
Partitioning for Complex Objectives∗

Ali Pınar
Dept. of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

alipinar@cse.uiuc.edu

Bruce Hendrickson
Parallel Computing Sciences

Sandia National Labs
Albuquerque, NM 87185-1110

bah@cs.sandia.gov

Abstract

Graph partitioning is an important tool for dividing work
amongst processors of a parallel machine, but it is unsuit-
able for some important applications. Specifically, graph
partitioning requires the work per processor to be a sim-
ple sum of vertex weights. For many applications, this as-
sumption is not true — the work (or memory) is a complex
function of the partition. In this paper we describe a gen-
eral framework for addressing such partitioning problems
and investigate its utility on two applications — partitioning
so that overlapped subdomains are balanced and partition-
ing to minimize the sum of computation plus communication
time.

1 Introduction

Over the past decade graph partitioning has proven to be
a critical tool for parallel computing. Unstructured com-
putations can often be described as an undirected graph in
which vertices correspond to computations and edges reflect
data dependencies. A graph partitioner can be employed to
partition the vertices of the graph into disjoint sets of equal
cardinality (or weight) while keeping small the number of
edges crossing between sets. When each set is assigned
to a different processor, the computational load is balanced
while the communication requirements are kept small.

While this model is far from perfect (see, e.g. Hendrick-
son & Kolda [4]), it has been quite successful, particularly
for solving differential equations on meshes. For the graph
partitioning model to accurately reflect the runtime of a par-
allel computation, two assumptions must be satisfied. First,
the number (or weight) of cut edges must approximate the

∗In Proc. Irregular’01. This work was funded by the Applied Mathe-
matical Sciences program, U.S. Department of Energy, Office of Energy
Research and performed at Sandia, a multiprogram laboratory operated by
Sandia Corporation, a Lockheed-Martin Company, for the U.S. DOE under
contract number DE-AC-94AL85000.

communication cost. As discussed in [4], this assumption is
often not true, but for mesh-based computations the approx-
imation is acceptable. Second, the computation associated
with a subdomain must be approximately equal to the total
number (or weight) of vertices assigned to it. For several
important numerical operations this assumption is valid —
specifically matrix-vector multiplication or explicit calcula-
tions.

However, for some computations the work is not a sim-
ple sum of vertex contributions, but rather a complicated
function of the partition. For such problems the work per
subdomain (and hence load balance) cannot be assessed un-
til the partition is computed. This leads to a chicken-and-
egg problem — the work can’t be computed without the
partition, but the partitioner can’t balance the load without
knowing the work. Examples of this phenomena include the
following.

• Computation plus communication: Traditional par-
titioners balance the computational work on each sub-
domain, but the communication requirements can vary
widely between processors. If there is no synchro-
nization between the computing and communicating
phase, then it is better to balance the sum of the two.
Unfortunately, the communication cost depends upon
the partition.

• Direct solves on each subdomain: In domain decom-
position methods, the equations in each subdomain are
approximately solved independently and then the sub-
domain solutions are combined. For some domain
decomposition solvers, like the FETI class of meth-
ods [3], each subdomain is solved via a sparse, direct
factorization. The work and memory requirements of
a sparse direct solver are complicated functions of the
subdomain, and are fairly expensive to compute.

• Approximate factorization preconditioners: Re-
lated to the problem of direct solves on each sub-
domain, a common class of parallel preconditioners

uses an approximate factorization on each subdomain.
Again, the work and memory associated with the ap-
proximate factorization are complex functions of the
full subdomain.

• Overlapped subdomains: Traditional partitioners as-
sign a vertex uniquely to a subdomain. For some kinds
of operations, the work involves a larger class of ver-
tices. One such example is overlapped Schwartz do-
main decomposition [8]. In this approach, the mesh
elements (which correspond to graph vertices) are par-
titioned among processors, but the application of the
preconditioner on each subdomain includes mesh el-
ements which are near to but not in that subdomain.
If some subdomains have many such near-by elements
but others have few, then balancing the partitions will
not balance the cost of the preconditioner. Again, the
cost of a subdomain is a complicated function of the
partition. As we will show in §3, this problem is
closely related to balancing computation plus commu-
nication.

• Parallel multifrontal solvers: When performing a
parallel, sparse factorization via a multifrontal method,
the work and storage associated with a subdomain de-
pends upon the size of its boundary with other proces-
sors [7]. But again, the boundary is a function of the
partition.

In this paper, we describe in §2 a general framework
for addressing such complex partitioning problems. In §3
we then illustrate the application of these ideas to two
of the listed complex partitioning problems — balancing
overlapped subdomains, and balancing communication and
computation.

2 Partitioning for Complex Objectives

Our general approach to partitioning for complex objec-
tives is outlined in Fig. 1. The steps in this outline are dis-
cussed below. The application of this general framework to
a specific complex objective is detailed in §3.

Our approach begins in step (1) by partitioning the graph
using standard tools. There are several reasons for this.
First, the partitions generated by standard tools have proper-
ties which may be desirable for complex objectives. These
properties include small interprocessor boundaries, small
aspect ratios and connected subdomains. Second, our task
becomes that of perturbing an existing partition, which is
easier than generating one from scratch. Third, we are in-
terested in objective functions which cannot be computed
until the partition is known, so using standard approaches
gives us a viable starting point for our optimization.

(1) Generate starting partition using standard tools.
(2) Evaluate cost of partition with respect to

desired objective.
(3) Determine global schedule for cost transfer.
(4) Until threshold cost reduction is achieved . . .

(4a) Select next vertex to move.
(4b) Update cost (approximation? bound?)

on affected processors.
(5) Evaluate new partition and perhaps go to (3).

Figure 1. Framework for addressing complex
partitioning objectives.

Given a starting partition, we next evaluate it under the
desired objective function in step (2). The result of this eval-
uation is the assignment of a cost to each subdomain. The
cost could reflect the work to be performed on that subdo-
main, the memory associated with it or any other appropri-
ate value that needs to be balanced. Our goal is to minimize
the cost of the most expensive subdomain. We will accom-
plish this by moving vertices from expensive subdomains to
inexpensive ones.

With this cost in hand, in step (3) we determine a global
schedule for moving cost between subdomains. This sched-
ule is a directed graph whose vertices correspond to subdo-
mains and whose edges are weighted by the desired transfer
of cost between two subdomains. For the experiments de-
scribed below we use a diffusion method to generate this
schedule, a standard technique in dynamic load balanc-
ing [1]. Several caveats are necessary here. First, the total
cost will not, in general, be conserved. That is, moving a
vertex from one domain to another will reduce the cost on
the first domain by a different amount than the cost is in-
creased on the second subdomain. Second, the change in
cost associated with a vertex addition or deletion may be
expensive to compute exactly. Hence, as we move vertices
we may have to employ approximations or bounds on the
cost updates. Both these considerations compel us to treat
the schedule as a guideline, not a rigid prescription.

Once the schedule is determined, we begin to move ver-
tices between subdomains in step (4). We select vertices to
move based upon criteria of partition quality. Thus, we may
use edge-cut or aspect-ratio considerations to prioritize ver-
tices. As a vertex is moved, we update the cost of the sub-
domains it is moving between. The details of this update
are intimately tied to the objective function we are trying to
optimize. But as discussed above, we may have to resort to
heuristic approximations or upper and lower bounds to keep
the cost of updates manageable.

The process of vertex transfers and cost updates con-
tinues until a significant fraction of our schedule has been

2

14 15 16

9 10 11 12

13

1

2

3

4

5

6

7

8

P P1 2

P P3 4

Figure 2. An Example Graph

achieved. If the cost updates for our objective are exact,
we can continue movements until completion. But if they
are inexact, then it may be counterproductive to continue
moving vertices. In this case, we stop early, evaluate the
new partition under the objective function and repeat the
schedule generation and vertex move process, as illustrated
in step (5).

3 Partitioning for Balanced Overlapped Sub-
domains

In this section we show how the general approach out-
lined above can be applied to two closely-related complex
objective functions. Specifically, we will use it to generate
a partitions with the property that the overlapped domains
are balanced, and to produce partitions in which the sum
of computation plus communication costs are balanced. As
discussed in §1, the former objective arises in overlapped
Schwartz domain decomposition [8], while the latter is rel-
evant for operations in which there is no synchronization
between computation and communication phases.

3.1 Problem Definitions

A graph G = (V, E) consists of a set of vertices V , and
a set of vertex pairs E commonly called edges. Given a
partitionP = 〈P0, P1, . . . PK〉, an extended subdomain P +

i

for a part Pi and a single level of overlap is defined as

P+
i = Pi ∪ {v : v 6∈ Pi; u ∈ Pi; (v, u) ∈ E}. (1)

The first term corresponds to nodes owned by processor Pi,
while the second term reflects additional nodes in the ex-
tended domains, which we will refer to as neighbor nodes
N(Pi). In the Example of Fig. 2, P1 = {1, 2, 3, 4}, and
P+

1 = P1 ∪ {5, 6, 9, 10}.
The cost cost(D) of a domain D is defined as

cost(D) =
∑

v∈D

w(v) (2)

Our goal is to find a partition in which the maximal cost of
the extended subdomains is kept small.

This problem is closely related to the problem of bal-
ancing computation plus communication in matrix-vector
multiplication or explicit stencil operations. Traditional
partitioners merely balance the computational work, and
the communication load may be unbalanced. With current
speeds of processors making communication costs more
significant, the communication imbalance can limit perfor-
mance. So by balancing the sum of computation plus com-
munication cost, performance may be improved. To explain
the similarity between the two problems better, we will first
define Recv(Pi) and Send(Pi), for nodes processor i re-
ceives and sends, respectively, during matrix-vector mul-
tiplication. A processor receives data for all those nodes
which are connected to one of its own, thus

Recv(Pi) = {v : v 6∈ Pi; u ∈ Pi; (u, v) ∈ E}

Notice that Recv(Pi) is the same as the second term in
Eq. (1). Data for a node is sent to all processors that have a
node connected to it. Since each node can be sent to multi-
ple processors, we will define Send(Pi) as a multiset.

Send(Pi) =
⊎

1≤j 6=i≤P

{v : v ∈ Pi; u ∈ Pj ; (u, v) ∈ E}

where
⊎

denote the multiset union operation. Note that
Send(Pi) is identical to all the pieces of Recv sets that
other processors will be obtaining from processor Pi. In
the example from Fig. 2, Recv(P1) = {5, 6, 9, 10}, and
Send(P1) = {2, 4, 3, 4}. Notice that 4 is sent to processors
2 and 4, thus appears twice in the multiset.

The time to send a message can be computed as setup
time plus unit transmission time multiplied by the length of
the message. So the total cost of a subdomain can be defined
as follows, where β and µ, respectively, are the costs of one
unit of data transfer and setup time normalized by the cost
of computation.

cost(Pi) = µ(pconn(Pi))+β(|Send(Pi)+|Recv(Pi)|)+
∑

v∈Pi

w(v).

(3)
Here, we use pconn(Pi) to denote the number of proces-
sors Pi is communicating with. It is worth noting that our
algorithm allows us to have different costs for sending and
receiving (both startup and bandwidth).

The first terms in Eq. 3 correspond to total communica-
tion cost, while the last term corresponds to computational
load. As discussed in § 2, our algorithm perturbs an existing
partition, and it is unlikely that this perturbation will change
the number of communicating pairs. Thus we can add the
first term to the cost of each subdomain at the initial cost

3

evaluation step. Although updating the cost due to this term
is possible, it will not be included in following discussion.

For both this problem and the problem of balancing
extended subdomains, the key information is the set of
neighboring adjacency information which is contained in
the Send and Recv sets. For overlapped partitioning, the
cost associated with this information is the sum of vertex
weights, while for balancing communication plus compu-
tation all that matters is the cardinality of these sets. But
in either case, the same algorithmic structure is necessary
to monitor these sets as vertices are moved. In the next
section, we describe an algorithm to efficiently track this
information and balance either objective.

3.2 Data Structures and Algorithms

As discussed in §2, we start with an initial partition ob-
tained from a graph partitioning tool, and then try to move
to a nearby, balanced partition. Notice that the initial parti-
tion is hopefully a good approximation to minimize bound-
ary size and thus the volume of extra work due to overlaps.
In this section, we will discuss the application of the gen-
eral framework sketched in Fig. 1 to the specific problems
of overlapped subdomains and communication plus compu-
tation. We show how to efficiently update the cost of par-
titions, update data structures after a vertex is moved, and
how to choose the next vertex to move. As we show below,
for this particular objective function the cost function can be
updated exactly at small cost. So the additional complexi-
ties discussed in §2 associated with approximate values do
not arise.

Let part[v] denote the partition vertex v is assigned to,
and let Adj(v) be the set of vertices adjacent to v. Let
conn(v, p) be the number of vertices in partition p which
are either vertex v or neighbors of v.

conn(v, p) = #(u : u ∈ Adj(v) ∪ {v}; part[u] = p).

After moving a vertex, we need to update costs of the
subdomains the vertex is moved to and from. When a ver-
tex v is moved out of a partition the cost of that partition
is decreased by the total weight of vertices that are discon-
nected from the partition. So, for each vertex we will keep
pos(v), the set of vertices that will be disconnected from
part[v], if v moves to another subdomain.

pos(v) = {u : u ∈ Adj(v) ∪ {v}; conn(u, part[v]) = 1}

We also need to efficiently determine the increase in
the cost of a partition p that vertex v is moved to. Let
nconn(v, p) be the neighbors of v which were are currently
connected to partition p.

nconn(v, p) = {u : u ∈ Adj(v) ∪ {v}; conn(u, p) > 0}.

part[from]← part[from] \ {v};
Recv[from]← Recv[from] \ pos(v) ∪ {v};
part[to]← part[to] ∪ {v};
Recv[to]← Recv[to] ∪ (Adj(v) \ nconn(v, to));
Send[from]← Send[from] \

⊎
j 6=from & conn(v,j)>0{v};

Send[to]← Send[to] ∪
⊎

j 6=to and conn(v,j)>0{v};
pos(v)← Adj(v) \ nconn(v, to).
forall u ∈ Adj(v) ∪ {v}

decrement conn(u, from);
if conn(u, from) = 0

remove one instance of u from Send[pvect(u)];
forall t ∈ Adj(u)

remove u from nconn(t, from);
else if conn(u, from) = 1

find t ∈ Adj(u) s.t. part[t] = from;
add t to pos(t)

increment conn(u, to);
if conn(u, to) = 1

add one instance of u to Send[pvect(u)]
forall t ∈ Adj(u)

add t to nconn(t, to);
else if conn(u, to) = 2

find t ∈ Adj(u) s.t. part[t] = to;
remove u from pos(t);

if conn(v, to) = 1
remove one instance of v from Send[to];

Figure 3. Algorithm for updating pos, nconn and
conn fields after moving vertex v from partition
from to partition to.

The increase in the cost of a part p if v is moved to p is
cost((Adj(v) ∪ {v}) \ nconn(v, p)). For problems arising
from the solution of differential equations, each vertex will
typically be connected to only a small number of partitions,
so nconn will be a sparse data structure.

Besides updating the costs of partitions after moving a
vertex, it is essential to update the data structures for the
whole graph for subsequent moves. Fig. 3 presents the
pseudocode for updating these data structures efficiently.
Notice that the modifications are limited to vertices of dis-
tance at most two from the moved vertex (neighbors and
their neighbors). The locality of this update operation en-
ables an efficient overall algorithm.

It is worth noting that we define pos and nconn as sets
for the simplicity of presentation. For an efficient imple-
mentation, it is sufficient to keep the total weight of vertices
for balancing overlapped partitions, and cardinality for bal-
ancing communication plus computation.

We also need a good metric to choose the vertex to be

4

moved. In our implementation, we choose the vertex with
maximum decrease in the total work. Alternatives are min-
imizing edge cut or aspect ratio. These alternatives could
be employed without altering the data structure or the basic
algorithm.

3.3 Higher Level Overlaps

In the discussion so far we have limited our consideration
to only one level of overlap, but sometimes two (or more)
levels are used for better accuracy in the preconditioning
step. Techniques described in the previous chapter can be
used for higher level overlaps as well.

We defined pos(v) to be the set vertices that will be dis-
connected from part[v] when v is moved to another par-
tition. When we use m levels of overlap, then any vertex
within a distance m of v can be in this set, So the new defi-
nition of pos will be

pos(v) = {u : dist(u, v) ≤ m; conn(u, part[v]) = 1}

where dist(u, v) is the distance between vertices u and v.
Similarly, nconn(v, p) can be defined as

nconn(v, p) = {u : d(u, v) ≤ m; conn(u, p) > 0}

The rest of the algorithm works without any changes.
Notice that we only replaced Adj(v) in definitions pos

and nconn with the set of vertices within a certain distance.
This makes it possible to use the data structures and algo-
rithm defined in the previous section as is, by changing only
the Adj fields, thus defining a new graph. This new adja-
cency information can be considered to be a modified graph.
Specifically, to partition a graph G with m levels of over-
lap, we can define a new graph Gm with the same set of
vertices, and edge set changed to connect a vertex to all ver-
tices within a distance m in G. Using matrix notation, if A

is the adjacency matrix of G, then Am will be the adjacency
matrix of Gm. Our previous algorithm can be applied with-
out modification to Gm to obtain a balanced 1–level overlap
partition for Gm, which gives a balanced m–level partition
for G.

4 Results

We tried our approach on the set of matrices in Table 1
which have been collected from various applications which
use overlapped Schwarz preconditioners. All the matrices
come from PDE–based applications. For unsymmetric ma-
trices we used the nonzero pattern of A + AT , as suggested
by Heroux [6].

The results of applying our methods to balance over-
lapped domains are shown in Table 2. Imbalance is com-
puted as the ratio of the most heavily loaded processor to

Table 1. Properties of the test matrices.
Name N NNZ Nonzeros per row

Max Min Avg
Braze 1344 142296 161 23 105.9
Defroll 6001 173718 97 6 29.0
DIE3D 9873 1723498 497 8 174.6
dday 21180 1033324 53 13 48.8
visco 23439 1136966 469 10 48.5
sls 36771 2702280 80 23 73.5
ocean 143437 819186 6 1 5.7

the average, minus 1. Recall that the total amount of work
differs with changing partitions. Generally, our modifica-
tions increase the total work. So in parentheses we also
show the percentage reduction in the load of the most heav-
ily loaded processor, which we compute as (previous - cur-
rent)/current. For all the large problems we are able to sig-
nificantly reduce the maximum load which should directly
translate into improved performance. Even seemingly sim-
ple matrices like the 6–point stencil of ocean exhibits a non–
trivial amount of imbalance when partitioned onto enough
processors. We are unable to be of much help for the small
problems. Moving a vertex can significantly change the cost
of a subdomain, so the granularity of these problems is too
coarse for our algorithm to make much progress.

We have also used our algorithm on these matrices for 2
levels of overlap, and have observed very similar results.

The runtime of our algorithm is consistently much less
than the time spent by the initial partitioner, for which we
used the multilevel algorithm in Chaco [5]. In addition, the
initial cost evaluation dominates the runtime of our algo-
rithm, and this step is necessary for the application even
if our improvement methodology is not invoked. Further-
more, the fraction of time spent in our algorithm decreases
as the matrices get larger. This is expected since our algo-
rithms work only on the boundaries of the matrix, so our
algorithms scale well for larger problems.

Using the same set of test problems, we have tried to bal-
ance the sum of communication plus computation time. The
results are presented in Table 3. We used costs for message
startup and transmission times taken from Sandia’s cluster
computer consisting of DEC Alpha processors connected
by Myrinet. Specifically, we used a value for µ of 2000,
and for β of 3.2. Again, we see significant overall improve-
ment for all but the smallest problems.

5 Future Work

When using overlapped subdomain preconditioners,
dense rows in the matrix cause significant problems. A
dense row creates one huge unit task with its own weight

5

and weights of all its neighbors. For example, matrices
arising from circuit simulations typically have a few very
dense rows corresponding to power, ground or clock con-
nections. Some matrices arising from differential equations
have dense rows corresponding to constraints like average
pressure.

Even when there is not one very dense row, partition-
ing and maintaining scalability becomes difficult when the
average degree of vertices is very high. These kind of ma-
trices might arise in finite element simulations of the ele-
ments have many degrees of freedom. The movement of a
single high degree vertex can significantly change the work
assigned to a subdomain. So perfect load balance is very
difficult to attain. Even a single level of overlap may not be
desirable for such problems since the extended subdomains
may be much larger than the non–extended subdomains. If
the extensions due to overlap form a significant portion of
the total load on a processor, than little will be gained by ap-
plying more processors. Equivalently, the total work grows
as the problem is divided into smaller and smaller subdo-
mains. This can limit the scalability of such approaches.

To maintain scalability for these relatively dense matri-
ces, we are considering 1/2–level overlaps. 1/2–level over-
laps use vertex separators instead of edge separators as in
m–level overlaps. Just for simplicity assume we have only
two processors. We will decompose the graph into three sets
P1, P2 and S so that S is a separator in this graph (i.e., there
are no edges between vertices in P1 and P2). In the precon-
ditioning phase, processors work on P1 ∪ S, and P2 ∪ S,
so S is the overlap domain. For the matrix–vector product
phase we distribute the nodes in S to processors.

This scheme will limit the increase in total work, thus
improving scalability, because a smaller set of the vertices
are duplicated. Inevitably, a dense row will be duplicated
in many subdomains, but unlike the case of 1–level over-
laps, it will not duplicate its neighbors into the partition
it is assigned to. In graph partitioning terminology, 1–
level overlaps correspond to duplicating wide separators,
whereas 1/2–level overlaps correspond to duplicating nar-
row separators.

In general, preconditioner quality improves with more
overlap, so we anticipate that our 1/2–level overlap idea will
reduce the numerical convergence rate. But by significantly
improving the parallel performance, we anticipate an over-
all improvement in runtime. We are currently investigating
the numerical feasibility of this 1/2–level overlap idea.

A second area that we are investigating is the paralleliza-
tion of our approach. Most of the steps in Fig. 1 are straight-
forward to parallelize. The partition evaluation in step (2) is
naturally parallel. The construction of a global schedule for
cost transfer in step (3) is a standard problem in dynamic
load balancing, so we can exploit existing methodologies.
With this schedule, the set of interprocessor transfers can

be divided into independent problems and executed in par-
allel. Our current (serial) implementation first transfers cost
to the sinks in the directed transfer graph, which allows for
the transfer schedule to be updated with exact cost informa-
tion. This will not be possible in parallel. We will add this
functionality to the Zoltan dynamic load balancing tool [2].

A third area we are investigating is the application of the
framework in this paper to additional objective functions.
Examples include incomplete factorizations on each subdo-
main and subdomain direct solves.

Acknowledgements

We are indebted to Mike Heroux for bringing the prob-
lem of partitioning for overlaps to our attention, and also
for providing test problems. We also appreciate Edmond
Chow’s encouragement and his provision of one of our test
problems.

References

[1] G. Cybenko. Dynamic load balancing for distributed mem-
ory multiprocessors. J. Parallel Distrib. Comput., 7:279–301,
1989.

[2] K. D. Devine, B. A. Hendrickson, E. G. Boman, M. M.
St.John, and C. Vaughan. Zoltan: A dynamic load–balancing
library for parallel applications — user’s guide. Technical
Report SAND99-1377, Sandia National Laboratories, Albu-
querque, NM, 1999.

[3] C. Farhat and F. X. Roux. An unconventional domain decom-
position method for an efficient parallel solution of large-scale
finite element systems. SIAM J. Sci. Stat. Comp., 13:379–396,
1992.

[4] B. Hendrickson and T. Kolda. Graph partitioning models for
parallel computing. Parallel Comput., 26:1519–1534, 2000.

[5] B. Hendrickson and R. Leland. The Chaco user’s guide: Ver-
sion 2.0. Technical Report SAND94–2692, Sandia National
Labs, Albuquerque, NM, June 1995.

[6] M. Heroux, December 2000. Personal communication.
[7] J. Scott, October 1999. Personal communication.
[8] B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposi-

tion: Parallel Multilevel Methods for Elliptic Partial Differ-
ential Equations. Cambridge University Press, Cambridge,
UK, 1996.

6

Table 2. Initial and improved percent imbalance for
overlapped domains.

Name P = 4 P = 8 P = 16 P = 32

Init. Imp. Init. Imp. Init. Imp. Init. Imp.
Braze 6.93 1.86 (4.98) 26.65 6.60 (15.69) 54.11 26.92 (14.72) 71.42 57.49 (5.25)
Defroll 20.66 7.59(2.99) 28.43 13.80 (0.74) 34.04 22.92 (0.91) 51.02 42.95 (0.00)
DIE3D 20.03 6.24(7.72) 23.36 15.11(1.71) 53.43 23.41(17.43) 82.36 65.59 (2.66)
dday 3.06 0.59 (2.48) 5.07 0.21 (4.94) 7.96 1.98 (5.71) 14.03 4.25 (9.54)
visco 6.44 0.87(3.53) 8.05 3.65 (2.00) 26.30 3.18 (21.87) 36.99 18.15(13.69)
sls 5.57 1.51(3.35) 10.28 1.35(8.32) 17.96 2.21(13.57) 31.83 8.04(18.13)
ocean 2.21 0.02 (2.20) 2.44 0.15(2.43) 5.66 0.58 (5.65) 10.61 0.85 (10.54)

Table 3. Initial and improved percent imbalance for
communication plus computation.

Name P = 4 P = 8 P = 16 P = 32

Init. Imp. Init. Imp. Init. Imp. Init. Imp.
Braze 8.03 1.25(6.10) 25.15 1.30(21.77) 46.14 1.03 (40.56) 48.59 14.76 (28.10)
Defroll 17.90 0.49(15.65) 18.21 2.28(13.88) 25.83 0.50 (21.44) 39.08 1.58(31.65)
dday 1.03 0.07(0.94) 2.39.64 0.10(2.27) 6.59 0.6(5.88) 12.97 1.78(10.59)
visco 1.76 0.35(1.19) 3.40 1.28(1.83) 13.76 2.42(10.84) 25.94 1.29(24.01)
sls 2.28 0.13(2.10) 3.67 0.16(3.44) 11.44 2.07(8.83) 16.00 1.99(12.74)
ocean 2.38 0.10(2.25) 3.97 0.55(3.46) 9.35 0.91(8.91) 22.16 0.54(22.50)

7

