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Simulation-based power estimation is commonly used for its high accuracy despite excessive com-
putation times. Techniques have been proposed to speed it up by compacting an input sequence
while preserving its power-consumption characteristics. We propose a novel method to compact a
sequence that preserves transition frequencies. We prove the problem is NP-complete, and propose
a graph model to reduce it to that of finding a heaviest-weighted trail, and a heuristic utilizing
this model. We also propose using multiple sequences for better accuracy with even shorter se-
quences. Experiments show that power dissipation can be estimated with an error of only 2.3%,
while simulation times are reduced by 10. Proposed methods generate solutions that effectively
preserve transition frequencies and that are very close to optimal. Experiments also show that
multiple sequences grant more accurate results with even shorter sequences.

Categories and Subject Descriptors: B.7.2 [Hardware]: Integrated Circuits—design aids; F.2.2
[Theory of Computation]: Analysis of Algorithms and Problem Complexity—nonnumerical
algorithms and problems; G.2.2 [Mathematics of Computing]: Discrete Mathematics—graph
theory

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Sequence compaction, power estimation, graph algorithms

1. INTRODUCTION

The growing need for low-power systems requires accurate power estimation. Sim-
ulating a circuit for a typical vector sequence gives very accurate results, but re-
quires excessive computation times. Besides, results are highly dependent on the
input vector sequence. To alleviate such dependency, lengths of the input sequences
should be very long, leading to excessive simulation times. For a comprehensive cov-
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erage of the power estimation literature, the survey by Pedram [1999] is a valuable
resource. For a CMOS circuit, dominant source of power dissipation is the dynamic
transition current. In combinational circuits, power consumption corresponding to
an input vector sequence depends only on transitions between successive input vec-
tors. Thus if a given vector sequence can be transformed to a shorter one with
invariant transition frequencies, the shorter sequence can be used for power esti-
mation. This problem is called the Sequence Compaction problem, and has been
studied recently [Tsui et al. 1996; Huang et al. 1996; Marculescu et al. 1997b; 1997a;
Pinar and Liu 1998].

This article investigates combinatorial aspects of the sequence compaction prob-
lem. We prove the problem is NP-complete, and propose a graph model to reduce
it to that of finding a heaviest-weighted trail, and describe a heuristic to find such
trails. In our model, each distinct vector of the sequence defines a vertex, and
each transition defines parallel edges, where the multiplicity of edges and weight of
each edge depends on the frequency of this transition. We also discuss generating
multiple sequences with different compaction factors, as opposed to merely a single
sequence, for better accuracy with even shorter sequences. Experiments verify that
simulation times can be significantly reduced with highly accurate results. Error in
estimations is limited to only 2.3%, while the simulations are 10 times faster. We
also show that transition frequencies are very accurately preserved and multiple
sequences grant better accuracy with even shorter simulation times.

A more detailed description of our work can be found in [Piar and Liu 2002].

2. SEQUENCE COMPACTION PROBLEM

Sequence compaction aims at transforming a sequence to a shorter one with simi-
lar characteristics. Here we work on sequences of binary input vectors of a circuit
and want to preserve power characteristics. A compacted sequence preserves power
characteristics of the original, if it “moves” all internal states of the circuit with the
same frequency as the original. The major source of power dissipation in a circuit
is the switching activity, which is triggered by transitions in the input vectors. If
a sequence can be compacted into a shorter one with the same vector transition
frequencies, the compacted sequence can be used for power estimation. Preserving
bit-transition frequencies, as opposed to vector-transition frequencies, or decompos-
ing vectors into highly correlating bit groups and preserving frequencies of these
groups have been proposed [Marculescu et al. 1997b]. In this work, we address
preserving frequencies of vector transitions.

An input sequence S = (s1,8a,...,8m) is a sequence of binary n-vectors. A
transitiont = (s;, s;) is an ordered pair of distinct n-vectors. We use S(t) to denote
the number of transitions ¢, and T'(S) to denote the set of transitions in sequence
S. Marculescu et al. [1999] prove that satisfying the condition |p(t) — p'(#)] < ¢
for all transitions, limits the error in estimation to O(¢), where ¢ is an infinitesimal
quantity and p(¢) and p/(¢) denote the transition probabilities of transition ¢ in the
original and compacted sequences, respectively. We define the sequence compaction
problem as follows.

Given a compaction factor ¢, and an input sequence S={s1,8a,...,8m), construct
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a new sequence S’ to minimize the cost C(S,S’,¢), where

S(t) = eS'(@)]

C(S5,5,¢) = |7 1
s5.0= 3 PO (1
teT(S)

This formula preserves frequencies of all transitions, as advised in [Marculescu
et al. 1999]. Tt is worth noting that our techniques can be used with alternative

cost functions as described in Section 2.2.

2.1 Complexity of Sequence Compaction
We prove that the sequence compaction problem is NP-complete by reduction from
the Hamiltonian path problem [Cormen et al. 1990].

THEOREM 2.1. Given a compaction factor ¢, an input sequence S = ($1,...,8m),
and a bound B, deciding if a sequence S’ exists so that C(S,5',¢) < B is NP-
complete.

ProoOF. Let G = (V, F) be a directed graph. Let M, N > 4 be arbitrarily large
and even integers. For each vertex v; €V, repeat subsequence v;1,...,v;xy M times
and add z; at the end. And for each edge (v;,v;) € E, repeat the subsequence
UiN, U1, €ijx M /2 times, each time with a different k value. S is a concatenation of
all subsequences followed by a sentinel y. In this construction, dummy variables:
x;, €451, separate vertex- and edge-sequences to encode the sets in a sequence. The
proof is based on the following remarks. Compact this sequence by a factor of
M. First, if a transition is not in the original, then it cannot be in the compacted
sequence, since its cost 1s co according to Equation 1, thus a subsequence for a
vertex either appears as a whole, or does not appear at all. Second, if a vertex
subsequence v;1, ..., v;ny occurs just once, the penalty will be zero. Each deviation
from one adds a cost of N—1. Absence of v;nyv;1 transitions costs 1. Minimum
cost due to vertex subsequences is |V, achieved when each vertex sequence occurs
exactly once. Third, for each edge transition v;n, v;1, zero or one appearance costs
the same: 1. After the first, each extra appearance costs 2. Thus minimum total
cost for edges is |E|, achieved when each edge transition occurs at most once. And
finally, dummy variables e;;; and x; appear in two transitions, and absence of these
variables costs only 2, whereas their presence costs 2(M —1) for each, thus the
minimum total costs for e;;5 and z; are M|E]| and 2|V, respectively.

The second remark implies that the cost of S’ is minimum when it includes all
vertex subsequences exactly once. Moreover, these subsequences must be connected
by edge transitions, because by the first remark, the compacted sequence does not
have any transitions not in the original sequence, and a transition (v;n, vj1) occur in
the sequence only if there is an edge from v; to v;. Also by the first remark, vertex
transitions appear as a whole, thus S’ will consist of all the vertex subsequences with
edge transitions in between. This is an ordering of all vertices connected by edges,
and thus is a Hamiltonian path. Minimum total cost is 3|V| 4+ (M +1)|E|, which
is achieved only when the solution defines a Hamiltonian path. So we conclude
that G has a Hamiltonian path if and only if the cost of the compacted sequence is
3|V|+ (M+1)|E|. The cost of a solution for the compaction problem can be verified
in polynomial time, thus the sequence compaction problem is NP-complete. [
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2.2 Graph Model for Sequence Compaction

This section describes our graph model for the sequence compaction problem, where
a heaviest-weighted trail describes an optimally compacted sequence. In this model,
distinct vectors and transitions are represented by vertices and multiple weighted
directed edges, respectively. Since edges of the graph correspond to transitions of
the sequence, one more occurrence of an edge in the trail implies one more occur-
rence of this transition in the compacted sequence. So, we assign edge weights as
the decrease in C(S,5’,¢) when the corresponding transition appears in the com-
pacted sequence. Formally, each transition #; in S, 1s represented by several edges
€i1,€i2, ..., €ij, ... With w(e;1) > w(e;) > ... > w(e;;) > ... Thus the weight of
the jth edge can be set as the change in cost, if transition ¢; is added once more to .S’.
. ) D] if S(t;) > cj
w(egy) = S =eG=DI= 1) —cil _ | T if S(t:) < e(i—1)
S(tz) 2(5(t) mod ¢)—e¢ .
) otherwise
A graph G = (V, E) that represents the sequence compaction problem for in-

put sequence S = {(s1,...,8y,) and compaction factor ¢, has a vertex v; for each
input vector s; in S. Each transition ¢ = (s;,s;) in S is represented by mul-

tiple copies of edge (v;,v;): @) L%QJ copies with weight ﬁ i) one copy with
weight W, if L@J + @ ii7) sufficiently many copies with weight ﬁf)
Edges generated by the first rule correspond to transitions that will always reduce
C(S, 5, ¢), whereas edges generated by the last rule increase the cost to penalize
@ with either
L%QJ or f%ﬁ] Parallel edges with identical weights can be packed into one edge
with multiplicity. Notice that there are at most three different weights for each
edge. Thus the size of the graph is determined by the number of distinct input vec-
tors (the number of vertices) and the number of distinct transitions (the number
of edges). By this edge-weight assignment scheme, a heaviest-weighted trail defines
an optimally compacted sequence.

Notice that our model does not rely on the particular cost function we are using.
Our model is still valid when a different cost function is employed. All we need
to do is assign edge weights as the difference in the total cost function when the

corresponding edge appears once more in the solution.

overestimation. The second rule corresponds to approximating

2.2.1  Finding a Heaviest-Weighted Trail. Our heuristic has three steps. First
we detect all positive weight cycles by the Bellman-Ford algorithm [Cormen et al.
1990] and remove them. Then we find a heaviest-weighted trail in the reduced
graph by using the the Bellman-Ford algorithm, and finally we add the positive
weight cycles back to the trail. If a vertex v in the cycle is on the trail, then the
cycle can be inserted to the trail by opening it at vertex v to make a trail with v
at both ends, and replacing vertex v of the original trail with this trail.

2.2.2  Constructing Multiple Sequences. More accurate estimations can be achieved
with even shorter sequences by generating multiple sequences. A high compaction
factor can be used for a shorter sequence; then accuracy can be restored by a second
sequence with a lower compaction factor that covers transitions underestimated by
the first one. Consider a sequence where s; = (ABCDA) is repeated four times,

ACM Transactions on Design Automation of Electronic Systems, Vol. V| No. N, Month 20YY.



Sequence Compaction . 5

Table I. Misprediction percentages for SPICE simulations

c=3 c=5 c=10
Circuit Low Medium High
MM HWT |MM HWT MM HWT MM HWT | MM HWT

i3 2.4 0.6 2.1 0.7 2.2 0.7 2.5 0.8 1.7 1.2
cordic 4.3 1.3 4.6 2.8 4.8 3.1 5.2 3.1 4.8 3.2
C432 3.0 0.8 2.7 0.5 2.6 0.7 2.9 0.7 3.1 1.1
C880 5.1 0.8 5.1 1.8 5.2 1.9 5.6 2.1 5.8 2.2
C1355 8.6 1.5 8.2 2.1 9.3 2.4 10.7 2.5 9.4 2.7
C1908 3.3 1.6 3.8 2.5 4.2 2.5 4.7 2.6 5.3 2.9
C3540 3.8 1.1 4.2 1.6 4.6 1.6 5.0 1.8 5.1 2.0
C6288 6.5 1.4 8.2 2.5 8.3 2.6 8.8 2.8 8.6 3.2
Average 4.6 1.1 4.9 1.8 5.2 1.9 5.7 2.1 5.5 2.3

whereas sy = (ACBFEA) appears only twice. If we generate a single sequence for
¢ =2, then the compact sequence will have two copies of s; and one copy of ss.
However, we can generate two sequences (ABCDA) and (ACBEA) with e=4 and
¢ = 2, respectively, for the same accuracy with shorter sequences. So, we define

the problem as: Given a sequence S, and compaction factors ¢y > ... > ¢, con-
o 1S(1)=>"_ ei5l(1)] .
! ! i=
struct sequences Sy,...,S) to minimize ) eT(S) S(t)l . Notice that

compacted sequences preserve transition frequencies collectively, not individually.
To generate such sequences, we start by constructing Sj for ¢;, and update edge
weights to reflect what is already covered by Sy before constructing 5%, edge weights
considering S7. In general, while constructing the graph for S;, an edge weight
is computed as the change in cost when this transition occurs once more in S;,
and we take into account what is already covered by preceding sequences. Let
Pi(t) = Z;_:ll S;(t)e; denote how many times ¢ is covered in the first 1—1 com-
;) for transition ¢ to construct S; is
— |S(t)—P,(t)—cl(j—Sl)tl—lS(t)—P,(t)—c,jl

pacted sequences. Weight of the jth edge w(e

set as w(e}) . Corresponding sequence S; can

be constructed by finding a heaviest-weighted trail.

3. EXPERIMENTAL RESULTS

Three metrics are used in the experiments: accuracy of estimations for circuit simu-
lations, reliability: preservation of transition frequencies, and closeness to optimal-
ity. For circuit simulations, we worked with SPICE on eight MCNC91 circuits,
and three compaction factors: 3,5,10. We measured power consumption of cir-
cuits for 6 biased sequences of length 2000. The sequences were compacted using
Markov model (MM) [Marculescu et al. 1997b] and the proposed heaviest-weighted
trail method (HWT). Table T presents average accuracies in percentages. We see
that HWT can predict the power consumption very accurately. The table also
breaks down the experiments according to bit-switching activity for ¢=>5. Tracing
transition frequencies is more crucial for higher bit-switching activity, and HWT
retains its accuracy as the switching activity increases.

Compaction methods are proposed to avoid long simulations; thus accuracy can-
not be verified. A reliable solution estimates each transition accurately, which
implies accuracy in estimations. We compared the reliabilities of HWT and MM
solutions for 750 sequences of length 20,000 and seven compaction factors. As seen
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Fig. 1. (a) Ratios of costs of solutions with HWT and MM; (b) Closeness to optimality for HWT.
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Fig. 2. Solution qualities for multiple sequences: (a) length; (b) accuracy.

in Figure 1(a), there is a drastic difference in cost values, thus preserving transition
frequencies between the two methods. For ¢ =3, cost of an MM solution is more
than seven times larger than that of HW'T. The ratio decreases as the compaction
factor increases, and performances virtually get closer. However, this should be
attributed to the increasing cost of an optimal solution.

We also investigated closeness to optimality. As a bound on the optimal solution
value, we assumed a hypothetical sequence that estimates each transition optimally,
which also corresponds to a trail that covers all and only positive weight edges.
Figure 1(b) presents results for compacting 750 sequences of length 20,000. Tn this
figure, 1 is the bound on the optimal solution value. As we see, the solutions are
within 10% of upper bounds.

Figure 2 compares generating two and three sequences with a single sequence
on compaction factor sets. The first (second) column in each set corresponds to
generating two (three) sequences with the first two (three) compaction factors dis-
played below the columns. Single sequence solutions use the first number as the
compaction factor. Figures. 2(a) and (b) compare sequence lengths and accuracies
of the two methods, respectively. The first set shows that it 1s possible to get a more
accurate solution with almost half the total sequence length. The third sequence
improves accuracy but slightly increases total sequence length. Finally, Table II
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Table II. SPICE simulations for MS and HWT

Circuit c=3,5,2 c=25,8,3 c=10,15,7

HWT MS | HWT MS | HWT MS
i3 0.6 0.4 0.7 0.5 1.2 0.5
cordic 1.3 1.0 3.0 1.6 3.2 2.1
C432 0.8 0.6 0.6 0.5 1.1 0.7
C880 0.8 0.5 1.9 1.2 2.2 1.1
C1355 1.5 1.1 2.3 1.6 2.7 1.7
C1908 1.6 0.9 2.5 1.4 2.9 1.7
C3540 1.1 0.8 1.7 1.1 2.0 1.2
C6288 1.4 1.0 2.6 1.8 3.2 2.3
Averages 1.1 0.8 1.9 1.2 2.3 1.4

presents average error in SPICE simulations for six sequences of length 2000. MS
corresponds to generating three sequences with compaction factors listed, and HWT
corresponds to generating one sequence with the first compaction factor at the top
of the column. Results show that accuracies can be improved by generating mul-
tiple sequences, and justify generating multiple sequences as a valuable alternative
for “harder” sequences.

4. CONCLUSION

We addressed the sequence compaction problem for efficient and accurate power
estimation. We proved that transforming a sequence into a smaller one with mini-
mum deviation in transition frequencies is NP-complete. We also proposed a graph
model to reduce the compaction problem to that of finding a heaviest-weighted
trail and a heuristic to find such trails. Generating multiple compact sequences
with different compaction factors is also discussed. Proposed methods were applied
to MCNC 91 benchmark circuits, using SPICE for simulations. Results showed
that our methods can significantly reduce simulation times with very high accuracy.
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