Interprocessor Communication with Memory Constraints’

Ali Pinar
Department of Computer Science
University of lllinois
Urbana, IL 61801

alipinar@cse.uiuc.edu

ABSTRACT

Many parallel applications require periodic redistribution of
workloads and associated data. In a distributed memory
computer, this redistribution can be difficult if limited mem-
ory is available for receiving messages. We propose a model
for optimizing the exchange of messages under such circum-
stances which we call the minimum phase remapping prob-
lem. We first show that the problem is NP-Complete, and
then analyze several methodologies for addressing it. First,
we show how the problem can be phrased as an instance of
multi-commodity flow. Next, we study a continuous approx-
imation to the problem. We show that this continuous ap-
proximation has a solution which requires at most two more
phases than the optimal discrete solution, but the question
of how to consistently obtain a good discrete solution from
the continuous problem remains open. Finally, we devise a
simple and practical approximation algorithm for the prob-
lem with a bound of 1.5 times the optimal number of phases.

1. INTRODUCTION

In many parallel computations, the workload needs to be
periodically redistributed among the processors. On a dis-
tributed memory computer, this generally requires data struc-
tures associated with the computations to be transferred be-
tween processors. Many examples of this phenomena occur
in scientific computing. When computational work varies
over time, the tasks and attendant data must be redis-
tributed to keep the workload balanced. Examples include:
adaptive mesh refinement, particle simulations with short-
or long-range forces, state-dependent physics models, and
multi-physics or multi-phase simulations.

*This work was funded by the Applied Mathematical Sci-
ences program, U.S. Department of Energy, Office of Energy
Research and performed at Sandia, a multiprogram labora-
tory operated by Sandia Corporation, a Lockheed-Martin
Company, for the U.S. DOE under contract number DE-
AC-94ALS85000.

Bruce Hendrickson
Parallel Computing Sciences Department,
Sandia National Laboratories
Albuquerque, NM 87185-1110

bah@cs.sandia.gov

A number of algorithms and software tools have been devel-
oped to repartition the work among processors (see, for ex-
ample, [2, 5] and references therein). However, the mechan-
ics of actually moving large amounts of data has received
much less attention. When the processors have sufficient
memory, the simplest way to transmit the data is quite ef-
fective. Each processor can execute the following steps.

1) Allocate space for my incoming data
) Post an asynchronous receive for my incoming data
) Barrier

) Send all my outgoing data

) Free up space consumed by my outgoing data

) Wait for all my incoming data to arrive

NN AN SN AN N

2
3
4
5
6

The barrier in step (3) ensures that no messages arrive un-
til the processor is ready to receive them, so no buffering is
needed.

Unfortunately, this protocol can fail when memory is lim-
ited. It requires a processor to have sufficient memory to si-
multaneously hold both the outgoing and the incoming data
since incoming messages can arrive before outgoing data is
freed. An alternative way to view this issue is that for a
period of time the data being transferred consumes space
on both the sending and receiving processors. A protocol
that alleviates this problem is desirable for three reasons.
First, since many scientific calculations are memory limited,
reserving space for this communication operation limits the
size of the calculations which can be performed. Second,
the amount of memory required by this protocol is unpre-
dictable, so setting aside a conservative amount of space is
likely to be wasteful. And third, a general purpose tool for
dynamic load balancing should be robust in the presence of
limited memory. It was the construction of just such a tool
which inspired our interest in this problem [4].

To address these problems, we propose a simple modification
to the above scheme. Instead of sending all of the data at
once, we will send it in phases. After each phase, processors
can free up the memory of the data they have sent. That
memory is now available for the next communication phase.
Since each phase can be expensive, it is important to limit
the total number of phases.

More formally, consider a set of P processors. The amount of
data that needs to be communicated between processors is a
transfer request. We will assume that the request is feasible
— that the end result of satisfying the transfer request does
not violate any processor’s memory constraints. We will let

T;; denote the total volume of data which is requested to be
transferred from processor ¢ to processor j.

We now wish to perform the requested transfer in a sequence
of phases. Let téj denote the volume of data transfer from
processor % to processor j in phase [, and let A} be the mem-
ory available to processor i at the beginning of phase [.
We will also use R! and S! to denote the total volume of
data received and sent by processor ¢ in the phase [(i.e.,
Ri=YF_ thiand St =35 t])).

At each step the constraint of finite memory requires that
R! < Al for i = 1,2,...k. The available memory after
each phase can be computed as Aﬁ“ = A+ St —RL Our
objective is to find a schedule of transfers which obeys the
memory constraint, and satisfies the transfer request in a
minimal number of phases. We will call this the minimum
phase remapping problem. Note that there is a correspond-
ing decision problem: can a transfer request be completed
in a specified number of phases?

In §2 we show that the problem of determining whether
a given transfer can be completed in a specified number of
phases is NP-Complete. The remainder of the paper focuses
on formulations and approximation algorithms which could
be used in practice. In §3 we present a reduction of our
problem to multi-commodity flow. We present a continuous
relaxation of the problem in §4, and a practical approxima-
tion algorithm in §5.

Despite its practical importance, we are unaware of any pre-
vious work on efficient data transfers with limited memory.
Some standard collective communication operations can be
implemented in ways that limit memory usage, but the gen-
eral problem we are proposing seems to be new. Cypher and
Konstantinidou designed memory efficient message passing
protocols [3]. However, their work addressed exchange of
tokens as opposed to variable sized messages. And they
didn’t explicitly consider the effect of finite memory in the
processors. Their work conceptually divides a process into
communication and application processes. Communication
processes receive unit-size messages and copy them to ap-
plication processes. It is assumed that application processes
have enough memory, and the goal is to limit the memory
requirement of the communication processes.

2. COMPLEXITY

In this section we show that determining whether a given
transfer can be completed in a specified number of phases is
NP-Complete. Our proof uses a reduction from the Hamil-
tonian Circuit problem. Recall that a Hamiltonian Circuit
is a cycle in the graph that visits each vertex once. The
directed Hamiltonian Circuit problem is known to be NP-
Complete [6]. Given an instance of the Hamiltonian Circuit
problem, the basic idea of our reduction is to construct an
instance of the data transfer problem in which there is but
a single unit of usable memory. This unit is a token which
gets passed between processors, and possession of the to-
ken allows a processor to receive data in the next phase. In
our construction, a solution to the data remapping prob-
lem occurs if and only if the token can be passed in a cycle
among all the processors, which implies the existence of a

Hamiltonian Circuit.

While the token is being passed in a cycle, the processors
must not perform any other data transfers. But when the
cycle is completed, they must be able to finish all their other
communication operations. To see how this can be done,
consider the Hamiltonian Circuit problem posed in the left
portion of Fig. 1. From this instance, we construct the data
remapping problem in the right portion of the figure. The
data remapping problem contains the original graph as its
core (represented in the figure with dark lines) after replac-
ing vertices with processors and replacing edges with unit-
volume data transfers. It also contains a chain of processors
to the left. The bottom processor in this chain has free
memory which will percolate upwards with each phase, fi-
nally allowing all the data transfers to be completed. Given
a Hamiltonian Circuit Graph G = (V, E), we construct a
data remapping problem with P as the set of processors
and T as the set of transfer requests as follows.

<

Cl@ p¥=V2 N Od

Chain Core

Figure 1: Construction for NP-Completeness proof.

e P has a processor p; for each vertex v; of V.. We will
refer to these processors as core processors. Each edge
of E is a unit-volume transfer in T'.

e Add a chain of |V| processors {ci,... , ¢y} to P. Also,
add transfer requests (c;+1, c;) to T, each with volume
Bl - V1.

e Add a transfer request from each core processor p; to
the top of the chain cjy|. This transfer has volume
equal to one less than the in-degree of v; in G.

e Add a dummy processor d and a unit-weight transfer
connecting d to an arbitrary processor p* in the core.

e Give |E| — |V/| units of free memory to processor ci,
and 1 unit of free memory to p*. All other processors
have no free memory.

Consider what happens as the data remapping occurs. In
the first phase, ¢; will send its data to c2, moving the free
memory one step up in the chain. After |V| —1 phases, this
free memory will have arrived at c|y|, the top of the chain.
Meanwhile, the single unit of free memory (the token) which
started at p* will have meandered about, enabling some data
to be transferred.

In phase |V, processor ¢y| has enough free memory to re-
ceive all of the data that needs to come to it from the core

processors. During this phase, the token can take one more
step. The messages sent to ¢|y| free up memory in the core
processors. Specifically, at the completion of phase |V|, each
core processor p; graph has (indegree(p;) —1) units of free
memory. (One processor might also have an additional unit
of free memory from the token).

In phase |V| 4+ 1 core processor p; can now receive all the
data that needs to come to it, minus 1. The complete set of
transfers to p; can be completed in this phase if and only if
one of the data transfers to p; has previously been handled
by the token. If there is a processor that was not visited
by the token in phases 1 to |V, then that processor cannot
receive all its data in |V| + 1 phases. But the only way for
the token to visit all the core processors in |V| phases is to
complete a Hamiltonian Circuit of the core graph. Note that
the token must end up where it started, at processor p* to
enable the transfer from d to occur during phase |V| + 1.

This argument leads to the following result.

THEOREM 2.1. Determining whether an instance of the
data remapping problem can complete in a specified number
of phases is NP-Complete.

PrOOF. Given an instance of the Hamiltonian Circuit
problem G = (V, E), construct a data remapping problem
as described above. As sketched above, the data remapping
problem finishes in |V| + 1 phases if the core graph has a
Hamiltonian Circuit.

The total amount of data that needs to be transferred is
[VI(|E| = |V]) + |E| + 1. The first term comes from the
data being sent to the chain and within the chain. The
second term reflects that data being redistributed within
the core and the last term is the transfer from d to p*. This
quantity equals (|E| — |[V| + 1)(J]V| + 1). Since there are
only (|E| — |V| + 1) units of free memory, the transfers can
complete in (|V| + 1) phases only if all the free memory
is used at every phase. So the transfers must proceed as
discussed above.

If the core graph does not have a Hamiltonian Circuit, then
one of its processors will not have been visited by the token
by the end of phase |V|. That unvisited processor, p;, still
needs to receive indegree(v;) data, but has only (indegree(v;)
—1) units of available memory, so the data transfers cannot
complete in |V| 4+ 1 phases.

Notice that the construction of the data remapping problem
is polynomial, so we can conclude that the data remapping
problem is NP-Hard. A given solution can be verified in
polynomial time, so the problem is in NP. []

3. MULTI-COMMODITY FLOW FORMU-
LATION

In this section, we present a multi-commodity flow (MCF)
formulation to determine whether a given transfer can com-
plete in a specified number of phases [1]. Once we can solve
the decision problem, the number of phases in an optimal so-
lution can be determined using parametric search. This for-

mulation enables use of MCF technology to optimally solve
the minimum phase data remapping problem. This might
be helpful for three reasons. First, some MCF problems can
be solved relatively fast, despite their intractability in the
general case. Second, the continuous version of the MCF
problem can be solved in polynomial time and the solution
can be used as a heuristic for the integer problem. Finally,
MCEF solvers will find an optimal solution if runtime is not
an issue.

In our MCF formulation, each processor corresponds to a
commodity. Let P be the number of processors, and L be
the number of phases. We want to decide if a remapping can
complete in L phases. As depicted in Fig. 2, our MCF graph
contains a sequence of components, one for each phase. Each
component allows for the communication which occurs in the
corresponding phase.

) ——(s1)
) ——(s

e —— (s
@@ @)
9 S5 (r} —*

Phase O

Phase 1

Figure 2: MCF graph for 5 processors and 2 phases.

The MCF graph G = (V, E) has 2PL vertices. Each proces-
sor is represented by 2L vertices: two processors (one sender
and one receiver) at each phase. We will use ! and st to
denote receiver and sender respectively, for processor i in
phase [. A sender vertex of the first phase is the source of
a commodity with volume equal to the total volume of the
data originally stored by this processor. A receiver vertex
in the last phase is a destination for a set of commodities
which corresponds to data that will be stored by this pro-
cessor after remapping is complete.

In the MCF graph, there is an edge from r! to st for [=
1,...,Land ¢ =1,...,P. The capacity of an edge is equal
to the total memory on the respective processor. There are
also edges from each sender vertex st to all other receiver
vertices ré— in the same phase to enable data exchange be-
tween any pair of processors in a phase. These edges have
infinite capacities.

With this construction, all processors first receive the data
in a phase, and then send their messages. This corresponds
to first allocating space for the data to be received, and
then sending the outgoing data. The edges from receivers
to senders within a phase guarantee that there is available
space to allocate memory for the incoming data before re-
leasing the space for the data being shipped out, thus the
memory constraints are guaranteed to be satisfied.

Finally, there is an edge (with infinite capacity) from each
sender s! to the receiver in the next phase ri forl =1,... , L—

1. The flow on these edges corresponds to data that is al-
ready in the memory of a processor at the beginning of a
phase. The graph for P =5 and L = 2 is depicted in Fig. 2.

THEOREM 3.1. There exists a solution to the remapping
problem if and only if there exists a solution to the MCF
formulation.

PROOF. We can replace a data transfer from processor
i to processor j in phase [, with flow on edge (si,rﬁ) of
equal volume. As argued above, memory constraints on the
processors are satisfied if and only if the capacity constraints
on the edges are satisfied in G. So the feasibility of one
solution implies the feasibility of the other. [

In this formulation the number of commodities is equal to
the number of processors, and the graph has 2PL vertices
and P2?L edges. The number of vertices and edges can be
reduced for a more efficient formulation. First we can replace
the crossbar between senders and receivers in a phase [with
a vertex, v' and edges from all senders of phase [to v' and
edges from v' to all receivers of phase I. Second, we can
merge the senders of phase [with receivers of phase [+ 1.
The graph after these reductions is depicted in Fig. 3. This
improved formulation has PL+ L+ P vertices and (3L+1)P
edges.

e K
e ‘S

ry /89

ry m

e —

O —=Cy \\\\

Phase O

Vo v!

Phase 1

Figure 3: MCF graph after reduction.

4. CONTINUOUS RELAXATION

Although the multi-commodity flow formulation from §3
provides a methodology for solving instances of the min-
imum phase remapping problem, runtime can still be ex-
ponential in the problem size. In this section, we describe
an efficient solution for an approximation to the remapping
problem. In the approximation, integral constraints on the
volume of data transfers are relaxed to allow continuous val-
ues. Naturally, the volume of transfer between two proces-
sors in a phase must be an integer. But integer solutions
near the continuous ones can be used as heuristics. Note
that the unit of data transfer is only a byte, whereas the
volume of data being transferred is often in the order of
megabytes. So, conversion from a continuous solution to an
integer solution will often be a small perturbation, and so
heuristics based upon this idea may be generally effective.

However, bad cases for this heuristic exist as discussed at
the end of this section.

As defined in the introduction, T;; denotes the total volume
of data to be communicated from processor ¢ to processor
j, and téj denotes the volume of data transferred from pro-
cessor i to processor j in phase [. The memory available
to processor i at the beginning of phase [is denoted by A!.
We also use R; and S; to denote the total volume of data
received and sent by processor ¢ during remapping.

Let L = [L] be the lower bound on the number of phases.
We will divide each message into L equal pieces, i.e., t?j =

t}j =...= tfjfl = %, and send a piece at each phase. If
the memory constraints are satisfied, then the data trans-
fers will complete in precisely L phases. However, there is
no guarantee that memory constraints will not be violated.
As a solution to this, we will use preprocessing and postpro-

cessing phases to enable feasibility of the phases in between.

LEMMA 4.1. If the following conditions are satisfied, the
continuous version of the remapping problem can be com-
pleted in L = [L] phases.

(i) Si; = R; for all processors.

(ii) A9 > .

PROOF. At each phase processor i will receive % units of
data. By the second condition, each processor has sufficient
memory for the first phase. By the first condition, each

R;

processor ships out % = % units of data at each phase,

which frees up sufficient memory for the next phase. [

LEMMA 4.2. A solution for a continuous version of the
data remapping problem for transfer request R can be per-
formed via the following three steps.

1. one preprocessing phase.
2. a new transfer request R’ where S; = R; and A? > %.

8. one postprocessing phase.

ProOF. In the preprocessing phase we will reorganize the
data to satisfy conditions (i) and (i) from Lemma 4.1, and
define a new mapping of the data. After the new mapping
is complete, a single postprocessing phase will be sufficient
to get all of the data to the correct processor.

In the preprocessing step, all processors ¢ with R; < S; will
transfer some of their outgoing data to processors j in which
R; > S; so that in subsequent phases R; = S;. Note that if
the transfer request is feasible then R; — S; > A9. So this
rearrangement can be completed in a single phase.

Next, as a second part of the preprocessing step, processors
1 with A; < % will transfer some of their outgoing data to

processors j with A; > %. To avoid disturbing the first

property, sending processors will also pass equal amounts
of receiving assignment. Once again, this step can be com-
pleted in one phase, since, by construction, the receiving
processors have sufficient space.

Notice that, the actual data being transferred is irrelevant
— we are just trying to balance the numbers. So a send
and receive operation can cancel each other. This enables
merging of the two steps above into one phase.

After the new transfer request R’ is realized, we need to
correct for the transfer of receiving assignments. This is
the purpose of the postprocessing phase. Under the transfer
of receiving assignments, each processor is either a sender
or a receiver of such assignments. So, during postprocess-
ing, each processor will either receive or send data, but not
both. Since the initial remapping is feasible, each proces-
sor has enough memory for the data to be received, so the
postprocessing can be completed in one phase. [

The complexity of constructing the solution for the prepro-
cessing phase is linear in the number of processors. To see
this, divide the processors into two lists: those with R; < S;
and those R; > Sj. Now step through the lists together,
transferring sending responsibility from a processor in the 7
list to one in the j list. Each transfer balances R; and S;
for a processor in one of the lists. The same can be applied
to balance initial available memories. Notice that the pre-
processing step uniquely describes the postprocessing phase,
and remapping for R’ is straightforward.

THEOREM 4.3. Given a transfer request R, the continu-
ous version of the data remapping problem can be completed
in [2L] + 2 phases.

PrOOF. By Lemma 4.2, R can be completed by pre- and
postprocessing steps, along with a transfer request R’ satis-
fying conditions of Lemma 4.1. Notice that the total volume
of data to be transferred T’ in R’ is no greater than T of
R, and the total available memory in the system does not
change: M = M'. So by Lemma 4.1, R’ can be completed in
[%] < [L] phases. Together with one preprocessing and
one postprocessing phases, remapping can be completed in
[L7]+ 2 phases. O

It is worth noting that a good solution of this continuous
approximation may not lead to good solutions of the true
discrete problem. For instance, consider the example de-
picted in Fig. 4.

O—=0 O—=0
Figure 4: Catastrophic instance for continuous relaxation.

This example consists of two groups of processors, with no
communication between the groups, and there is only one

unit of available memory. Available memory must be pos-
sessed by each component in turn, and this requires tem-
porarily moving some data from one component to the other
to transfer the free memory, as will be discussed in more de-
tail in the next section. In the preprocessing step described
in the proof of Lemma 4.2, this available memory will be
divided into two groups of processors, but the fractional
transfers which follow give no insight into the correct way
to orchestrate the data transfers for this instance. Specifi-
cally, in the continuous solution all processors are identical,
so no information is gleaned about the necessity of working
on components in turn.

5. EFFICIENT APPROXIMATION ALGO-
RITHMS

In this section, we describe the basics of a family of efficient
algorithms that provides solutions in which the number of
phases is at most 1.5 times that of an optimal solution. The
algorithm is motivated by some simple observations. First,
the maximum amount of data that can be transferred in a
phase is equal to the total amount of free memory in the
parallel machine. Let M be the total available memory in
the parallel machine, and let 7" be the total volume of data
to be moved. Note that M doesn’t change between phases.

LEMMA 5.1. The minimum number of phases in a solu-
tion is [L].

This bound can only be achieved if available memory is used
to receive messages at each phase. So free memory is wasted
if it resides on a processor that has no data to receive. Our
algorithm works by redistributing free memory to processors
that can use it. Equivalently, data is parked on a processor
with free memory it can’t use, which frees up memory on
processors which can use it. We will only park data that
needs to be transferred eventually.

5.1 Parking

Parking aims to utilize memory that would otherwise be
wasted. Consider a processor that received all its data and
still has available memory. This memory cannot be utilized
in subsequent phases, decreasing the total memory which
is usable for communication, thus potentially increasing the
number of phases. Instead, another processor can temporar-
ily move some of its data to this processor to free up space for
messages. An example is illustrated in Fig. 5. In this simple
example, the top two processors want to exchange 100 units
of data, but each has only one unit of available memory. A
simplistic approach will require 100 phases. However, the
third processor has 100 units of free memory. By parking
data on this third processor (i.e. transferring free memory
to another processor), the number of phases can be reduced
to three.

More formally, if a processor has k units of data left to re-
ceive and m units of free memory, then it has parking space
of max(0, m — k) units. A processor has data to park if the
incoming data is greater than available memory, and the
quantity of this parkable data is max(0,k — m) units. The
parkable data consists of data that eventually needs to be

NelNe
o8 O

®
9 0,0 0/
& O O O O

<—— Phase 0 ——=— Phase |—==—Phase 2 ——

Time

Figure 5: Example of the utility of parking.

sent to another processor. Note that if the transfer request
is feasible, then a processor must send out max(0,k — m)
units. Any processor that has parking space can store park-
able data from another processor, maximizing the amount
of usable free memory. This parked data merely takes an
extra step on the way to its final destination. Exploiting
this observation will allow us to construct an approximation
algorithm.

In our algorithm, we merely store data in a parking space,
and then forward it to its correct destination, when the des-
tination processor has available memory. Note that it is
inconsequential which processor owns the parked data. In
other words, parking spaces are indistinguishable. What po-
tentially effects performance is which processors shunt their
data to parking space.

LEMMA 5.2. It is sufficient to park data at most once to
get an optimal solution.

PROOF. Assume there exists a solution that parks some
data D twice. Let p1 and p2 be the first and second proces-
sors on which D is parked. After data is moved from p; to
p2, if no other processor uses available memory at pi, then
there was never a need to move data to p». If another pro-
cessor p;, parks data to pi1, then we can rearrange the data
movement as D staying in pi, and p; parking to p2, due to
indistinguishability of parking spaces. [

It is worth noting that parking is not just a heuristic but a
requirement in some cases. Consider the example in Fig. 5,
modified so that there is no available memory in the top two
processors. In this case, the transfer request is still feasible,
but realizing the remapping requires parking.

5.2 An Approximation Algorithm

In this section, we describe an algorithm that obtains a so-
lution with at most 1.5 times the optimal number of phases.
The algorithm is quite generic and allows for a number of
possible enhancements.

ALGORITHM 5.1.

e A processor receives as much data as it can in each
phase (i.e., if a processor has available memory at the
end of a phase then this processor does mot have any
more data to receive).

o If the transfer request cannot be completed in the next
phase then park as much data as possible (i.e, park
the minimum of the total parkable data and the total
parking space).

Note that many details about the algorithm are unspeci-
fied: If I have more incoming data than free memory, which
messages should I receive in the current phase? If several
processors want to park data, but limited parking spaces are
available, which should succeed? We will show below that
with any answers to these questions, the resulting algorithm
generates a solution with no more than 1.5 times the opti-
mal number of phases. Intelligent answers to these questions
could be used to devise algorithms with better practical (or
perhaps theoretical) performance.

LeEMMA 5.3. The total volume of data transferred by Al-
gorithm 5.1 is at most [2L].

PROOF. Let T}, be the volume of data transferred through
parking, and let Ty be the data transferred directly. Data
is transferred either directly or through parking, thus T" =
Tp + Ty.

It is enough to park data once due to Lemma 5.2, thus
parked data is moved twice, and the total volume of data
moved is 27, +Ty = T+T,. Because each parked unit of data
enables at least one direct transfer, the algorithm guaran-
tees that T, < Tq, Thus at most half of T can be transferred
through parking, i.e., Tp < %, and the total volume of data

movedis T+ T, <T+ L1 =2 O

THEOREM b5.4. Algorithm 5.1 constructs a solution with
at most [2L] + 1 phases.

PRrROOF. The algorithm makes use of all M units of avail-
able memory until the amount of parkable data is less than
the amount of parking space. It then completes in at most
two additional phases, one in which some data is parked,
and a final phase in which each processor has enough mem-
ory to receive all its messages. By Lemma 5.3 we know that
the total volume of data transferred in the algorithm is at
most [2L]. With M units of transfer in all, but the last two
phases, the process can be completed in at most [%] + 2
phases.

We will now decrease the bound to [2L] + 1. Let [be the
number of phases for the algorithm to complete the data
remapping process. The total volume of data transferred is
(I — 2)M + z, where z is the volume of data transferred in
the last two phases: 1 < z < 2M. From Lemma 5.3 we
know that

l—2)M + =z 3T
=DM ey 13T
M 2M
But simple algebra reveals that

(-2)M +«z
S P i Bl
[-1<] M

1

Combining these inequalities
3T
l-1<[—
- |—2M

and the result follows. [

Combined with Lemma 5.1, Theorem 5.4 shows that Algo-
rithm 5.1 is a 3/2 approximation algorithm for the minimum
phase remapping problem. Without a tighter lower bound,
this value of 3/2 is tight as illustrated by the example in

Cefgg -

Figure 6: Example to show the tightness of the 1.5 bound.

This example consists of an odd number of processors P.
All but one of them are organized in pairs which exchange a
single unit of data. Only the unpaired processor has a single
unit of available memory. The total volume of data to be
moved is T = P — 1. The only way for a pair to exchange
their data is to first park a unit elsewhere, so a total of %
units of parking are needed. Hence, the total volume of data
transferred is @ = %, and the number of phases is%,
since M = 1.

6. CONCLUSION

We studied the problem of moving large amounts of data
among processors under memory constraints, which is re-
quired for applications where workload and associated data
are periodically redistributed among processors. The prob-
lem arises when processors do not have enough memory to
allocate space for their incoming data, before releasing the
space for the outgoing data. In this case, the remapping op-
eration must be decomposed into phases so that processors
free up memory for the data they shipped out at end of a
phase, making it available for the incoming data in the next
phase. In this paper, we studied how to complete the remap-
ping operation in a minimum number of phases, the prob-
lem we call minimum phase remapping. We showed that
the problem of determining whether a given transfer can be
completed in a specified number of phases is NP-Complete.
A reduction of the minimum phase remapping problem to
multi-commodity flow was presented. We showed how a con-
tinuous relaxation of the problem admits a simple solution
with two more phases than that of the optimal solution,
but it may be difficult to get a good discrete solution from
this continuous one. Finally, we devised a practical approx-
imation algorithm with a bound of 1.5 times the optimal
solution.

We are currently implementing several of these approaches
for use in the Zoltan dynamic load balancing tool [4]. We
will report on our empirical comparisons in due course.

7. REFERENCES

[1] Anusa, R. K., MAGNANTI, R. L., AND ORLIN, J. B.
Network Flows: Theory, Algorithms and Applications.
Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] CYBENKO, G. Dynamic load balancing for distributed

memory multiprocessors. J. Parallel Distrib. Comput. 7
(1989), 279-301.

[3] CYPHER, R., AND KONSTANTINIDOU, S. Bounds on the
efficiency of message-passing protocols for parallel
computers. STAM J. Comput. 25, 5 (1996), 1082-1104.

[4] DEVINE, K. D., HENDRICKSON, B., BoMAN, E. G.,
St.JoHN, M. M., AND VAUGHAN, C. Zoltan: A
dynamic load-balancing library for parallel applications
— user’s guide. Tech. Rep. SAND99-1377, Sandia
National Laboratories, Albuquerque, NM, 1999.

[6] HENDRICKSON, B., AND DEVINE, K. Dynamic load
balancing in computational mechanics. Comp. Meth.
Appl. Mech. Eng. (2000). Invited paper. To appear.

[6] KArP, R. M. Reducibility among combinatorial
problems. In Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, Eds. Plenum Press,
New York, NY, 1972, pp. 85-103.

