
PERMUTING SPARSE RECTANGULAR MATRICES INTOBLOCK-DIAGONAL FORMCEVDET AYKANAT� , ALI PINARy , AND �UMIT V. C�ATALY�UREKzAbstract. We investigate the problem of permuting a sparse rectangular matrix into blockdiagonal form. Block diagonal form of a matrix grants an inherent parallelism for solving the derivingproblem, as recently investigated in the context of mathematical programming, LU factorizationand QR factorization. We propose bipartite graph and hypergraph models to represent the nonzerostructure of a matrix, which reduce the permutation problem to those of graph partitioning by vertexseparator and hypergraph partitioning, respectively. Our experiments on a wide range of matrices,using state-of-the-art graph and hypergraph partitioning tools MeTiS and PaToH, revealed that theproposed methods yield very e�ective solutions both in terms of solution quality and runtime.Key words. Coarse-grain parallelism, sparse rectangular matrices, singly-bordered block-diagonal form, doubly-bordered block-diagonal form, graph partitioning by vertex separator, hy-pergraph partitioning.AMS subject classi�cations. 65F05, 65F50, 65F20, 65K05, 65Y05, 05C50, 05C65, 05C85,05C901. Introduction. Block-diagonal structure of sparse matrices has been exploitedfor coarse-grain parallelization of various algorithms such as decomposition meth-ods for linear programming (LP), LU factorization, and QR factorization. In thesemethods, block diagonals give rise to subproblems that can be solved independently,whereas the border incurs a coordination task to combine the subproblem solutionsinto a solution of the original problem, and is usually less amenable to parallelization.The objective of this work is to enhance these decomposition-based solution methodsby transforming the underlying matrix into a block-diagonal form with small bordersize while maintaining a given balance condition on the sizes of the diagonal blocks.Our target problem is permuting rows and columns of anM�N sparse matrix Ainto a K-way singly-bordered block-diagonal (SB) form:A� = PA Q = 26664 A�11 : : : A�1K... . . . ...A�K1 : : : A�KKA�S1 : : : A�SK 37775 = 26664 B1 . . . BKR1 : : : RK 37775 = ASB ;(1.1)where P and Q denote, respectively, the row and column permutation matrices to bedetermined. In (1.1), each row of the Mc � N border submatrix R=(R1 � � � RK) iscalled a column-coupling or simply coupling row. Each coupling row has nonzeros inthe columns of at least two diagonal blocks. The objective is to permute matrix Ainto an SB form ASB such that the number (Mc) of coupling rows is minimized whilea given balance criterion is satis�ed. The SB form in (1.1) is referred to here as the�Computer Engineering Department, Bilkent University, Ankara, Turkey(aykanat@cs.bilkent.edu.tr). Partially supported by The Scienti�c and Technical ResearchCouncil of Turkey (T�UB_ITAK) under project EEEAG-199E013.yLawrence Berkeley Laboratory, Berkeley, CA 94720 (apinar@lbl.gov). Supported by the Di-rector, O�ce of Science, Division of Mathematical, Information, and Computational Sciences of theU.S. Department of Energy under contract DE-AC03-76SF00098.zDepartment of Biomedical Informatics, The Ohio State Univesity, Columbus, 43210, OH(catalyurek.1@osu.edu). Supported by the National Science Foundation under Grant #ACI-0203846. 1



2 Aykanat, P�nar and C�ataly�urekprimal SB form, whereas in the dual SB form, they are the columns that constitutethe border. We also consider the problem of permuting rows and columns of a sparsematrix A into a K-way doubly-bordered block-diagonal (DB) form:A� = PA Q = 26664 A�11 : : : A�1K A�1S... . . . ... ...A�K1 : : : A�KK A�KSA�S1 : : : A�SK A�SS 37775 = 26664 B1 C1. . . BK CKR1 : : : RK D 37775 = ADB(1.2)In (1.2), each row and column of matrixR=(R1 � � � RK D) andC=(CT1 � � � CTK DT )Tis called a coupling row and a coupling column, respectively. The objective is to per-mute matrix A into a DB form ADB such that the sum of the number of couplingrows and columns is minimized while a given balance criterion is satis�ed.The literature that addresses this problem is very rare and recent. Ferris andHorn [12] proposed a two-phase approach for A-to-ASB transformation. In the �rstphase, matrix A is transformed into a DB form ADB as an intermediate form. Inthe second phase, ADB is transformed into an SB form through column-splittingas discussed in Section 3.3. Our initial results of this problem were presented intwo conference papers [38, 39]. In [38], we proposed the basics of our hypergraphmodel and how to exploit this model to permute matrices to block-diagonal form.In our subsequent work [39] we proposed our graph models. Later Hu et. al [24]independently investigated the same problem without spelling out the exact modelto represent the sparsity structures of matrices or the details of their algorithm forpermutation. In this paper, we present a complete work on the problem of permutingsparse matrices to block-diagonal form. We consider permutations to DB form as wellas permutations to primal and dual SB form.Our proposed graph and hypergraph models for sparse matrices reduce the prob-lem of permuting a sparse matrix to block-diagonal form to the well{known problemsof graph partitioning by vertex separator (GPVS) and hypergraph partitioning (HP).GPVS is widely used in nested-dissection based low-�ll orderings for factorization ofsymmetric, sparse matrices, whereas HP is widely used for solving the circuit parti-tioning and placement problems in VLSI layout design. Our models enable adoptionof algorithms and tools for these well{studied problems to permute sparse matricesto block-diagonal form e�ciently and e�ectively.In this work, we show that the A-to-ADB transformation problem can be describedas a GPVS problem on the bipartite graph representation of A. The objective in theK-way GPVS problem is to �nd a subset of vertices (vertex separator) of minimumsize that disconnects the K vertex parts, while maintaining a given balance criterionon the vertex counts of K parts. In this model, minimizing the size of the vertexseparator corresponds to minimizing the sum of the number of coupling rows andcolumns in ADB .We propose a one-phase approach for permuting A directly into an SB form. Inthis approach, a hypergraph model|proposed in an earlier version of this work [38]|is exploited to represent rectangular matrices. The proposed model reduces the A-to-ASB transformation problem into the HP problem. In this model, minimizing the sizeof the hyperedge separator directly corresponds to minimizing the number of couplingrows in ASB .The organization of the paper is as follows: in the next section we will discusshow block diagonal structure can be exploited in parallelization of various applications.Some preliminary information on graph and hypergraph partitioning and ADB-to-ASB



Permuting a Sparse Matrix to Block-Diagonal Form 3transformation are presented in Section 3. Our proposed models for A-to-ADB andA-to-ASB transformations are explained in Section 4 and Section 5, respectively.Section 6 overviews recent graph and hypergraph partitioning algorithms and tools.Experimental evaluation of the proposed models is presented in Section 7. And �nally,Section 8 concludes the paper.2. Applications. Block diagonal structure of a matrix grants an inherent par-allelism for the solution of the deriving problem. In this section, we will exemplifyhow to exploit this parallelism in three fundamental problems of linear algebra andoptimization: linear programming, LU and QR factorizations.2.1. Linear Programming. Exploiting the block-angular structure of linearprograms (LPs) dates back to the work of Dantzig [11], when the motivation wassolving large LPs with limitedmemory. Later studies investigated parallelization tech-niques [15, 23, 34]. The proposed techniques [11, 31, 35] lead to iterative algorithms,where each iteration involves solving K independent LP subproblems correspondingto the block constraints followed by a coordination phase for coordinating the solu-tions of the subproblems according to the coupling constraints. These approacheshave two nice properties. First, as the solution times of most LP's in practice increaseas a quadratic or cubic function with the size of the problem, it is more e�cient tosolve a set of small problems than a single aggregate problem. Second, they giverise to a natural, coarse-grain parallelism that can be exploited by processing thesubproblems concurrently. Coarse-grain parallelism inherent in these approaches hasbeen exploited in several successful parallel implementations on distributed-memorymulticomputers through manager-worker scheme [12, 15, 23, 34]. At each iteration,the LP subproblems are solved concurrently by worker processors, whereas a serialmaster problem is solved by the manager processor in the coordination phase.As proposed in [12], these successful decomposition-based approaches can be ex-ploited for coarse-grain parallel solution of general LP problems by transforming theminto block-angular forms. In matrix theoretical view, this transformation problem canbe described as permuting the rectangular constraint matrix of the LP problem intoan SB form as shown in (1.1) with minimum border size while maintaining a givenbalance criterion on the diagonal blocks. Note that row and column permutationcorrespond to reordering of the constraints and variables of the given LP problem.Here, minimizing the border size relates to minimizing the size of the master problem.The size of the master problem has been reported to be crucial for the parallel per-formance of these algorithms [12, 34]. First, it a�ects the convergence of the overalliterative algorithm. Second, in most algorithms the master problem is solved seriallyby the manager processor. Finally, it determines the communication requirement be-tween phases. It is also important to have equal-sized blocks for load balancing in theparallel phase.It is worth noting that exploiting the block angular structure of the constraint ma-trices is not restricted to linear programs and can be applied in di�erent optimizationproblems [36, 42].2.2. LU Factorization. In most scienti�c computing applications, the core ofthe computation is solving a system of linear equations. Direct methods like LUfactorization are commonly used for the solution of nonsymmetric systems for theirnumerical robustness. A coarse-grain parallel LU factorization scheme [24, 41] isto permute the square, nonsymmetric coe�cient matrix to a DB form as shown in(1.2). Notice that diagonal blocks of the permuted matrix constitute independent



4 Aykanat, P�nar and C�ataly�ureksubproblems, and can be factored concurrently. Pivots are chosen within the blocksfor concurrency. Rows/columns that cannot be eliminated including those that cannotbe eliminated due to numerical reasons are permuted to the end of the matrix toachieve a partially-factored matrix in DB form as26664 L1U1 U 01. . . ...LKUK U 0KL01 : : : L0K F 37775In this matrix, LkUk constitutes the factored form of A�k =Bk after the unfactoredrows/columns are permuted to the end of the matrix. In a subsequent phase, thecoupling rows and columns, and unfactored columns and rows from the blocks arefactored. It is possible to parallelize this step with di�erent (and usually less e�cient)techniques.We stated two objectives during permutation to DB form. First one is minimizingthe number of coupling rows and columns, which relates to minimizing the work forthe second phase, thus increasing concurrency. Our second objective of equal-sizedblocks provides load balance during factorization of the blocks.2.3. QR Factorization. Least squares is one of the fundamental problems innumerical linear algebra and is de�ned as follows:minx k Ax � b k2;where A is an M�N matrix with M � N . QR factorization is a method commonlyused to solve least-squares problems. In this method, matrix A is factored into anorthogonalM�M matrixQ and an upper triangularN�N matrixR with nonnegativediagonal elements so that A = Q� R0 �Then, we can solve for Rx = b0 to get a solution, where b0 is composed of the �rst Nentries of vector b.Computationally, this problem is very similar to LU factorization, thus we canuse the same scheme to parallelize QR factorization. Given a matrix in dual SB form,26664 B1 C1B2 C2. . . ...BK CK 37775the diagonal blocks of the matrix constitute the independent subblocks and can be fac-tored independently. Thus, �rst phase is composed of factoring Bk and the associatedcoupling columns in Ck concurrently, so that[Bk Ck] = Qk � Rk Sk0 C 0k � for k = 1; 2; : : : ;K:In a subsequent phase, we factor C 0 = � C01; : : : ; C 0K �T [4].So, in permuting a given matrix A into a dual SB form, minimizing the numberof coupling columns minimizes the work on the second phase of the algorithm, andequal-sized blocks provide load balance for the �rst phase.



Permuting a Sparse Matrix to Block-Diagonal Form 53. Preliminaries. In this section we will provide the basic de�nitions and tech-niques that will be adopted in the remainder of this paper.3.1. Graph Partitioning. An undirected graph G=(V; E) is de�ned as a set ofvertices V and a set of edges E . Every edge eij 2E connects a pair of distinct verticesvi and vj . We use the notation Adj(vi) to denote the set of vertices adjacent to vertexvi in graph G. We extend this operator to include the adjacency set of a vertex subsetV0 � V, i.e., Adj(V 0) = fvj 2 V�V 0 : vj 2Adj(vi) for some vi 2 V 0g. The degree diof a vertex vi is equal to the number of edges incident to vi, i.e., di= jAdj(vi)j. Anedge subset ES is a K-way edge separator if its removal disconnects the graph intoat least K connected components. A vertex subset VS is a K-way vertex separator ifthe subgraph induced by the vertices in V�VS has at least K connected components.The objective of graph partitioning is �nding a separator, whose removal decom-poses the graph into disconnected subgraphs with balanced sizes. The separator canbe a set of edges or a set of vertices, and associated problems are called the problemof graph partitioning by edge separator (GPES) and graph partitioning by vertexseparator (GPVS), respectively. Both GPES and GPVS problems are known to beNP-hard [5]. Balance among subgraphs is usually de�ned by cumulative e�ect ofweights assigned to vertices. Some alternatives have been studied recently [40]. Weproceed with formal de�nitions. �ES =fV1;V2; : : : ;VKg is a K-way vertex partitionof G by edge separator ES�E if the following conditions hold: Vk�V and Vk 6=; for1�k� K; Vk \V`=; for 1 � k < ` � K; SKk=1 Vk=V. Edges between the vertices ofdi�erent parts belong to ES , and are called cut (external) edges and all other edgesare called uncut (internal) edges.Definition 3.1 (Problem GPES). Given a graph G=(V; E), an integer K, anda balance criterion for subgraphs. GPES problem is �nding a K-way vertex partition�ES =fV1;V2; : : : ;VKg of G by edge separator ES that satis�es the balance criterionwith minimum cost. The cost is de�ned ascost(�ES) = Xeij2ES wij;(3.1)where wij is the weight of edge eij = (vi; vj).The GPVS problem is similar, only a subset of vertices, as opposed to edges, serveas the separator. �V S=fV1;V2; : : : ;VK ;VSg is a K-way vertex partition of G by vertexseparator VS �V if the following conditions hold: Vk �V and Vk 6= ; for 1� k� K;Vk\V`=; for 1�k<`�K and Vk\VS =; for 1�k<K; SKk=1Vk[VS =V; removalof VS gives K disconnected parts V1;V2; : : : ;VK (i.e., Adj(Vk)�VS for 1�k�K). Avertex vi2Vk is said to be a boundary vertex of part Vk if it is adjacent to a vertexin VS . A vertex separator is said to be narrow if no subset of it forms a separator,and wide otherwise.Definition 3.2 (Problem GPVS). Given a graph G=(V; E), an integer K, anda balance criterion for subgraphs. GPVS problem is �nding a K-way vertex separator�V S = fV1;V2; : : : ;VK ;VSg that satis�es the balance criterion, with minimum cost,where the cost is de�ned as cost(�V S) = jVS j :(3.2)The techniques for solving GPES and GPVS problems are closely related as willbe further discussed in Section 6. An indirect approach to solve the GPVS problem



6 Aykanat, P�nar and C�ataly�urekis to �rst �nd an edge separator through GPES, and then translate it to a vertexseparator. After �nding an edge separator, this approach takes vertices adjacentto separator edges as a wide separator to be re�ned to a narrow separator, withthe assumption that a small edge separator yields a small vertex separator. Theapproach adopted by Ferris and Horn [12] falls into this class. The wide-to-narrowre�nement problem is described as a minimum vertex cover problem on the bipartitegraph induced by the cut edges. A minimum vertex cover can be taken as a narrowseparator for the whole graph, because each cut edge will be adjacent to a vertex inthe vertex cover.3.2. Hypergraph Partitioning. A hypergraph H=(U ;N ) is de�ned as a setof nodes (vertices) U and a set of nets (hyperedges) N among those vertices. We referto the vertices ofH as nodes, to avoid the confusion between graphs and hypergraphs.Every net ni 2 N is a subset of nodes, i.e., ni�U . The nodes in a net ni are calledits pins and denoted as Pins(ni). We extend this operator to include the pin list of anet subset N 0�N , i.e., Pins(N 0)=Sni2N 0 Pins(ni). The size si of a net ni is equalto the number of its pins, i.e., si= jPins(ni)j. The set of nets connected to a node ujis denoted as Nets(uj). We also extend this operator to include the net list of a nodesubset U 0�U , i.e., Nets(U 0)=Suj2U 0 Nets(uj). The degree dj of a node uj is equalto the number of nets it is connected to, i.e., dj= jNets(uj)j. The total number p ofpins denote the size of H where p=Pni2N si=Puj2U dj . Graph is a special instanceof hypergraph such that each net has exactly two pins.�HP =fU1;U2; : : : ;UKg is a K-way node partition of H if the following conditionshold: Uk�U and Uk 6=; for 1�k� K; Uk \U`=; for 1�k<`�K; SKk=1Uk=U . In apartition �HP of H, a net that has at least one pin (node) in a part is said to connectthat part. Connectivity set �i of a net ni is de�ned as the set of parts connected byni. Connectivity �i= j�ij of a net ni denotes the number of parts connected by ni.A net ni is said to be cut (external) if it connects more than one part (i.e., �i > 1),and uncut (internal) otherwise (i.e., �j = 1). A net ni is said to be an internal net ofa part Uk if it connects only part Uk, i.e., �i=fUkg which also means Pins(ni)� Uk.The set of internal nets of a part Uk is denoted as Nk, for k=1; : : : ;K, and the setof external nets of a partition �HP is denoted as NS . So, although �HP is de�nedas a K-way partition on the node set of H, it can also be considered as inducing a(K+1)-way partition fN1; : : : ;NK;NSg on the net set. NS can be considered as anet separator whose removal gives K disconnected node parts U1; : : : ;UK as well asK disconnected net parts N1; : : : ;NK .Definition 3.3 (Problem HP). Given a hypergraph H= (U ;N ), an integer K,and a balance criterion for subhypergraphs. HP problem is �nding a K-way partition-ing �HP = fU1;U2; : : : ;UKg of H that satis�es the balance criterion, and minimizesthe cost, which is de�ned as: cost(�HP ) = jNS j(3.3)The above metric of cost is often referred to as the cutsize metric in VLSI com-munity. The connectivity metric is de�ned ascost(�HP ) = Xni2NS(�i � 1):(3.4)and is frequently used in VLSI [32] and scienti�c computing communities [8].
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Fig. 3.1. Column-splitting process.3.3. Column-Splitting Method for ADB-to-ASB Transformation. In thesecond phase of FH algorithm [12], ADB is transformed into an SB form through thecolumn-splitting technique used in stochastic programming to treat anticipativity [37].In this technique, we consider the variables corresponding to the coupling columns.Consider a coupling column cj in submatrix C=(CT1 � � � CTk � � � CTK DT )T of ADB ,and let �j denote the set of Ck's that have at least one nonzero in column cj . Thenonzeros of a coupling column cj is split into j�jj�1 columns such that each newcolumn includes nonzeros in rows of only one block. That is, we introduce one copyckj of column cj for each block Ck 2 �j to decouple Ck from all other blocks in �j onvariable xj, so that ckj is permuted to be a column of Bk. Then, we add j�jj�1 couplingconstraints as coupling rows into ADB that force these variables fxkj : Ck 2 �jg all tobe equal. Note that this splitting process for column cj increases both the row andcolumn dimensions of matrix ASB by j�jj�1. Fig. 3.1 depicts the column-splittingprocess on the ADB matrix obtained in Fig. 4.2b.4. Bipartite Graph Model for A-to-ADB Transformation. In this section,we show that the A-to-ADB transformation problem can be described as a GPVSproblem on the bipartite graph representation of A. In the bipartite graph model,M�N matrix A = (aij) is represented as a bipartite graph BA = (V; E) on M+Nvertices with the number of edges equal to the number of nonzeros in A. Each row andcolumn of A is represented by a vertex in BA so that vertex sets R and C representingthe rows and columns of A, respectively, form the vertex bipartition V =R [ C withjRj=M and jCj=N . There exists an edge between a row vertex ri2R and a columnvertex cj2C if and only if the respective matrix entry aij is nonzero. So, Adj(ri) andAdj(cj) e�ectively represent the sets of columns and rows that have nonzeros in row iand column j, respectively. Fig. 4.2a displays the bipartite graph representation ofthe sample matrix given in Fig. 4.1.Consider a K-way partition �V S=fV1; : : : ;VK ;VSg of BA, where Vk=Rk[Ck fork=1; : : : ;K and VS=RS [CS with Rk;RS� R and Ck; CS� C. �V S can be decodedas a partial permutation on the rows and columns of A to induce a permuted matrixA� . In this permutation, the rows and columns associated with the vertices in Rk+1and Ck+1 are ordered after the rows and columns associated with the vertices in Rkand Ck, for k = 1; : : : ;K � 1, and the rows and columns associated with the verticesin RS and CS are ordered last as the coupling rows and columns, respectively.
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Fig. 4.1. A 15�18 sample matrix A.
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(a) (b)Fig. 4.2. (a) Bipartite graph representation BA of the sample A matrix given in Fig. 4.1 and3-way partitioning �V S of BA by vertex separator, (b) 3-way DB form ADB of A induced by �V S .Theorem 4.1. Let BA = (V; E) be the bipartite graph representation of a givenmatrix A. A K-way vertex separator �V S=fV1;V2; : : : ;VK ;VSg of BA gives a permu-tation of A to K-way DB form ADB, where row- and column-vertices in Vk constitutethe rows and columns of the k-th diagonal block of ADB , and row- and column-verticesin VS constitute the coupling rows and columns of ADB . Thus,� minimizing the size of the separator minimizes the border size,� balance among subgraphs infer balance among diagonal submatrices.Proof. Consider a row vertex ri 2Rk and a column vertex cj 2Ck of part Vk ina partition �VS of BA. Since Adj(ri)� Ck [ CS , ri 2Rk corresponds to permutingall nonzeros of row i of A into either submatrix A�kk or submatrices A�kk and A�kSdepending on ri being a non-boundary or a boundary vertex of Vk, respectively. So,all nonzeros in the kth row slice A�k� of A� will be con�ned to the A�kk and A�kSmatrices. Since Adj(cj)� Rk [RS , cj 2Ck corresponds to permuting all nonzeros ofcolumn j of A into either submatrix A�kk or submatrices A�kk and A�Sk of A� dependingon cj being a non-boundary or a boundary vertex of Vk, respectively. So, all nonzerosin the kth column slice A��k of A� will be con�ned to the A�kk and A�Sk matrices.



Permuting a Sparse Matrix to Block-Diagonal Form 9Hence, A� will be in a DB form as shown in (1.2) with A�kk = Bk, A�kS = Ck andA�Sk=Rk, for k=1; : : : ;K, and A�SS=D.The number of coupling rows and columns in A� is equal to, respectively, thenumber of row and column vertices in the separator VS , i.e.,Mc= jRSj and Nc= jCSj.So, in GPVS of BA, minimizing the separator size according to (3.2) correspondsto minimizing the sum of the number of coupling rows and columns in A� , sincejVS j= jRSj+jCSj=Mc+Nc. The row and column dimensions of the kth diagonal blockBk of A� is equal to, respectively, the number of row and column vertices in part Vk,i.e., Mk= jRkj and Nk= jCkj for k=1; : : : ;K. So, the row-vertex and column-vertexcounts of the parts fV1; : : : ;VKg can be used to maintain the required balance criterionon the dimensions of the diagonal blocks fB1; : : : ; BKg of A� . Fig. 4.2a displays a3-way GPVS of BA, and Fig. 4.2b shows a corresponding partial permutation thattransforms matrix A of Fig. 4.1 into a 3-way DB form ADB.5. Hypergraph Model for A-to-ASB Transformation. In this section, weshow that A-to-ASB transformation can be described as an HP problem on a hyper-graph representation of A. In our previous studies [7, 8, 38, 39], we proposed twohypergraph models, namely row-net and column-net models, for representing rect-angular as well as symmetric and nonsymmetric square matrices. These two modelsare duals: the row-net representation of a matrix is equal to the column-net repre-sentation of its transpose. Here, we only describe and discuss the row-net model forpermuting a matrix A into a primal SB form, whereas the column-net model can beused for permuting A into a dual SB form. Because of the duality between the row-net and column-net models, permuting A into a dual SB form using the column-netmodel on A is the same as permuting AT into a primal SB from using the row-netmodel on AT .In the (row-net) hypergraph model, anM�N matrix A=(aij) is represented as ahypergraph HA=(U ;N ) on N nodes andM nets with the number of pins equal to thenumber of nonzeros in matrixA. Node and net sets U andN correspond, respectively,to the columns and rows of A. There exist one net ni and one node uj for each row iand column j, respectively. Net ni � U contains the nodes corresponding to thecolumns that have a nonzero entry in row i, i.e., uj 2 ni if and only if aij 6=0. Thatis, Pins(ni) represents the set of columns that have a nonzero in row i of A, and ina dual manner Nets(uj) represents the set of rows that have a nonzero in column jof A. So, the size si of a net ni is equal to the number of nonzeros in row i of Aand the degree dj of a node uj is equal to the number of nonzeros in column j ofA. Fig. 5.1(a) displays the hypergraph representation of the 16�18 sample matrix inFig. 4.1.Recently, we exploited the proposed row-net (column-net) model for column-wise (rowwise) decomposition of sparse matrices for parallel matrix-vector multiplica-tion [7, 8]. In that application, nodes represent units of computation and nets encodemultiway data dependencies. In [7, 8], we showed that 1D matrix partitioning problemcan be modeled as an HP problem in which the connectivity metric in (3.2) is exactlyequal to the parallel communication volume. The proposed HP model overcomes some
aws and limitations of the standard GPES models, which are also addressed by Hen-drickson and Kolda [18, 19]. In this work, we show that the A-to-ASB transformationproblem can be described as an HP problem in which the cutsize metric in (3.3) isexactly equal to the number of coupling rows in ASB.
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(a) (b)Fig. 5.1. (a) Row-net hypergraph representation HA of the sample A matrix shown in Fig. 4.1and 3-way partitioning �HP of HA, (b) 3-way SB form ASB of A induced by �HP .Theorem 5.1. Let HA=(U ;N ) be the hypergraph representation of a givenmatrix A. A K-way partition �HP = fU1; : : : ;UKg= fN1; : : : ;NK;NSg of HA givesa permutation of A to K-way SB form, where nodes in Uk and internals nets in Nkrespectively constitute the columns and rows of the k-th diagonal block of ASB, andexternal nets in NS constitute the coupling rows of ASB. Thus,� minimizing the cutsize minimizes the number of coupling rows,� balance among subhypergraphs infer balance among diagonal submatrices.Proof. Consider a K-way partition �HP = fU1; : : : ;UKg= fN1; : : : ;NK ;NSg ofHA. �HP can be decoded as a partial permutation on the rows and columns of Ato induce a permuted matrix A� . In this permutation, the columns associated withthe nodes in Uk+1 are ordered after the columns associated with the nodes in Uk, fork = 1; : : : ;K�1. The rows associated with the internal nets (Nk+1) of Uk+1 are orderedafter the rows associated with the internal nets (Nk) of Uk, for k = 1; : : : ;K�1, wherethe rows associated with the external nets (NS) are ordered last as the coupling rows.That is, a node uj2Uk corresponds to permuting column j of A to the kth column sliceA��k=�(A�1k)T � � � (A�Kk)T (A�Sk)T �T of A�. An internal net ni of Uk corresponds topermuting row i of A to the kth row slice A�k�=(A�k1 � � � A�kK) of A� , and an externalnet ni corresponds to permuting row i of A to the border A�S=(A�S1 � � � A�SK) of A� .Consider an internal net ni 2 Nk of part Uk in a partition �HP of HA. SincePins(ni) � Uk, ni 2 Nk corresponds to permuting all nonzeros of row i of A intosubmatrix A�kk of A� . So, all nonzeros in the kth row slice A�k� will be con�ned to theA�kk submatrix. Consider a node uj of part Uk. Since Nets(uj)� Nk [ NS , uj 2Ukcorresponds to permuting all nonzeros of column j of A into either submatrix A�kk orsubmatrices A�kk and A�kS depending on uj being a non-boundary or a boundary nodeof Uk, respectively. So, all nonzeros in the kth column slice A��k will be con�ned tothe A�kk and A�Sk matrices. Hence, A� will be in an SB form as shown in (1.1) withA�kk=Bk and A�Sk=Rk, for k=1; : : : ;K.The number of coupling rows in A� is equal to the number of external nets, thusminimizing the cutsize according to (3.3) corresponds to minimizing the number ofcoupling rows in A�. The row and column dimensions of the kth diagonal block Bk



Permuting a Sparse Matrix to Block-Diagonal Form 11of A� is equal to, respectively, the number of internal nets and nodes in part Uk, i.e.,Mk = jNkj and Nk = jUkj for k = 1; : : : ;K. So, the node and internal-net counts ofthe parts fU1; : : : ;UKg can be used to maintain the required balance criterion on thedimensions of the diagonal blocks fB1; : : : ; BKg of A� . Fig. 5.1(a) displays a 3-waypartitioning �HP of HA and Fig. 5.1(b) shows a corresponding partial permutationwhich transforms matrix A in Fig. 4.1 directly into a 3-way SB form.6. Graph and Hypergraph PartitioningAlgorithms and Tools. Recently,multilevel GPES [6, 20] and HP [8, 17, 29] approaches have been proposed leadingto successful GPES tools such as Chaco [21], MeTiS [27] and WGPP [16], and HPtools hMeTiS [29] and PaToH [9]. These multilevel heuristics consist of 3 phases:coarsening , initial partitioning , and uncoarsening. In the �rst phase, a multilevelclustering is applied starting from the original graph/hypergraph by adopting variousmatching heuristics until the number of vertices in the coarsened graph/hypergraphreduces below a predetermined threshold value. Clustering corresponds to coalescinghighly interacting vertices to supernodes. In the second phase, a partition is obtainedon the coarsest graph/hypergraph using various heuristics including FM, which is aniterative re�nement heuristic proposed for graph/hypergraph partitioning by Fiducciaand Mattheyses [13] as a faster implementation of the KL algorithm proposed byKernighan and Lin [30]. In the third phase, the partition found in the second phaseis successively projected back towards the original graph/hypergraph by re�ning theprojected partitions on the intermediate level uncoarser graphs/hypergraphs usingvarious heuristics including FM. In this work, we use direct K-way GPES version ofMeTiS [28] (kmetis option [27]) for indirect GPVS in the A-toADB transformationphase of the FH method and our multilevel HP tool PaToH [9] in our one-phaseA-toASB transformation approach.One of the most important applications of GPVS is George's nested{dissectionalgorithm [14], which has been widely used in �ll-reducing orderings for sparse matrixfactorizations. The basic idea in the nested dissection algorithm is to reorder symmet-ric matrix into a 2-way DB form so that no �ll can occur in the o�-diagonal blocks.The DB form of the given matrix is obtained through a symmetric row/column per-mutation induced by a 2-way GPVS. Then, both diagonal blocks are reordered by ap-plying the dissection strategy recursively. The performance of the nested-dissectionreordering algorithm depends on �nding small vertex separators at each dissectionstep. So, the nested-dissection implementations can easily be exploited for obtaininga K-way DB form of a matrix by terminating the dissection operation after lg2Krecursion levels and then gathering the vertex separators obtained at each dissectionstep to a single separator constituting a K-way vertex separator. So, we obtain aK-way DB form of matrix A in our two-phase approach by providing the bipartitegraph model of A as input to a nested-dissection based reordering tool. Note that wee�ectively perform a nonsymmetric nested dissection on the bipartite graph model ofthe rectangular A matrix.Direct 2-wayGPVS approaches have been embedded into variousmultilevel nested-dissection implementations [16, 22, 27]. In these implementations, a 2-way GPVSobtained on the coarsest graph is re�ned during the multilevel framework of the un-coarsening phase. Two distinct vertex-separator re�nement schemes were proposedand used for the uncoarsening phase. The �rst one is the extension of the FM edge-separator re�nement approach to vertex-separator re�nement as proposed by Ashcraftand Liu [1]. This scheme considers vertex moves from vertex separator VS to bothV1 and V2 in �V S =fV1;V2;VSg. This re�nement scheme is adopted in the onmetis



12 Aykanat, P�nar and C�ataly�urekTable 7.1Properties of rectangular test matrices.number of number of nonzerosname rows cols total per row per colM N max avg max avgNL 7039 9718 41428 149 5.89 15 4.26CQ9 9278 13778 88897 390 9.58 24 6.45GE 10099 11098 39554 47 3.92 36 3.56CO9 10789 14851 101578 440 9.41 28 6.84car4 16384 33052 63724 111 3.89 109 1.93fxm4-6 22400 30732 248989 57 11.12 24 8.10fome12 24284 48920 142528 228 5.87 14 2.91pltexpA4-6 26894 70364 143059 30 5.32 8 2.03kent 31300 16620 184710 960 5.90 18 11.11world 34506 32734 164470 341 4.77 16 5.02mod2 34774 31728 165129 310 4.75 16 5.20lpl1 39951 125000 381259 177 9.54 16 3.05fxm3-16 41340 64162 370839 57 8.97 36 5.78ordering code of MeTiS [27], ordering code of WGPP [16], and the ordering codeBEND [22]. The second scheme is based on Liu's narrow separator re�nement al-gorithm [33], which considers moving a set of vertices simultaneously from VS ata time, in contrast to the FM-based re�nement scheme [1], which moves only onevertex at a time. Liu's re�nement algorithm [33] can be considered as repeatedlyrunning the maximum-matching based vertex cover algorithm on the bipartite graphsinduced by the edges between V1 and VS , and V2 and VS . That is, the wide vertexseparator consisting of VS and the boundary vertices of V1 (V2) is re�ned as in theGPES-based wide-to-narrow separator re�nement scheme. The network-
ow basedminimum weighted vertex cover algorithms proposed by Ashcraft and Liu [2], andHendrickson and Rothberg [22] enabled the use of Liu's re�nement approach [33] onthe coarse graphs within the multilevel framework. In this work, we use the publiclyavailable onmetis ordering code of MeTiS [27] for direct GPVS.7. Experimental Results. We tested the performance of the proposed modelsand associated solution approaches on a wide range of large LP constraint matricesobtained from [10] and [25]. Properties of these rectangular matrices are presented inTable 7.1, where the matrices are listed in the order of increasing number of rows.All experiments were performed on a workstation equipped with a 133 MHz Pow-erPC processor with 512-KB external cache and 64-MB of memory. We have testedK = 4, 8, and 16-way partitioning of every test matrix. For each K value, K-waypartitioning of a test matrix constitutes a partitioning instance. Partitioning toolsMeTiS [27] and PaToH [9] were run 50 times starting from di�erent random seeds foreach instance. We use averages of these runs for each instance in this section. Fig. 7.1displays K = 4, 8, and 16 way sample primal SB forms of the GE matrix obtained byPaToH.In this section, we �rst compare di�erent solution techniques for a model. Ta-bles 7.2{7.3 present only the averages over the 13 matrices. Breakdown of the resultsfor each matrix can be found in [3]. Then we compare the e�ectiveness of the modelsfor their best solution technique, both in terms of solution quality (Tables 7.4{7.5) andpre-processing times (Table 7.6). In these tables, %Mc denotes the percentage of the
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nz = 39554(c) (d)Fig. 7.1. Rectangular GE matrix with 10099 rows and 11098 columns: (a) original structure,(b) 4-way SB form, (c) 8-way SB form, (d) 16-way SB form.number of coupling rows in both DB and primal SB forms, i.e., %Mc=100�Mc=M .%Nc denotes the number of coupling columns in the DB forms as percents of therespective M values to enable the comparison of the Mc and Nc values under thesame unit, i.e., %Nc= 100�Nc=M . We measure the balance quality of the diagonalblocks in terms of percent row imbalance %RI =100�(Mmax=Mavg�1) and percentcolumn imbalance %CI=100�(Nmax=Navg�1). Here, Mmax (Nmax) denotes the row(column) count of the diagonal block with the maximum number of rows (columns)in both SB and DB forms. Mavg =(M�Mc)=K in both SB and DB forms, whereasNavg=(N�Nc)=K in DB forms and Navg=N=K in SB forms. It should be noted herethat more complicated balancing criteria might need to be maintained in practical ap-plications. For example, empirical relation T (M;N )= cM2:17N0:89 (where c is someconstant) was reported in [34] for the solution time (with IMSL routine ZX0LP [26])of an LP subproblem corresponding to an M�N diagonal block.Table 7.2 presents the results of our experiments on the bipartite graph modelfor both A-to-ADB transformation and two-phase A-to-ASB transformation. On theBG model, we experimented with the built-in GPES tool kmetis of MeTiS for indirect



14 Aykanat, P�nar and C�ataly�urekTable 7.2Performance of di�erent techniques on the bipartite-graph model.Indirect GPVS Direct GPVSBG-model (FH) BG-model (onmetis)K ADB ASB ADB ASB%Mc %Nc %Mc %Mc %Nc %Mc4 6.55 0.20 6.80 1.31 0.22 1.608 9.70 0.54 10.40 2.75 0.65 3.6016 12.79 1.05 14.12 4.15 1.17 5.90avg 9.68 0.60 10.44 2.74 0.68 3.70Table 7.3E�ect of di�erent balancing criteria in the performance of PaToH.R-PaToH (R+C)-PaToH (R&C)-PaToHK %Mc %RI %CI %Mc %RI %CI %Mc %RI %CI4 1.62 9.1 15.0 1.69 10.1 10.2 1.72 8.2 10.18 3.15 15.6 26.3 3.31 16.7 16.6 3.43 14.5 17.216 4.79 23.5 37.1 4.98 25.6 23.9 5.17 21.3 24.6avg 3.19 16.1 26.2 3.33 17.4 16.9 3.44 14.7 17.3GPVS in the FH method and direct GPVS tool onmetis. Note that FH corresponds toour implementation of the algorithm proposed by Ferris and Horn [12], where we usedkmetis to partition the bipartite graph. Since the GPES and GPVS solvers of MeTiSmaintain balance on vertices, balance on the sum of the row and column counts of thediagonal blocks is explicitly maintained during partitioning. Both schemes produceDB forms with comparable row and column imbalance values. As seen in Table 7.2,the direct onmetis scheme produces substantially better DB forms than the indirectFH scheme. Table 7.2 also displays the e�ect of column-splitting process used inthe second phase of two-phase approaches. In the table, (%MSBc �%MDBc )=%Nc =(MSBc �MDBc )=Nc shows the average number of coupling rows induced by a couplingcolumn during the ADB-to-ASB transformation. It can easily be derived from thetable that a coupling column induces 1:27 and 1:41 coupling rows in the FH and BG-onmetis schemes, respectively, on average. This means that vertex separators foundby these two schemes contain column vertices with small degree, e.g., 2.27 and 2.41.It is interesting to note that both schemes produce DB forms with wide row bordersand narrow column borders in general.For this work, we enhanced PaToH for maintaining di�erent balance criteria thatmight be used in balancing diagonal blocks of the SB forms. Table 7.3 illustratesthe e�ect of these di�erent balancing criteria in the performance of PaToH. R-PaToHmaintains balance on the number of internal nets of the parts during partitioning.(R+C)-PaToH maintains balance on the sum of internal net and vertex counts of theparts during partitioning. (R&C)-PaToH maintains balance on both the number ofinternal nets and vertices of the parts during partitioning.Note that, in the row-net hypergraph model, balancing the internal net and vertexcounts of the parts correspond, respectively, to balancing the row and column countsof the diagonal blocks of the resulting SB form. As seen in Table 7.3, R-PaToHperforms better than (R+C)-PaToH, which performs better than (R&C)-PaToH interms of the number of coupling rows. This observation can be explained by thereduced solution space with increasing complexity of the balancing criterion.



Permuting a Sparse Matrix to Block-Diagonal Form 15Tables 7.4{7.6 present performance comparison of di�erent schemes on A-to-ASBtransformation. Table 7.4 and Table 7.5 display the quality of SB forms in termsof border size (%Mc) and diagonal-block imbalance (%RI and %CI), respectively,whereas Table 7.6 displays the runtime performance. The FH algorithm e�ectivelymaintains balance on the sum of the row and column counts of the diagonal blocks.The proposed two-phase BG-onmetis scheme also works according to the same balancecriterion because of the limitation of the direct GPVS solver onmetis. Therefore, forthe sake of a common experimental framework, the results of (R+C)-PaToH, BG-onmetis, and FH schemes are displayed in Tables 7.4{7.6.As seen in Table 7.4, the proposed schemes perform signi�cantly better than theFH algorithm. For example, the number of coupling rows of the SB forms producedby the FH algorithm are 3 times larger than those of PaToH, on overall average.One-phase approach PaToH produces approximately 11% fewer coupling rows thantwo-phase approach BG-onmetis, on average, which con�rms the e�ectiveness of thehypergraph model to permute rectangular matrices into SB forms. As seen in Ta-ble 7.4, the numbers of coupling rows of the SB forms produced by PaToH remainbelow 5% for 16-way partitionings, on average. As seen in Tables 7.4{7.5, our meth-ods �nd balanced permutations, with very few coupling rows, which would lead toe�cient parallel solutions.Table 7.6 displays execution times of the partitioning algorithms as percents ofthe solution times of the respective LP problems by LOQO [43]. As seen in this table,partitioning times are a�ordable, when compared with the LP solution times. Forexample, LOQO [43] solves the lpl1 problem, which has the constraint matrix withthe largest M�N product, in approximately 3800 seconds. As seen in Table 7.6, the16-way partitioning times of all algorithms remain below 1.22% of the LOQO solutiontime of this LP problem. As also seen in the table, partitioning times of all algorithmsremain well below 4% of the LOQO solution times of all LP problems except car4.In two-phase approaches, hypergraph and bipartite representations of a rectan-gular matrix are of equal size: the number of nonzeros in the matrix. However, theclustering phase of an HP tool involves more costly operations than those of a GPtool. Hence, two-phase approaches using a GP tool are expected to run faster thanthe one-phase approach using an HP tool. As seen in Table 7.6, two-phase approachBG-onmetis runs faster than PaToH in the partitioning of all test matrices exceptGE, car4 and kent.8. Conclusion. We investigated permuting a sparse rectangular matrix A intodoubly-bordered (DB) and singly-bordered (SB) block-diagonal forms ADB and ASBwith minimum border size while maintaining balance on the diagonal blocks. Weshowed that the A-to-ADB transformation problem can be described as a graph par-titioning by vertex separator (GPVS) problem on the bipartite-graph representationof matrix A. We proposed a hypergraph model for representing the sparsity structureof A so that the A-to-ASB transformation problem can be formulated as a hypergraphpartitioning (HP) problem. The performance of the proposed models and approachesdepends on the performance of the tools used to solve the associated problems as wellas the representation power of the models. We also overview solution techniques andtools for solving the stated problems. Experimental results on a wide range of sparsematrices were impressive, and showed that our methods can e�ectively extract theunderlying block-diagonal structure of a matrix.



16 Aykanat, P�nar and C�ataly�urekTable 7.4Performance comparison of the one-phase and two-phase approaches in A-to-ASB transforma-tion, in terms of border size (%Mc). 1-phase 2-phaseH-model BG-modelname K PaToH onmetis FH4 5.02 5.22 27.71NL 8 6.02 6.59 32.5716 7.19 8.31 36.724 2.87 2.92 23.06CQ9 8 4.10 4.03 27.7616 5.40 5.28 30.504 3.01 2.53 4.71GE 8 4.37 4.39 8.0616 5.63 5.97 10.814 2.72 2.78 21.27CO9 8 3.78 3.85 26.1216 5.10 5.03 30.264 0.00 0.00 0.00car4 8 0.00 0.52 1.2916 0.00 1.83 1.294 0.64 0.41 0.49fxm4-6 8 1.17 0.80 1.7016 2.13 1.42 2.284 0.00 0.00 0.00fome12 8 9.43 12.27 17.0416 15.39 21.23 29.024 1.62 0.79 1.08pltexpA4-6 8 3.02 2.15 1.9816 5.32 4.42 4.774 0.34 0.15 0.66kent 8 0.70 0.56 2.1116 1.26 1.33 3.474 1.08 0.80 1.53world 8 2.25 2.25 3.7916 5.25 5.94 9.294 0.86 0.78 0.88mod2 8 2.12 2.05 3.4216 5.10 5.64 8.754 3.27 4.08 6.37lpl1 8 5.40 6.58 9.0316 6.17 8.76 15.964 0.52 0.33 0.56fxm3-16 8 0.66 0.73 0.3416 0.86 1.51 0.39Averages over K4 1.69 1.60 6.808 3.31 3.60 10.4016 4.98 5.90 14.12all 3.33 3.70 10.44



Permuting a Sparse Matrix to Block-Diagonal Form 17Table 7.5Performance comparison of the one-phase and two-phase approaches in A-to-ASB transforma-tion, in terms of diagonal-block imbalance.1-phase 2-phaseH-model BG-modelname K (R+C)-PaToH onmetis FH%RI %CI %RI %CI %RI %CI4 8.6 6.6 11.8 12.2 15.5 14.0NL 8 13.0 11.3 17.6 18.5 23.4 19.216 18.3 15.3 23.7 24.5 28.9 22.24 17.0 22.6 17.8 17.6 19.5 17.8CQ9 8 26.6 31.0 24.4 25.3 22.9 24.016 37.3 38.6 36.7 29.5 29.5 24.84 14.8 11.8 15.5 15.4 13.5 12.1GE 8 21.5 19.8 19.3 20.0 19.0 19.416 29.9 27.6 27.0 27.7 28.2 22.94 10.9 19.3 14.7 12.1 18.8 17.1CO9 8 14.4 27.5 21.2 16.9 20.7 24.416 27.9 33.0 30.1 22.2 26.7 25.44 0.6 0.9 3.3 5.9 22.6 25.0car4 8 0.6 2.0 12.8 18.7 0.9 2.916 0.7 4.3 23.7 36.1 0.9 6.14 10.0 9.5 2.6 2.4 8.0 7.8fxm4-6 8 14.7 13.8 10.9 11.0 14.8 14.316 23.2 22.5 19.1 20.2 15.1 15.14 0.0 0.0 0.0 0.0 0.0 0.0fome12 8 9.6 8.3 12.8 10.7 16.6 13.316 19.4 13.8 24.9 22.3 25.9 16.84 5.9 4.8 2.9 3.2 11.4 11.7pltexpA4-6 8 12.9 10.4 10.2 10.9 11.9 12.516 19.7 17.0 16.2 18.2 15.5 16.74 12.2 16.1 12.9 23.8 18.3 21.8kent 8 19.3 24.6 21.3 35.0 22.9 18.816 26.7 41.7 31.8 48.5 28.8 32.94 9.8 11.5 10.3 10.0 10.5 10.0world 8 17.8 20.6 17.8 19.8 15.4 17.516 30.9 28.3 31.0 30.4 22.6 20.04 9.6 10.3 10.6 10.6 11.8 10.7mod2 8 17.2 18.3 18.4 20.4 15.0 17.116 30.2 26.7 28.7 29.6 22.0 20.44 18.4 6.8 11.7 5.5 13.4 12.3lpl1 8 31.3 12.0 15.8 11.7 24.1 17.316 40.5 16.0 26.0 18.9 35.8 20.34 13.6 12.9 0.6 0.5 7.8 7.6fxm3-16 8 17.6 16.6 1.3 1.2 2.4 1.816 27.7 26.4 2.9 2.6 4.6 3.7Averages over K4 10.1 10.2 8.8 9.2 13.2 12.98 16.7 16.6 15.7 16.9 16.2 15.616 25.6 23.9 24.8 25.4 21.9 19.0all 17.4 16.9 16.4 17.2 17.1 15.8



18 Aykanat, P�nar and C�ataly�urekTable 7.6Execution times of the partitioning algorithms given in Table 5 as percents of the solution timesof the LP problems by LOQO. Values in parentheses are the LP solution times in seconds.LP 1-phase 2-phasename LOQO K H-model BG-modelsol. time PaToH onmetis FH4 0.211 0.140 0.090NL 100 (804) 8 0.244 0.179 0.09016 0.271 0.199 0.1064 0.459 0.339 0.213CQ9 100 (554) 8 0.571 0.447 0.22916 0.672 0.538 0.2634 0.220 0.273 0.136GE 100 (403) 8 0.294 0.387 0.15416 0.392 0.449 0.1694 0.390 0.305 0.189CO9 100 (708) 8 0.484 0.393 0.20516 0.545 0.472 0.2334 3.562 45.958 46.603car4 100 (56) 8 5.168 50.529 54.32916 6.704 52.429 58.3264 1.978 1.976 0.944fxm4-6 100 (191) 8 2.941 2.931 0.97516 3.884 3.817 0.9864 0.015 0.007 0.004fome12 100 (62677) 8 0.024 0.014 0.00516 0.028 0.018 0.0074 1.576 1.470 0.782pltexpA4-6 100 (278) 8 2.328 2.277 0.78516 3.029 2.810 0.8114 0.756 0.898 0.451kent 100 (618) 8 1.117 1.333 0.48716 1.385 1.662 0.5344 0.427 0.317 0.169world 100 (1163) 8 0.612 0.478 0.17816 0.786 0.667 0.2144 0.453 0.334 0.178mod2 100 (1076) 8 0.632 0.509 0.18616 0.843 0.710 0.2214 0.833 0.341 0.169lpl1 100 (3800) 8 1.086 0.482 0.17816 1.221 0.662 0.1984 1.365 1.387 0.719fxm3-16 100 (449) 8 2.087 2.026 0.69016 2.737 2.652 0.659Averages over K4 0.942 4.134 3.8968 1.353 4.768 4.49916 1.730 5.160 4.825all 1.342 4.688 4.407
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