large amplitude motion.
Unlike the acetylene-vinylidene isomerization, the local stretch
is not sufficiently well described by a CCSD(T) single-reference
electronic configuration especially for large C-H bond dis-
tances. The electronic ground state of S0 acetylene in its equi-
librium geometry is qualitatively well described by CCSD(T)
in which the carbon-hydrogenσ bond is doubly occupied.
However, as the C-H bond is broken, theσ and σ* orbitals
become nearly degenerate, and the entire molecule (HCC• +

H•) becomes a diradical. An accurate description of the potential
and dipole moments over this wide range of nuclear geometries
requires the use of a multireference electronic wave function.
Before proceeding with a detailed discussion of our ab initio
methods for the local C-H stretch, we should mention that Lee
and Taylor36 have proposed the “T1 diagnostic” to determine
whether a single-reference-based electron correlation procedure
is appropriate. Based on their criterion, if the Euclidean norm
of the t1 vector from a CCSD calculation is greater than 0.02,
a multireference electron correlation method is necessary. We
have computed the T1 diagnostic for the local C-H stretch and
have found that T1) 0.023 at a C-H bond distance of 2.256
Å using a cc-pVQZ basis. On the other hand, the T1 diagnostic
for the acetylene-vinylidene transition state is 0.019 using an
aug-cc-pVTZ basis, indicating that the isomerization is still
qualitatively described by a single-reference configuration.

Figure 1. (a) One-dimensional relaxed potential for the acetylene-
vinylidene isomerization as a function of the HCC valence bend angle.
A transition state structure is labeled by the number 2, and local minima
are denoted by numbers 3 and 4. (b) The spatial positions of the
acetylene coordinates color-coded to match their corresponding location
on the one-dimensional potential. The rightmost hydrogen retraces its
path near the transition state but moves in concert with the leftmost
hydrogen in the red-colored post transition state 2 regions.

{ 1

x2π
,

1

x2π
e-ims,

1

x2π
eims, m ) 1,2,3,...} (9)

Figure 2. Dipole moments computed for relaxed geometries as a
function of (a) fixed HCC local bend angle and (b) fixed local C-H
stretch distance. In Figure 2a, the schematic diagrams of the bending
motion show that when the local bend is excited, theb-axis dipole
moment must change sign atθ ) 0. Conversely, thea-axis dipole
moment is symmetric aboutθ ) 0 since the active hydrogen is always
placed on identical horizontal distances along thea-axis during the
(symmetric) local bending motion. In Figure 2b, the broken line indi-
cates the numerical value of the dipole moment for the CCH equilibrium
geometry. The dipole moments for Figures a and b were obtained from
the CCSD(T)/cc-pVQZ and MR-AQCC/aug-cc-pVQZ levels of theory,
respectively.
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All multireference-based electronic structure calculations for
the local C-H stretch were carried out with the Molpro 2002.6
package.37 To minimize the errors caused by basis set truncation,
we used the larger aug-cc-pVQZ basis set compared to the one
used for the acetylene-vinylidene isomerization. The complete
multireference calculation for each relaxed geometry was
comprised of three separate steps. First, the ground-state
molecular orbitals were calculated using the restricted Hartree-
Fock (RHF) method. Next, to accurately describe the local
stretch, we must include configurations occupying theσ* C-H
bond orbital; therefore, we used the multiconfiguration self-
consistent field (MCSCF) method with the previous RHF
orbitals as initial guesses for orbital optimization. In the MCSCF
and subsequent electronic structure calculations, the 10 outer-
most molecular orbitals were selected as the active space which
includes sixσ and fourπ orbital symmetries. The outermost
10 electrons were placed in the active space, while the four
electrons in the two lowestσ orbitals were kept doubly occupied
but still optimized in all configurations. Last, to include electron
correlation effects not accounted for in MCSCF methods, the
final electronic wave function was constructed as single and
double electronic excitations from MCSCF orbitals using the
multireference averaged quadratic coupled cluster (MR-
AQCC)38 method. The MR-AQCC method is essentially a
modified multireference procedure which approximately corrects
for the size-consistency problem associated with the truncation
of electronic excitations. We evaluated the relaxed MR-AQCC
geometries and energies for C-H bond distances ranging from
0.26 to 4.06 Å in intervals of 0.1 Å. The dipole moment as a
function of the local C-H stretch is shown in Figure 2b. The
dotted horizontal line in this figure is the numerical value of
the dipole moment for the HCC fragment evaluated at the
relaxed MR-AQCC/aug-cc-pVQZ geometry. Each resulting
geometry was translated to the center of mass frame, and all
energies, dipole moments, and geometries were smoothly fit as
a function ofs. All of the matrix elements involving the C-H
stretch of acetylene were evaluated using numerical quadrature.

IV. Dipole Moments in the Unsymmetrized Local Mode
Basis

As previously noted, the inversion symmetry of acetylene
prohibits both the existence of a permanent vibrational dipole
moment and the corresponding typical pure-vibrational quadratic
Stark effect. Our one-dimensional calculations are carried out
in a space whereg/u symmetry is not conserved. The resulting
eigenfunctions are, therefore, not eigenfunctions of the inversion
operator and may possess permanent vibrational dipole mo-
ments. To make the comparison with the experiment, we
consider the local mode interpretation of the electric field
induced perturbation investigated by Barnes et al. and demon-
strate how the local mode limit of vibrational character leads
to an effective dipole moment of theg/u components.

The matrix element that connects the optically bright and dark
field-free eigenstates is an off-diagonal (in vibration) element
of the electric dipole operator or adipole transition moment,
e.g., for a total of four quanta of C-H stretch,〈04 + |µ|04-〉.
The local mode notation can be expressed in terms of the left
and right oscillators,

where the notation on the right-hand side of eq 10 indicates
|υleftυright〉. The dipole matrix element can be re-expressed in

the unsymmetrized basis as follows:

Since, by symmetry, the two diagonal elements of the dipole
operator in the unsymmetrized basis are of the same magnitude
but of opposite sign,

the perturbation matrix element in the symmetrized basis can
be expressed as a diagonal matrix element in the left/right basis:

The transition dipole moment between the vibrational levels that
make up the local mode pair can, therefore, be interpreted as a
permanent vibrational dipole moment of an unsymmetrized state
excited only in the right (or left) oscillator. Because the( (g/u)
components have been brought into near degeneracy, each
rovibrational level now interacts with the rotational levels
differing in J by one, of theother members of the local mode
pair, through the dipole operator. The inversion symmetry has,
therefore, been effectively broken because the physical conse-
quences of the near degeneracy in the local mode limit are
essentially identical to breaking the symmetry of the molecule
through other means, e.g., isotopic substitution. That is, when
the molecule is excited to a vibrational level that is in the local
mode limit, it will exhibit regular quadratic Stark shifts, and it
will be possible to excite “pure rotational” transitions in the
millimeter-wave region.

An equivalent result holds in the case of the acetylene bending
vibrations.

V. Local-Bending in the Polyad Model

The polyad model is a multiresonant effective Hamiltonian
fitted to an extensive set of spectroscopic data.7,39-42 Although
the local-bending levels are not directly observed by any of the
spectroscopic techniques and, therefore, not included in the fit,
they emerge naturally from the effective Hamiltonian model.
The local mode basis for bending levels is more complicated
than that for the stretching levels because each CCH oscillator
is treated as an isotropic two-dimensional harmonic oscillator
and, therefore, is characterized by a vibrational angular mo-
mentum. In the symmetrized local mode basis, a state is labeled
|υA

l A,υB
l B〉L

g/u(, where thelA/B refers to the vibrational angular
momenta associated with the left or right local-bending mode
(the total vibrational angular momentum isl tot ) l A + l B). While
the extreme local-bender levels are denoted|Nbend

0 ,00〉L
g/u(,

the higher-lying levels are formed by removing one quan-
tum of vibration from the highly excited oscillator and placing
it in the less excited oscillator, e.g.,|(Nbend - 1)1,1-1〉L

g/u(,
|(Nbend - 2)0,20〉L

g/u(, etc.

VI. Results

The agreement between the frequencies calculated from the
one-dimensional ab initio model and the experimentally deter-
mined effective Hamiltonian model is generally good (<20
cm-1) in the region where the local bender is believed to be an
accurate description of the lowest members of each polyad
(Figure 3). For the purpose of comparison with our one-
dimensional calculations, the frequency of the local bending
vibration is determined from the polyad model by calculating
the energy difference between the lowest members of successive
geradepure-bending polyads with even values ofNbend, 0g

+ and
dividing by two. Between 18 and 19 quanta, the frequencies

|04 (〉 ) 1

x2
[|04〉 ( |40〉] (10)

〈04 + |µ|04-〉 ) 1
2

[〈04|µ|04〉 - 〈40|µ|40〉] (11)

〈04|µ|04〉 ) -〈40|µ|40〉 (12)

〈04 + |µ|04-〉 ) 〈04|µ|04〉 (13)
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calculated from the polyad model and those calculated from
our one-dimensional cut through an ab initio potential pass
through each other. The closely matched vibrational frequencies
support the assertion that both models describe the same class
of essentially one-dimensional large amplitude motion. This
agreement is remarkable in light of the fact that the two
calculations arise from drastic reductions in dimension of two
very different (empirical vs ab initio) Hamiltonians.

As anticipated from our knowledge of the evolution of the
vibrational character, the remarkable agreement occurs over a
limited range. BelowNbend) 10, the disagreement between the
two models reaches 50 cm-1 as the lowest members of the pure-
bending polyads are well-described in the normal mode basis.
Above 22 quanta of local bending, the ab initio frequency
decreases rapidly, to values below 600 cm-1, as the bending
vibration starts to sample the barrier to isomerization (by
tunneling through this barrier), and the approximately stationary
hydrogen abruptly starts to migrate off axis to its vinylidene
position. This behavior is not captured by the polyad model
(because there is nothing barrier-related in the spectroscopic
Heff), in which the vibrational frequency continues to decrease
at a relatively constant rate.

VII. Evolution of the Dipole Moment

The ab initio vibrationally averaged dipole moments associ-
ated with the local stretching mode increase approximately
linearly and start to decrease near the 11th vibrational state
(Figure 4a). This trend can be associated with the increasing
polarization of the C-H bond as internuclear distance increases.
However, as the C-H bond is stretched, the polarization must
reach a maximum (cf. Figure 2b), and at large internuclear
distances the C-H bond must begin to break, leading to more
neutral electron distributions for the H atom and HCC fragment
(µ ) -0.751 D at the MR-AQCC/aug-cc-pVQZ level of theory).
Since our one-dimensional calculations do not preserveg/u
symmetry and are not eigenfunctions of the inversion operator,
the vibrationally averaged dipole moment corresponding to the
zero-point vibration is nonzero. As discussed in Section I, the
definite g/u symmetry of every rovibrational level requires
that the dipole moment of any eigenstate must be zero. To make
meaningful comparisons to experimental data and other mod-
els, we have reported the vibrationally averaged dipole moments

relative to the lowest vibrational quantum state; i.e., the average
dipole moments are bounded from below by zero. Our calcula-
tions may be compared with the experimental value from Barnes
et al.14 of 0.0696(12) for the dipole matrix element between
the|04+〉 and|04-〉 local mode stretching states. Our calculated
value of 0.0966 D is quite reasonable for our one-dimensional
model. Some of this discrepancy is due to the fact that the
acetylene stretching system, at this level of excitation, is in
the intermediatecase between the pure normal and pure local
mode limits.8 Experimental evidence that the local mode limit
has not been reached is provided by the nonzero difference in
vibrational excitation energies between the|04+〉 and |04-〉
states. The difference in energies has been measured to be
4.133(16) cm-1. Our one-dimensional model will only apply
to the pure local mode limit, while excitation of the other C-H
bond oscillator must lead to a partial cancellation of the dipole
due to its large amplitude motion. The experimental value
embodies this partial cancellation, while our one-dimensional
model does not.

Figure 3. Experimentally derived polyad frequencies for a local CCH
bending motion compared with one-dimensional ab initio calculations.
The frequencies obtained from the polyad model and the ab initio
calculations intersect between 18 and 19 quanta ofNbend.

Figure 4. Vibrationally averaged ab initio dipole moments computed
(a) for a local C-H stretch and (b) for a local bend. Since theb-axis
dipole moment for the local bend is antisymmetric with respect to the
equilibrium bend angle, its vibrational average is exactly zero, and only
the vibrational average for thea-axis dipole is displayed. The bottom
axis of Figure 4b is numbered according to the vibrational level in the
fully permutational-symmetric isomerization path, and the top axis labels
only the symmetric vibrational levels. Both averaged dipole moments
are reported relative to the lowest vibrational quantum state.
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The one-dimensional model can be corrected for the admix-
ture of other local mode basis states if the eigenvectors of the
polyad can be obtained from diagonalization of an effective
Hamiltonian constructed in the local mode basis. Using the local
mode parameters of Halonen,5 the nominal|40-〉 state is 92.7%
|40-〉 and 7.3%|31-〉. Estimates for the dipole moments of
the nonextreme states are obtained by subtracting the number
of quanta of excitation in the two oscillators,nA - nB, and
assigning the value of the dipole moment from the one-
dimensional treatment where the level of excitation is taken to
benA - nB, i.e.,µ(|31〉) ) µ(|20〉). This results in only a small
correction to our calculated value, from 0.0966 to 0.0926 D.

Figure 4b shows the vibrationally averaged dipole moments
for the full permutationally symmetric isomerization path with
respect to the interchange of the two H atoms. The bottom axis
of Figure 4b is numbered according to the vibrational level in
this symmetric HaCbCcHd h HdCbCcHa double-well potential.
Because of this symmetry, the lowest average dipole moments
come in pairs corresponding to nuclear permutational splittings
between symmetric and antisymmetric vibrational states. Through-
out this work we use the numbering scheme shown on the top
axis of Figure 4b, which only labels the symmetric vibrational
states in our one-dimensional bending model. It can be seen
that the vibrationally averaged dipole moments obey a nearly
linear trend up to 22 quanta of vibrational excitation, increasing
approximately 0.068 D per quantum of excitation. As in the
case of the C-H stretching, our calculated value overestimates
the value available from experiment. The value of the slope
obtained from the relatively low energy excited states of
acetylene-d by Matsumura et al.,17 0.046 D, is, in a manner
similar to that of the C-H stretching modes, not reflective of
the pure CCH bending motion. Examination of the normal mode
eigenvectors, obtained from anFG matrix analysis based on
the force constants of Strey and Mills,43 reveals that significant
CCD bending motion occurs in the nominally CCH bending
mode,ν5. The calculated dipole moment variation, in the linear
region, is qualitatively due to the diminishing projection of the
C-H bond dipole on the C-C bond axis, leading to an
imbalance of the bond dipoles of the two C-H fragments. In
the same energy region where the vibrational frequency begins
to decrease rapidly, the dipole moment increases more rapidly
due to increased sampling of the isomerization barrier (3.0 D)
and mixing with the vinylidene configuration (2.5 D).

The υ ) 25 excited vibrational level identified in the
calculation clearly deviates from the smooth linear trend of the
lower-lying states. This level is associated with the zero-point
level of S0 vinylidene. Near theυ ) 25 vibrational level, the
averaged dipole moments begin to change discontinuously since
the vibrational wave function begins to sample both the
acetylene and vinylidene minima. Above this energy, the dipole
moment oscillates between acetylene-localized states and values

more typical of the isomerization transition state before ap-
proaching a constant value of 2.1 D at high local-bend excitation.

VIII. Assignment of Large Amplitude Local Bender
States

Although we have primarily focused on the extreme local
bender levels, those that lie at the bottom of each pure-bending
polyad, it is important to note that the other members of pure-
bending polyads can be described in the local mode basis.
Examination of the eigenfunctions obtained from the polyad
model reveals a transition from normal to local-bend character
at approximately 14 quanta of bending vibration, at which point
the lowest member of each pure-bending polyad is best
described by a local CCH bending motion.7 This qualitative
change in vibrational character is accompanied by a decreasing
energy difference between the lowest members of the 0g

+ and
0u

+ polyads. At Nbend ) 10, this energy difference is> 10
cm-1, but it rapidly decreases to< 10-3 cm-1 by Nbend ) 14,
and< 10-7 cm-1 by Nbend ) 22. In Table 1 we compare the
energy splittings between the lowest members of theg+ and
u+ polyads forNbend ) 14-26. These lowestextreme local
benderlevels form a local mode pair, and the transition dipole
that couples them can be viewed as a permanent vibrational
dipole moment, as in the case of the acetylene C-H stretching
levels discussed in Section VII.

Due to the systematic near degeneracies between extreme
local bender levels of opposite vibrational parities, the eigen-
states at the low energy edge of the local-bender polyads are
poised for symmetry breaking. The mechanism of this symmetry
breaking depends on the value of the vibrational angular
momentum. Levels with no vibrational angular momentum
(l tot ) 0) have a single vibrational parity; the total parity and
nuclear spin symmetry alternate withJ. In the local mode limit,
each rovibrational level from a 0g

+ polyad becomes degenerate
with one from the corresponding 0u

+ polyad. However, these
degenerate levels are of the same parity (and different nuclear
spin symmetry) and, therefore, cannot interact via the Stark
effect. Rather, there is a nonzero∆J ) 1 matrix element between
adjacent rotational levels of the two polyads (e.g., 0g

+ J ) 0,
0u

+ J ) 1) which have the correct parities and nuclear spin
symmetries to interact via the electric dipole operator. The
∆J ) 1 matrix element leads to a quadratic Stark effect
analogous to that observed in nonsymmetric linear molecules
or symmetric top molecules withK ) 0. Vibrational levels with
nonzero angular momentum (l tot > 0) have both vibrational
parities. An isolatedl tot > 0 vibrational state has, for each value
of J, a pair of levels with opposite parities. In acetylene, and
symmetric molecules in general, these levels cannot interact due
to their differing nuclear spin symmetries. As for thel tot ) 0
case, in the local mode limit, a rovibrational level of a given

TABLE 1: Energy Splittings between Lowest Members of theg+ and u+ Polyads and Calculated Dipole Moments forNBend )
14-26.a

Nbend E(|Nbend
0 ,00〉L

g+) E(g+)-E(u+) µ (D) E(|(Nbend- 1)1,1-1〉L
g+) E(g+)-E(u+) µ (D) E(|(Nbend- 2)0,20〉L

g+) E(g+)-E(u+) µ (D)

14 8972.1 -1 × 10-4 0.85 9070.0* -9 9037.0* -4 × 10-2

16 10236.9 -3 × 10-5 1.02 10352.4* -4 × 10-2 10315.6 3× 10-3 0.78
18 11485.0 -4 × 10-6 1.20 11605.7 6× 10-5 1.01 11574.7 2× 10-4 0.93
20 12717.4 -4 × 10-7 1.36 12844.8 7× 10-5 1.18 12815.7 -8 × 10-6 1.07
22 13934.9 -4 × 10-8 1.55 14070.2 8× 10-6 1.36 14040.2 -2 × 10-6 1.20
24 15137.9 -1 × 10-9 1.77 15289.9 3× 10-7 1.54 15249.3 -1 × 10-7 1.39
26 16327.1 3× 10-10 2.28 16480.1 -8 × 10-8 1.76 16443.9 1× 10-8 1.54

a All energies and energy differences reported are in units of cm-1. Energies denoted by an asterisk are not well-described in the local mode basis
using the Hose-Taylor criterion. The increase in dipole moment is accompanied by decreasing energy differences between corresponding low-
energy edge members of theg+ andu+ polyads.
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polyad becomes degenerate with a corresponding level in a
polyad of the opposite symmetry (e.g.,∆g T ∆u). The levels
which have become degenerate satisfy the condition that nuclear
spin symmetry must be conserved for interaction via the Stark
operator. The∆J ) 0 interaction between the degenerate levels
will lead to a linear Stark effect, analogous to those observed
in symmetric top molecules withK > 0.

The ability to equate the one-dimensional calculation of the
dipole moment with the dipole created by imbalance in
excitation of oscillators has significant predictive power. It
enables us to assign dipole moments to any basis state in the
local mode limit and therefore allows the calculation of the
dipole moment for each eigenstate based on the eigenvectors
in the local mode basis. Predictions of the dipole moments for
the three lowest energy eigenstates of theNbend ) 14-26
polyads are found in Table 1. Predictions are made in the same
manner as for the stretching case by neglecting the vibrational
angular momentum, i.e.,µ(|142,2-2〉L) ) µ(|140,20〉L). These
lowest eigenstates are assigned to the local mode states as
|Nbend

0 ,00〉L
g+, |(Nbend - 1)1,1-1〉L

g+, and |(Nbend - 2)0,20〉L
g+

respectively, although only the lowest energy state in theNbend

) 14 polyad can be assigned based on the Hose-Taylor
criterion.44 As we move toward the center of each polyad, the
local mode model describes each eigenstate less well. That is,
the eigenstates contain larger contributions from several local
mode basis states, including those with smaller differences in
excitation between the two oscillators. This trend causes the
dipole moment to decrease faster than linearly inside a given
polyad, although at high excitation (Nbend∼ 22) all of the listed
states are described well by the local mode basis.

The shape of thea-axis dipole moment function strongly
resembles that of the potential energy surface. The maximum
value of thea-axis dipole is reached near the transition state of
the isomerization reaction, before the approximately stationary
hydrogen begins to move off axis to form vinylidene. This near
transition state configuration represents the largest distortion
of the electronic wave function. This is ideal for our goal to
perform high-resolution “transition state spectroscopy” because
the larger dipole moments are more readily observable via laser
Stark spectroscopy.

Even more useful is the ability to identify particular vibra-
tional levels based on our predictions of variation in electronic
structure. While we have described electronic signatures of only
two one-dimensional motions, vibrational states that do not
consist of these special motions are expected to be highly
dynamically mixed. The ergodic nature of the highly mixed
vibrational levels imply that they will remain essentially silent
to Stark effect measurements, except in the case of accidental
near degeneracies. The large amplitude states will be the only
states with significant, regular Stark activity.

IX. Conclusions

We have explored a one-dimensional reduction of the full
seven-dimensional ab initio potential energy surface of the C2H2

S0 electronic state and found that it strongly resembles the one-
dimensional, local bending reduction of the empirical spectro-
scopic pure-bend effective Hamiltonian. These reductions in
dimension occur when the large amplitude motion decouples
from the other nuclear motions as a result of anharmonic
detuning from resonance. A comparison between the computed
frequencies of the one-dimensional ab initio potential and those
of the spectroscopic effective Hamiltonian, the parameters of
which are refined against experimental data, exhibits good
agreement for the local bending motion. The results of Section

VI strongly indicate reduction of both ab initio and spectroscopic
Hamiltonians to the same one-dimensional potential even though
the two Hamiltonians are derived via completely different
reductive formalisms. This is particularly noteworthy since the
spectroscopic effective Hamiltonian does not explicitly specify
the displacement coordinates of the stable, one-dimensional,
localized, motion, but this one-dimensional path is explicitly
defined in our reaction path Hamiltonian. More importantly,
the large-amplitude local vibrations which lead to changes in
the electronic properties of acetylene, result in a nonzero
transition dipole between the two nearly degenerateg/u eigen-
states associated with the local mode. This near-degeneracy of
the local mode pair, which indicates theg/u symmetry is ready
to be broken, is a hallmark of local mode behavior. We propose
the large changes in dipole moments along the local bending
coordinate provide a method to identify particular vibrational
levels via the Stark effect. The dipole moment values computed
from the ab initio one-dimensional potential will be useful in
distinguishing extreme local mode states from the vastly more
numerous strongly mixed isoenergetic states. In addition, the
dipole moments will help assign members of the|Nbend,0〉L

g/u(,
|Nbend - 1,1〉L

g/u(, |Nbend - 2,2〉L
g/u(, etc. family of states. This

information is essential because once the energies of such
assigned states are obtained from spectra, the one-dimensional
local mode potential can be experimentally refined. The
relative energies of the{|Nbend,0〉L

g/u(,|Nbend- 1,1〉L
g/u(,|Nbend-

2,2〉L
g/u(} and{|Nbend + 1,0〉L

u/g(,|Nbend,1〉L
u/g(,|Nbend - 1,2〉L

u/g(},
etc. groups of local mode states, supplemented by measured
dipole moments, provide direct experimental characterization
of the reaction coordinate proximal to the barrier maximum.
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