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Constructing and Sampling Graphs with a Prescribed Joint Degree
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One of the most influential recent results in network analysis is that many natural networks exhibit a
power-law or log-normal degree distribution. This has inspired numerous generative models that match this
property. However, more recent work has shown that while these generative models do have the right degree
distribution, they are not good models for real life networks due to their differences on other important
metrics like conductance. We believe this is, in part, because many of these real-world networks have very
different joint degree distributions, i.e. the probability that a randomly selected edge will be between nodes
of degree k and l. Assortativity is a sufficient statistic of the joint degree distribution, and it has been
previously noted that social networks tend to be assortative, while biological and technological networks
tend to be disassortative.

We suggest understanding the relationship between network structure and the joint degree distribution of
graphs is an interesting avenue of further research. An important tool for such studies are algorithms that
can generate random instances of graphs with the same joint degree distribution. This is the main topic
of this paper and we study the problem from both a theoretical and practical perspective. We provide an
algorithm for constructing simple graphs from a given joint degree distribution, and a Monte Carlo Markov
Chain method for sampling them. We also show that the state space of simple graphs with a fixed degree
distribution is connected via end point switches. We empirically evaluate the mixing time of this Markov
Chain by using experiments based on the autocorrelation of each edge. These experiments show that our
Markov Chain mixes quickly on these real graphs, allowing for utilization of our techniques in practice.
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1. INTRODUCTION
Graphs are widely recognized as the standard modeling language for many complex
systems, including physical infrastructure (e.g., Internet, electric power, water, and
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gas networks), scientific processes (e.g., chemical kinetics, protein interactions, and
regulatory networks in biology starting at the gene levels through ecological systems),
and relational networks (e.g., citation networks, hyperlinks on the web, and social
networks). The broader adoption of the graph models over the last decade, along with
the growing importance of associated applications, calls for descriptive and generative
models for real networks. What is common among these networks? How do they differ
statistically? Can we quantify the differences among these networks? Answering these
questions requires understanding the topological properties of these graphs, which
have lead to numerous studies on many “real-world” networks from the Internet to
social, biological and technological networks [Faloutsos et al. 1999].

Perhaps the most prominent theme in these studies is the skewed degree distribu-
tion; real-world graphs have a few vertices with very high degree and many vertices
with small degree. There is some dispute as to the exact distribution, some have called
it power-law [Barabasi and Albert 1999; Faloutsos et al. 1999], some log-normal [Ama-
ral et al. 2000; Pennock et al. 2002; Mitzenmacher 2001; Bi et al. 2001], and but all
agree that it is ‘heavy-tailed’ [Clauset et al. 2009; Sala et al. 2011]. The ubiquity of
this distribution has been a motivator for many different generative models and is
often used as a metric for the quality of the model. Models like preferential attach-
ment [Barabasi and Albert 1999], the copying model [Kumar et al. 2000], the Barabasi
hierarchical model [Ravasz and Barabasi 2003], forest-fire model, the Kronecker graph
model [Leskovec et al. 2010], geometric preferential attachment [Flaxman et al. 2004]
and many more [Leskovec et al. 2005; Toroczkai and Bassler 2004; Bollobás et al. 2001]
study the expected degree distribution and use the results to argue for the strength
of their method. Many of these models also match other observed features, such as
small diameter or densification [Kleinberg 2001]. However, recent studies comparing
the generative models with real networks on metrics like conductance [Leskovec et al.
2008], core numbers [C. Seshadri and Kolda 2011] and clustering coefficients [Kolda
et al. 2011] show that the models do not match other important features of the net-
works.

The degree distribution alone does not define a graph. McKay’s estimate [McKay
1985] shows that there may be exponentially many graphs with the same degree distri-
bution. However, models based on degree distribution are commonly used to compute
statistically significant structures in a graph. For example, the modularity metric for
community detection in graphs [Newman 2006a; 2004] assumes a null hypothesis for
the structure of a graph based on its degree distribution, namely that probability of an
edge between vertex vi and vj is proportional to didj , where di and dj represent the de-
grees of vertices vi and vj . The modularity of a group of vertices is defined by how much
their structure deviates from the null hypothesis, and a higher modularity signifies a
better community. The key point here is that the null hypothesis is solely based on its
degree distribution and therefore might be incorrect. Degree distribution based models
are also used to predict graph properties [Mihail and Papadimitriou 2002; Aiello et al.
2000b; Chung et al. 2003; Chung and Lu 2003; 2002], benchmark [Lancichinetti et al.
2008], and analyze the expected run time of algorithms [Berry et al. 2010].

These studies improve our understanding of the relationship between the degree
distribution and the structure of a graph. The shortcomings of these studies give in-
sight into what other features besides the degree distribution would give us a better
grasp of a graph’s structure. For example, the degree assortativity of a network mea-
sure whether nodes attach to other similar or dissimilar vertices. This is not specified
by the degree distribution, yet studies have shown that social networks tend to be as-
sortative, while biological and technological networks tend to be dissortative [Newman
2002b; 2002a]. An example of recent work using assortativity is [Kolda et al. 2011]. In
this study, a high assortativity is assumed for connections that generate high clus-
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tering coefficients, and this, in addition to preserving the degree distribution, results
in very realistic instances of real-world graphs. Another study that has looked at the
joint degree distribution is dK-graphs [Mahadevan et al. 2006]. They propose modeling
a graph by looking at the distribution of the structure of all sized k subsets of vertices,
where d = 1 are vertex degrees, d = 2 are edge degrees (the joint degree distribution),
d = 3 is the degree distribution of triangles and wedges, and so on. It is an interesting
idea, as clearly the nK distribution contains all information about the graph, but it is
far too detailed as a model. At what d value does the additional information become
less useful?

One way to enhance the results based on degree distribution is to use a more restric-
tive feature such as the joint degree distribution. Intuitively, if degree distribution of
a graph describes the probability that a vertex selected uniformly at random will be
of degree k then its joint degree distribution describes the probability that a randomly
selected edge will be between nodes of degree k and l. We will use a slightly different
concept, the joint degree matrix, where the total number of nodes and edges is speci-
fied, and the numbers of edges between each set of degrees is counted. Note that while
the joint degree distribution uniquely defines the degree distribution of a graph up to
isolated nodes, graphs with the same degree distribution may have very different joint
degree distributions. We are not proposing that the joint degree distribution be used as
a stand alone descriptive model for generating networks. We believe that understand-
ing the relationship between the joint degree distribution and the network structure
is important, and that having the capability to generate random instances of graphs
with the same joint degree distribution will help enable this goal. Experiments on real
data are valuable, but also drawing conclusions only based on a limited data may be
misleading, as the graphs may all be biased the same way. For a more rigorous study,
we need a sampling algorithm that can generate random instances in a reasonable
time, which is the motivation of this work.

The primary questions investigated by this paper are: Given a joint degree distribu-
tion and an integer n, does the joint degree distribution correspond to a real labeled
graph? If so, can one construct a graph of size n with that joint degree distribution?
Is it possible to construct or generate a uniformly random graph with that same joint
degree distribution? We address these problems from both a theoretical and from an
empirical perspective. In particular, being able to uniformly sample graphs allows one
to empirically evaluate which other graph features, like diameter, or eigenvalues, are
correlated with the joint degree distribution.

Contributions. We make several contributions to this problem, both theoretically
and experimentally. First, we discuss the necessary and sufficient conditions for a
given joint degree vector to be graphical. We prove that these conditions are sufficient
by providing a new constructive algorithm. Next, we introduce a new configuration
model for the joint degree matrix problem which is a natural extension of the configu-
ration model for the degree sequence problem. Finally, using this configuration model,
we develop Markov Chains for sampling both pseudographs and simple graphs with
a fixed joint degree matrix. A pseudograph allows multiple edges between two nodes
and self-loops. We prove the correctness of both chains and mixing time for the pseu-
dograph chain by using previous work. The mixing time of the simple graph chain is
experimentally evaluated using autocorrelation.

In practice, Monte Carlo Markov Chains are a very popular method for sampling
from difficult distributions. However, it is often very difficult to theoretically evaluate
the mixing time of the chain, and many practitioners simply stop the chain after 5,000,
10,000 or 20,000 iterations without much justification. Our experimental design with
autocorrelation provides a set of statistics that can be used as a justification for choos-
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ing a stopping point. Further, we show one way that the autocorrelation technique can
be adapted from real-valued samples to combinatorial samples.

2. RELATED WORK
The related work can be roughly divided into two categories: constructing and sam-
pling graphs with a fixed degree distribution using sequential importance sampling or
Monte Carlo Markov Chain methods, and experimental work on heuristics for gener-
ating random graphs with a fixed joint degree distribution.

The methods for constructing graphs with a given degree distribution are primarily
either reductions to perfect matchings or sequential sampling methods. There are two
popular perfect matching methods. The first is the configuration model [Bollobás 1980;
Aiello et al. 2000a]: k mini-vertices are created for each degree k vertex, and all the
mini-vertices are connected. Any perfect matching in the configuration graph corre-
sponds to a graph with the correct degree distribution by merging all of the identified
mini-vertices. This allows multiple edges and self-loops, which are often undesirable.
See Figure 1. The second approach, the gadget configuration model, prevents multi-
edges and self-loops by creating a gadget for each vertex. If vi has degree di, then it is
replaced with a complete bipartite graph (Ui, Vi) with |Ui| = n− 1− di and |Vi| = n− 1.
Exactly one node in each Vi is connected to each other Vj , representing edge (i, j) [Kan-
nan et al. 1999]. Any perfect matching in this model corresponds exactly to a simple
graph by using the edges in the matching that correspond with edges connecting any
Vi to any Vj . We use a natural extension of the first configuration model to the joint
degree distribution problem.

a

b

c d

e

a

bd

e c

Fig. 1. On the left, we see an example of the configuration model of the degree distribution of the graph on
the right. The edges corresponding to that graph are bold. Each vertex is split into a number of mini-vertices
equal to its degree, and then all mini-vertices are connected. Not all edges are shown for clarity.

There are also sequential sampling methods that will construct a graph with a given
degree distribution. Some of these are based on the necessary and sufficient Erdős-
Gallai conditions for a degree sequence to be graphical [Blitzstein and Diaconis 2006],
while others follow the method of Steger and Wormald [Bayati et al. 2010; Steger
and Wormald 1999; Sinclair and Jerrum 1989; Jerrum and Sinclair 1990; Kim and
Vu 2006]. These combine the construction and sampling parts of the problem and can
be quite fast. The current best work can sample graphs where dmax = O(m1/4−τ ) in
O(mdmax) time [Bayati et al. 2010].

Another approach for sampling graphs with a given degree distribution is to use
a Monte Carlo Markov Chain method. There is significant work on sampling perfect
matchings [Jerrum et al. 2004; Broder 1986]. There has also been work specifically
targeted at the degree distribution problem. Kannan, Tetali and Vempala [Kannan
et al. 1999] analyze the mixing time of a Markov Chain that mixes on the configura-
tion model, and another for the gadget configuration model. Gkantsidis, Mihail and
Zegura [Gkantsidis et al. 2003] use a Markov Chain on the configuration model, but
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reject any transition that creates a self-loop, multiple edge or disconnects the graph.
Both of these chains use the work of Taylor [Taylor 1982] to argue that the state space
is connected.

Amanatidis, Green and Mihail study the problems of when a given joint degree ma-
trix has graphical representation and, further, when it has connected graphical repre-
sentation [Amanatidis et al. 2008]. They give necessary and sufficient conditions for
both of these problems, and constructive algorithms. In Section 2, we give a simpler
constructive algorithm for creating a graphical representation that is based on solving
the degree sequence problem instead of alternating structures.

Another vein of related work is that of Mahadevan et al. who introduce the concept
of dK-series [Mahadevan et al. 2006; Mahadevan et al. 2007]. In this model, d refers
to the dimension of the distribution and 2K is the joint degree distribution. They pro-
pose a heuristic for generating random 2K-graphs for a fixed 2K distribution via edge
rewirings. However, their method can get stuck if there exists a degree in the graph
for which there is only 1 node with that degree. This is because the state space is not
connected. We provide a theoretically sound method of doing this.

Finally, Newman also studies the problem of fixing an assortativity value, find-
ing a joint remaining degree distribution with that value, and then sampling a ran-
dom graph with that distribution using Markov Chains [Newman 2002b; 2002a]. His
Markov Chain starts at any graph with the correct degree distribution and converges
to a pseudograph with the correct joint remaining degree distribution. By contrast, our
work provides a theoretically sound way of constructing a simple graph with a given
joint degree distribution first, and our Markov Chain only has simple graphs with the
same joint degree distribution as its state space.

3. NOTATION AND DEFINITIONS
Formally, a degree distribution of a graph is the probability that a node chosen at
random will be of degree k. Similarly, the joint degree distribution is the probability
that a randomly selected edge will have end points of degree k and l. In this paper,
we are concerned with constructing graphs that exactly match these distributions, so
rather than probabilities, we will use a counting definition below and call it the joint
degree matrix. In particular, we will be concerned with generating simple graphs that
do not contain multiple edges or self-loops. Any graph that may have multiple edges
or self loops will be referred to as a pseudograph.

Definition 3.1. The degree vector (DV) d(G) of a graph G is a vector where d(G)k is
the number of nodes of degree k in G.

A generic degree vector will be denoted by D.

Definition 3.2. The joint degree matrix (JDM) J (G) of a graph G is a matrix where
J (G)k,l is exactly the number of edges between nodes of degree k and degree l in G.

A generic joint degree matrix will be denoted by J . Given a joint degree matrix, J ,
we can recover the number of edges in the graph as m =

∑∞
k=1

∑∞
l=k Jk,l. We can also

recover the degree vector as Dk = 1
k (Jk,k +

∑∞
l=1 Jk,l). The term Jk,k is added twice

because kDk is the number of end points of degree k and the edges in Jk,k contribute
two end points.

The number of nodes, n is then
∑∞
k=1Dk. This count does not include any degree

0 vertices, as these have no edges in the joint degree matrix. Given n and m, we can
easily get the degree distribution and joint degree distribution. They are P (k) = 1

nDk
while P (k, l) = 1

mJk,l. Note that P (k) is not quite the marginal of P (k, l) although it is
closely related.
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The Joint Degree Matrix Configuration Model. We propose a new configuration
model for the joint degree distribution problem. Given J and its corresponding D we
create k labeled mini-vertices for every vertex of degree k. In addition, for every edge
with end points of degree k and l we create two labeled mini-end points, one of class k
and one of class l. We connect all degree k mini-vertices to the class k mini-end points.
This forms a complete bipartite graph for each degree, and each of these forms a con-
nected component that is disconnected from all other components. We will call each of
these components the “k-neighborhood”. Notice that there are kDk mini-vertices of de-
gree k, and kDk = Jk,k+

∑
l Jk,l corresponding mini-end points in each k-neighborhood.

This is pictured in Figure 2. Take any perfect matching in this graph. If we merge each
pair of mini-end points that correspond to the same edge, we will have some pseudo-
graph that has exactly the desired joint degree matrix. This observation forms the
basis of our sampling method.

JDM =

0 0 2
0 1 2
2 2 1


DV =

(
2, 2, 2

)
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Fig. 2. The joint degree matrix configuration model. Each vertex is colored according to its degree. On
the left is the full model, with the left side consisting of the mini-vertices and the right side of the mini-
endpoints. All edges are included, with each of the 3 sets of color vertices forming a complete bipartite graph.
The middle and right figures are two realizations of the model, with only the matched edges remaining.

4. CONSTRUCTING GRAPHS WITH A GIVEN JOINT DEGREE MATRIX
The Erdős-Gallai condition is a necessary and sufficient condition for a degree se-
quence to be realizable as a simple graph.

THEOREM 4.1. Erdős-Gallai A degree sequence d = {d1, d2, · · · dn} sorted in non-
increasing order is graphical if and only if for every k ≤ n,

∑k
i=1 di ≤ k(k − 1) +∑n

i=k+1 min(di, k).
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The necessity of this condition comes from noting that in a set of vertices of size
k, there can be at most

(
k
2

)
internal edges, and for each vertex v not in the subset,

there can be at most min{d(v), k} edges entering. The condition considers each subset
of decreasing degree vertices and looks at the degree requirements of those nodes. If
the requirement is more than the available edges, the sequence cannot be graphical.
The sufficiency is shown via the constructive Havel-Hakimi algorithm [Havel 1955;
Hakimi 1962].

The existence of the Erdős-Gallai condition inspires us to ask whether similar nec-
essary and sufficient conditions exist for a joint degree matrix to be graphical. The
following necessary and sufficient conditions were independently studied by Amana-
tidis et al. [Amanatidis et al. 2008].

THEOREM 4.2. Let J be given and D be the associated degree distribution. J can be
realized as a simple graph if and only if (1) Dk is integer-valued for all k and (2) ∀k, l,
if k 6= l then Jk,l ≤ DkDl. For each k, Jk,k ≤

(Dk

2

)
.

The necessity of these conditions is clear. The first condition requires that there are
an integer number of nodes of each degree value. The next two are that the number of
edges between nodes of degree k and l (or k and k) are not more than the total possible
number of k to l edges in a simple graph defined by the marginal degree sequences.
Amanatidis et al. show the sufficiency through a constructive algorithm. We will now
introduce a new algorithm that runs in O(m) time.

The algorithm proceeds by building a nearly regular graph for each class of edges,
Jk,l. Assume that k 6= l for simplicity. Each of the Dk nodes of degree k receives
bJk,l/Dkc edges, while Jk,l mod Dk each have an extra edge. Similarly, the l degree
nodes have bJk,l/Dlc edges, with Jk,l mod Dl having 1 extra. We can then construct a
simple bipartite graph with this degree sequence. This can be done in linear time in
the number of edges using queues as is discussed after Lemma 4.3. If k = l, the only
differences are that the graph is no longer bipartite and there are 2Jk,k end points to
be distributed among Dk nodes. To find a simple nearly regular graph, one can use
the Havel-Hakimi [Hakimi 1962; Havel 1955] algorithm in O(Jk,k) time by using the
degree sequence of the graph as input to the algorithm.

We must show that there is a way to combine all of these nearly-regular graphs to-
gether without violating any degree constraints. Let d = 〈d1, d2, · · · dn〉 be the sorted
non-increasing order degree sequence from D. Let d̂v denote the residual degree se-
quence where the residual degree of a vertex v is dv minus the number of edges that
currently neighbor v. Also, let D̂k denote the number of nodes of degree k that have
non-zero residual degree, i.e. D̂k =

∑
dj=k

1(d̂j 6= 0).
To combine the nearly uniform subgraphs, we start with the largest degree nodes,

and the corresponding largest degree classes. It is not necessary to start with the
largest, but it simplifies the proof. First, we note that after every iteration, the joint
degree sequence is still feasible if ∀k, l, k 6= l Ĵk,l ≤ D̂kD̂l and ∀k Ĵk,k ≤

(D̂k

2

)
.

We will prove that Algorithm 1 can always satisfy the feasibility conditions. First,
we note a fact.

OBSERVATION 1. For all k,
∑
l Ĵk,l + Ĵk,k =

∑
dj=k

d̂j

This follows directly from the fact that the left hand side is summing over all of the k
end points needed by Ĵ while the right hand side is summing up the available residual
end points from the degree distribution. Next, we note that if all residual degrees for
degree k nodes are either 0 or 1, then:
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ALGORITHM 1: Greedy Graph Construction with a Fixed JDM
Input: J , n, m, D
Output: A graph G
for k = n · · · 1 and l = k · · · 1 do

if k 6= l then
Let a = Jk,l mod Dk and b = Jk,l mod Dl;
Let x1 . . . xa = bJk,l

Dk
c+ 1, xa+1 . . . xDk = bJk,l

Dk
c and y1 . . . yb = b

Jk,l

Dl
c+ 1,

yb+1 . . . yDl = b
Jk,l

Dl
c;

Construct a simple bipartite graph B with degree sequence x1 · · ·xDk , y1 . . . yDl ;
end
else

Let c = 2Jk,k mod Dk;
Let x1 · · ·xc = b 2Jk,k

Dk
c+ 1 and xc+1 · · ·xDk = b 2Jk,k

Dk
c;

Construct a simple graph B with the degree sequence x1 · · ·xDk ;
end
Place B into G by matching the nodes of degree k with higher residual degree with x1 . . . xa

and those of degree l with higher residual degree with y1 . . . yb. The other vertices in B can
be matched in any way with those in G of degree k and l ;
Update the residual degrees of each k and l degree node.;

end

OBSERVATION 2. If, for all j such that dj = k, d̂j = 0 or 1 then∑
dj=k

d̂j =
∑
dj=k

1(d̂j 6= 0) = D̂k.

LEMMA 4.3. After every iteration, for every pair of vertices u, v of any degree k,
|d̂u − d̂v| ≤ 1.

Amanatidis et al. refer to Lemma 4.3 as the balanced degree invariant. This is most
easily proven by considering the vertices of degree k as a queue. If there are x edges
to be assigned, we can consider the process of deciding how many edges to assign each
vertex as being one of popping vertices from the top of the queue and reinserting them
at the end x times. Each vertex is assigned edges equal to the number of times it was
popped. The next time we assign edges with end points of degree k, we start with the
queue at the same position as where we ended previously. It is clear that no vertex can
be popped twice without all other vertices being popped at least once.

LEMMA 4.4. The above algorithm can always greedily produce a graph that satisfies
J , provided J satisfies the initial necessary conditions.

PROOF. There is one key observation about this algorithm - it maximizes D̂kD̂l by
ensuring that the residual degrees of any two vertices of the same degree never differ
by more than 1. By maximizing the number of available vertices, we can not get stuck
adding a self-loop or multiple edge. From this, we gather that if, for some degree k,
there exists a vertex j such that d̂j = 0, then for all vertices of degree k, their residuals
must be either 0 or 1. This means that

∑
dj=k

d̂j = D̂k ≥ Ĵk,l for every other l from
Observation 2.

From the initial conditions, we have that for every k, l Jk,l ≤ DkDl. Dk = D̂k provided
that all degree k vertices have non-zero residuals. Otherwise, for any unprocessed pair,
Jk,l ≤ min{D̂k, D̂l} ≤ D̂kD̂l. For the k, k case, it is clear that Jk,k ≤ D̂k ≤

(D̂k

2

)
. There-
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fore, the residual joint degree matrix and degree sequence will always be feasible, and
the algorithm can always continue.

A natural question is that since the joint degree distribution contains all of the infor-
mation in the degree distribution, do the joint degree distribution necessary conditions
easily imply the Erdős-Gallai condition? This can easily be shown to be true.

COROLLARY 4.5. The necessary conditions for a joint degree matrix to be graphical
imply that the associated degree vector satisfies the Erdős-Gallai condition.

5. UNIFORMLY SAMPLING GRAPHS WITH MONTE CARLO MARKOV CHAIN (MCMC)
METHODS

We now turn our attention to uniformly sampling graphs with a given graphical joint
degree matrix using MCMC methods. We return to the joint degree matrix configu-
ration model. We can obtain a starting configuration for any graphical joint degree
matrix by using Algorithm 1. This configuration consists of one complete bipartite
component for each degree with a perfect matching selected. The transitions we use
select any end point uniformly at random, then select any other end point in its degree
neighborhood and swap the two edges that these neighbor. In Figure 2, this is equiva-
lent to selecting one of the square endpoints uniformly at random and then selecting
another uniformly at random from the same connected component and then swapping
the edges. A more complex version of this chain checks that this swap does not create a
multiple edge or self-loop. Formally, the transition function is a randomized algorithm
given by Algorithm 2.

ALGORITHM 2: Markov Chain Transition Function
Input: a configuration C
Output: a configuration C′

With probability 0.5, output configuration C.;
else

Select any end point e1 uniformly at random. It neighbors a minivertex v1 in configuration
C;
Select any e2 u.a.r from e1’s degree neighborhood. It neighbors v2;
(Optional: If the graph obtained from the configuration with edges
E ∪ {(e1, v2), (e2, v1)} \ {(e1, v1), (e2, v2)} contains a multi-edge or self-loop, reject);
E ← E ∪ {(e1, v2), (e2, v1)} \ {(e1, v1), (e2, v2)}. Output C′ with this E;

end

There are two chains described by Algorithm 2. The first,A doesn’t have the optional
step and its state space is all pseudographs with the desired joint degree matrix. The
second, B includes the optional step and only transitions to and from simple graphs
with the correct joint degree matrix. A similar chain has been independently studied
by [Amanatidis et al. ] with very similar theoretical results.

We remind the reader of the standard result that any irreducible, aperiodic Markov
Chain with symmetric transitions converges to the uniform distribution over its state
space. For details, see Chapter 7 of [Mitzenmacher and Upfal 2005]. Both A and B
are aperiodic, due to the self-loop to each state. From the description of the transition
function, we can see thatA is symmetric. This is less clear for the transition function of
B. Is it possible for two connected configurations to have a different number of feasible
transitions in a given degree neighborhood? We show that it is not the case in the
following lemma.

LEMMA 5.1. The transition function of B is symmetric.
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PROOF. Let C1 and C2 be two neighboring configurations in B. This means that they
differ by exactly 4 edges in exactly 1 degree neighborhood. Let this degree be k and let
these edges be e1v1 and e2v2 in C1 whereas they are e1v2 and e2v1 in C2. We want to
show that C1 and C2 have exactly the same number of feasible k-degree swaps.

Without loss of generality, let ex, ey be a swap that is prevented by e1 in C1 but
allowed in C2. This must mean that ex neighbors v1 and ey neighbors some vy 6= v1, v2.
Notice that the swap e1ex is currently feasible. However, in C2, it is now infeasible to
swap e1, ex, even though ex and ey are now possible.

If we consider the other cases, like ex, ey is prevented by both e1 and e2, then after
swapping e1 and e2, ex, ey is still infeasible. If swapping e1 and e2 makes something
feasible in C1 infeasible in C2, then we can use the above argument in reverse. This
means that the number of feasible swaps in a k-neighborhood is invariant under k-
degree swaps.

The remaining important question is the connectivity of the state space over these
chains. It is simple to show that the state space of A is connected. We note that it is a
standard result that all perfect matchings in a complete bipartite graph are connected
via edge swaps [Taylor 1982]. Moreover, the space of pseudographs can be seen exactly
as the set of all perfect matchings over the disconnected complete bipartite degree
neighborhoods in the joint degree matrix configuration model. The connectivity result
is much less obvious for B. In particular, the difficulty lies in the fact that transitions
like those in Figure 4 can not be made without going through a state that results
in a pseudograph. We adapt a result of Taylor [Taylor 1982] that all graphs with a
given degree sequence are connected via edge swaps in order to prove this. The proof
is inductive and follows the structure of Taylor’s proof.

THEOREM 5.2. Given two simple graphs, G1 and G2 of the same size with the same
joint degree matrix, there exists a series of end point rewirings to transform G1 into G2

(and vice versa) where every intermediate graph is also simple.

PROOF. This proof will proceed by induction on the number of nodes in the graph.
The base case is when there are 3 nodes. There are 3 realizable JDMs. Each is uniquely
realizable, so there are no switchings available.

Fig. 3. The four potential joint degree distributions when n = 3.

Assume that this is true for n = k. Let G1 and G2 have k + 1 vertices. Label the
nodes of G1 and G2 v1 · · · vk+1 such that deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vk+1). Our goal
will be to show that both graphs can be transformed in G′1 and G′2 respectively such
that v1 neighbors the same nodes in each graph, and the transitions are all through
simple graphs. Now we can remove v1 to create G′′1 and G′′2 , each with n− 1 nodes and
identical JDMs. By the inductive hypothesis, these can be transformed into one other
and the result follows.

We will break the analysis into two cases. For both cases, we will have a set of target
edges, e1, e2 · · · ed1 that we want v1 to be connected to. Without loss of generality, we
let this set be the edges that v1 currently neighbors in G2. We assume that the edges
are ordered in reverse lexicographic order by the degrees of their end points. This will
guarantee that the resulting construction for v1 is graphical and that we have a non-
increasing ordering on the requisite end points. Now, let ki denote the end point in G2

for edge ei that isn’t v1.
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Fig. 4. The dotted edges represent the troublesome
edges that we may need to swap out before we can
swap v1 and vc.
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Fig. 7. The two parts of Case (2)

Case 1) For the first case, we will assume that v1 is already the end point of all edges
e1, e2 · · · ed1 but that all of the ki may not be assigned correctly as in Figure 5. Assume
that e1, e2 · · · ei−1 are all edges (v1, k1) · · · (v1, ki−1) and that ei is the first that isn’t
matched to its appropriate ki.

Call the current end point of the other end point of ei ui. We know that deg(ki) =
deg(ui) and that ki currently neighbors deg(ki) other nodes, Γ(ki). We have two cases
here. One is that v1 ∈ Γ(ki) but via edge f instead of ei. Here, we can swap v1 on the
end points of f and ei so that the edge v1 − ei − ki is in the graph. f can not be an
ej where j < i because those edges have their correct end points, kj assigned. This is
demonstrated in Figure 6.

The other case is that v1 6∈ Γ(ki). If this is the case, then there must exist some
x ∈ Γ(ki) \ Γ(ui) because d(ui) = d(ki) and ui neighbors v1 while ki doesn’t. Therefore,
we can swap the edges v1 − ei − ui and x− f − ki to v1 − ei − ki and x− f − ui without
creating any self-loops or multiple edges. This is demonstrated in Figure 6.

Therefore, we can swap all of the correct end points onto the correct edges.
Case 2) For the second case, we assume that the edges e1, · · · ed1 are distributed

over l nodes of degree d1. We want to show that we can move all of the edges e1 · · · ed1
so that v1 is an end point. If this is achievable, we have exactly Case 1.

Let e1, · · · ei−1 be currently matched to vi and let ei be matched to some x such that
deg(x) = d1. Let f be an edge currently matched to v1 that is not part of e1 · · · ed1 and
let its other end point be uf . Let the other end point of ei be ux as in Figure 7.

We now have several initial cases that are all easy to handle. First, if v, x, ux, uf are
all distinct and (v, ux) and (x, uf ) are not edges then we can easily swap v and x such
that the edges go from v − f − uf and x− ei − ux to v − ei − ux and x− f − uf . Next, if
uf = ux then we can simply swap v1 onto ei and x onto f and, again, v1 will neighbor
ei. This will not create any self-loops or multiple edges because the graph itself will be
isomorphic. This situations are both shown in Figure 7.

The next case is that x = uf . If we try to swap v1 onto ei then we create a self-loop
from x to x via f . Instead, we note that since the JDM is graphical, there must exist a
third vertex y of the same degree as v1 and x that does not neighbor x. Now, y neighbors
an edge g, and we can swap x− f and y− g to x− g and y− f . The edges are v1 − f − y
and x− ei − ui and ei can be swapped onto v1 without conflict.
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Fig. 8. A graphical representation of the situations discussed in Case (2a).

The cases left to analyze are those where the nodes are all distinct and (v1, ux) or
(x, uf ) are edges in the graph. We will analyze these separately.

Case 2a) If (v1, ux) is an edge in the graph, then it must be so through some edge
named g. Note that this means we have v1 − g − ux and x − ei − ux. We can swap this
to v1− ei−ux and x− g−ux and have an isomorphic graph provided that g is not some
ej where j < i. This is the top case in Figure 8.

If g is some ej then it must be that ux = kj . This is distinct from ki. deg(kj) =
deg(ki) so there must exist some edge h that ki neighbors with its other end point
being y. There are again three cases, when y 6= x, v1 y = x and when y = v1. These are
the bottom three rows illustrated in Figure 8. The first is the simplest. Here, we can
assume that kj does not neighbor y (because it neighbors v1 and x that ki does not) so
we can swap kj onto h and ki onto e1. This has removed the offending edge, and we can
now swap v1 onto e1 and x onto f .

When y = x, we first swap ki onto ej and kj onto h. Next, we swap v onto ei and x
onto f as they no longer share an offending edge.

Finally, when y = v1, we use a sequence of three swaps. The first is ki onto ej and kj
onto h. The next is v1 onto e1 and x onto h. Finally, we swap kj back onto ej and ki onto
ei.

Case 2b) If (x, uf ) is an edge in the graph, then it must be through some edge g
such that x − g − uf and x − ei − ux. Without loss of generality, assume that f is the
only edge neighboring v1 that isn’t an ej . Since f doesn’t neighbor v1 in G2, there must
either exist a w with deg(w) = deg(uf ) or vs with deg(vs) = d(v1). This relies critically
upon the fact that f and g are the same class edge. If there is a w, then it doesn’t
neighbor v1 (or we can apply the above argument to find a w′) and it must have some
neighbor y ∈ Γ(w) \ Γ(u) through edge h. Therefore, we can swap uf onto h and w onto
f . This removes the offending edge, and we can now swap v1 onto ei and x onto f .
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Fig. 9. A graphical representation of the situations discussed in Case (2b)

If vs exists instead, then by the same argument, there exists some edge h with end
point us such that vs /∈ Γ(uf ) and us /∈ Γ(x). Therefore, we can swap vs − h and x − g
to vs − g and x− h. This again removes the troublesome edge and allows us to swap v1
onto ei.

Therefore, given any node, a precise set of edges that it should neighbor, and a set
of vertices that are the end points of those edges, we can use half-edge-rewirings to
transform any graph G to G′ that has this property, provided the set of edges is graph-
ical.

Now that we have shown that both A and B converge to the uniform distribution
over their respective state spaces, the next question is how quickly this happens. Note
that from the proof that the state space of B is connected, we can upper bound the
diameter of the state space by 3m. The diameter provides a lower bound on the mixing
time. In the next section, we will empirically estimate the mixing time to be also linear
in m.

6. ESTIMATING THE MIXING TIME OF THE MARKOV CHAIN
The Markov chain A is very similar to one analyzed by Kannan, Tetali and Vem-
pala [Kannan et al. 1999]. We can exactly use their canonical paths and analysis to
show that the mixing time is polynomial. This result follows directly from Theorem
3.2 and Corollary 3.2 (or Theorem 3 and Corollary 4 or Theorem 4.2 and Corollary
4.2) of [Kannan et al. 1999] for chain A. This is because the joint degree matrix con-
figuration model can be viewed as |D| complete, bipartite, and disjoint components.
These components should remain disjoint, so the Markov Chain can be viewed as a
‘meta-chain’ which samples a component and then runs one step of the Kannan, Tetali
and Vempala chain on that component. Even though the mixing time for this chain is
provably polynomial, this upper bound is too large to be useful in practice.

The analysis to bound the mixing time for chain B is significantly more complicated.
One approach is to use the canonical path method to bound the congestion of this
chain. The standard trick is to define a path from G1 to G2 that fixes the misplaced
edges identified by G1 ⊕ G2, the symmetric difference between the two graphs, in a
globally ordered way. However, this is difficult to apply to chain B because fixing a
specific edge may not be atomic, i.e. from the proof of Theorem 5.2 it may take up to
4 swaps to correctly connect a vertex with an end point if there are conflicts with the
other degree neighborhoods. These swaps take place in other degree neighborhoods
and are not local moves. Therefore, this introduces new errors that must be fixed, but
can not be incorporated into G1 ⊕G2. In addition, step (4) also prevents us from using
path coupling as a proof of the mixing time.
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Given that bounding the mixing time of this chain seems to be difficult with-
out new techniques or ideas, we use a series of experiments that substitute the
autocorrelation time for the mixing time.

6.1. Autocorrelation Time
Autocorrelation time is a quantity that is related to the mixing time and is popular
among physicists. We will give a brief introduction to this concept, and refer the reader
to Sokal’s lecture notes for further details and discussion [Sokal 1996].

The autocorrelation of a signal is the cross-correlation of the signal with itself given
a lag t. More formally, given a series of data 〈Xi〉 where each Xi is a drawn from
the same distribution X with mean µ and variance σ, the autocorrelation function is
RX(t) = E[(Xi−µ)(Xi−t−µ)]

σ2 .
Intuitively, the inherent problem with using a Markov Chain sampling method is

that successive states generated by the chain may be highly correlated. If we were able
to draw independent samples from the stationary distribution, then the autocorrela-
tion of that set of samples with itself would go to 0 as the number of samples increased.
The autocorrelation time is capturing the size of the gaps between sampled states of
the chain needed before the autocorrelation of this ‘thinned’ chain is very small. If the
thinned chain has 0 autocorrelation, then it must be exactly sampled from the station-
ary distribution. In practice, when estimating the autocorrelation from a finite number
of samples, we do not expect it to go to exactly 0, but we do expect it to ‘die away’ as
the number of samples and gap increases.

Definition 6.1. The exponential autocorrelation time is τexp,X =
lim supt→∞

t
− log |RX(t)| [Sokal 1996].

Definition 6.2. The integrated autocorrelation time is τint,X = 1
2

∑∞
t=−∞RX(t) =

1
2 +

∑∞
t=1RX(t) [Sokal 1996].

The difference between the exponential autocorrelation time and the integrated au-
tocorrelation time is that the exponential autocorrelation time measures the time it
takes for the chain to reach equilibrium after a cold start, or ‘burn-in’ time. The inte-
grated autocorrelation time is related to the increase in the variance over the samples
from the Markov Chain as opposed to samples that are truly independent. Often, these
measurements are the same, although this is not necessarily true.

We can substitute the autocorrelation time for the mixing time because they are,
in effect, measuring the same thing - the number of iterations that the Markov Chain
needs to run for before the difference between the current distribution and the station-
ary distribution is small. We will use the integrated autocorrelation time estimate.

6.2. Experimental Design
We used the Markov Chain B in two different ways. First, for each of the smaller
datasets, we ran the chain for 50,000 iterations 15 times. We used this to calculate the
autocorrelation values for each edge for each lag between 100 and 15,000 in multiples
of 100. From this, we calculated the estimated integrated autocorrelation time, as well
as the iteration time for the autocorrelation of each edge to drop under a threshold of
0.001. This is discussed in Section 6.4.

We also replicated the experimental design of Raftery and Lewis [Raftery and Lewis
1995]. Given our estimates of the autocorrelation time for each size graph in Sec-
tion 6.4, we ran the chain again for long enough to capture 10,000 samples where
each sample had x iterations of the chain between them. x was chosen to vary from
much smaller than the estimated autocorrelation time, to much larger. From these
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samples, we calculated the sample mean for each edge, and compared it with the ac-
tual mean from the joint degree matrix. We looked at the total variational distance
between the sample means and actual means and showed that the difference appears
to be converging to 0. We chose the mean as an evaluation metric because we were able
to calculate the true means theoretically. We are unaware of another similarly simple
metric.

We used the formulas for empirical evaluation of mixing time from page 14 of Sokal’s
survey [Sokal 1996]. In particular, we used the following:

— The sample mean is µ = 1
n

∑n
i=1 xi.

— The sample unnormalized autocorrelation function is Ĉ(t) = 1
n−t

∑n−t
i=1 (xi−µ)(xi+t−

µ).
— The natural estimator of RX(t) is ρ̂(t) = Ĉ(t)/Ĉ(0)

— The estimator for τint,X is τ̂int = 1
2

∑n−1
t=−(n−1) λ(t)ρ̂(t) where λ is a ‘suitable’ cutoff

function.

Data Sets. We have used several publicly available datasets, Word Adjacen-
cies [Newman 2006b], Les Miserables [Knuth 1993], American College Football [Gir-
van and Newman 2002], the Karate Club [Zachary 1977], the Dolphin Social Net-
work [Lusseau et al. 2003], C. Elegans Neural Network (celegans) [Watts and Strogatz
1998; White et al. 1986], Power grid (power) [Watts and Strogatz 1998], Astrophysics
collaborations (astro-ph) [Newman 2001], High-Energy Theory collaborations (hep-
th) [Newman 2001], Coauthorships in network science (netscience) [Newman 2006b],
and a snapshot of the Internet from 2006 (as-22july) [Newman 2006c]. In the following
|V | is the number of nodes, |E| is the number of edges and |J | is the number of non-zero
entries in the joint degree matrix.

Table I. Datasets

Dataset |E| |V | |J |
AdjNoun 425 112 159
as-22july 48,436 22,962 5,496
astro-ph 121,251 16,705 11,360
celegans 2,359 296 642
Dolphins 159 62 61
Football 616 115 18
hep-th 15,751 8,360 629
Karate 78 34 40
LesMis 254 77 99

netscience 2,742 1,588 184
power 6,594 4,940 108

Details about the datasets, |V | is the number
of nodes, |E| is the number of edges and |J | is
the number of unique entries in the J .

6.3. Relationship Between Mean of an Edge and Autocorrelation
For each of the smaller graphs, AdjNoun, Dolphins, Football, Karate and LesMis, we
ran the Markov Chain 10 times for 50,000 iterations and collected an indicator vari-
able for each potential edge. For each of these edges, and each run, we calculated the
autocorrelation function for values of t between 100 and 15,000 in multiples of 100. For
each edge, and each run, we looked at the t value where the autocorrelation function
first dropped below the threshold of 0.001. We then plotted the mean of these values
against the mean of the edge, i.e. if it connects vertices of degree di and dj (where
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Fig. 10. The time for an edge’s estimated autocorrelation function to pass under the threshold of 0.001
versus µe for that edge for LesMis and AdjNoun from L to R.

di 6= dj) then µe = Jdi,dj/didj or µe = Jdi,di/
(
di
2

)
otherwise. The three most useful plots

are given in Figures 10 and 11 as the other graphs did not contain a large range of
mean values.

From these results, we identified a potential relationship between µe and the time
to pass under a threshold. Unfortunately, none of our datasets contained a significant
number of edges with larger µe values, i.e. between 0.5 and 1. In order to test this
hypothesis, we designed a synthetic dataset that contained the many edges with values
of µe at i

20 for i = 1, · · · 20. We describe the creation of this dataset in the appendix.
The final dataset we created had 326 edges, 194 vertices and 21 distinct J entries.

We ran the Markov Chain 200 times for this synthetic graph. For each run, we calcu-
lated the threshold value for each edge. Figure 11 shows the edges’ mean vs its mean
time for the autocorrelation value to pass under 0.001. We see that there is a roughly
symmetric curve that obtains its maximum at µe = 0.5.
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Fig. 11. The time for an edge’s estimated autocorrelation function to pass under the threshold of 0.001
versus µe for that edge for Karate and the synthetic dataset. The synthetic dataset has a larger range of µe
values than the real datasets and a significant number of edges for each value.

This result suggests a way to estimate the autocorrelation time for larger graphs
without repeating the entire experiment for every edge that could possibly appear.
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Fig. 12. The exponential drop-off for Karate ap-
pears to end after 400 iterations.
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Fig. 13. The exponential drop-off for Dolphins
appears to end after 600 iterations.

One can calculate µe for each edge from the JDM and sample edges with µe around
0.5. We use this method for selecting our subset of edges to analyze. In particular, we
sampled about 300 edges from each of the larger graphs. For all of these except for
power, the µe values were between 0.4 and 0.6. For power, the maximum µe value is
about 0.15, so we selected edges with the largest µ values.

6.4. Autocorrelation Values
For each dataset and each run we calculated the unnormalized autocorrelation values.
For the smaller graphs, this entailed setting t to every value between 100 and 15,000
in multiples of 100. We randomly selected 1 run for each dataset and graphed the
autocorrelation values for each of the edges. We present the data for the Karate and
Dolphins datasets in Figures 12 and 13. For the larger graphs, we changed the starting
and ending points, based on the graph size. For example, for Netscience was analyzed
from 2,000 to 15,000 in multiples of 100, while as-22july was analyzed from 1,000 to
500,000 in multiples of 1,000.

All of the graphs exhibit the same behavior. We see an exponential drop off initially,
and then the autocorrelation values oscillate around 0. This behavior is due to the
limited number of samples, and a bias due to using the sample mean for each edge.
If we ignore the noisy tail, then we estimate that the autocorrelation ‘dies off ’ at the
point where the mean absolute value of the autocorrelation approximately converges,
then we can locate the ‘elbow’ in the graphs. This estimate for all graphs is given in
Table III at the end of this Section.

6.5. Estimated Integrated Autocorrelation Time
For each dataset and run, we calculated the estimated integrated autocorrelation time.
For the datasets with fewer than 1,000 edges, we calculated the autocorrelation in lags
of 100 from 100 to 15,000 for each dataset. For the larger ones, we used intervals that
depended on the total size of the graph. We estimate ρ̂(t) as the size of the intervals
times the sum of the values. The cut-off function we used for the smaller graphs was
λ(t) = 1 if 0 < t < 15, 000 and 0 otherwise. This value was calculated for each edge. In
Table II we present the mean, maximum and minimum estimated integrated autocor-
relation time for each dataset over the runs of the Markov Chain using three different
methods. For each of the edges, we first calculated the mean, median and max esti-
mated integrated autocorrelation value over the various runs. Then, for each of these
three values for each edge, we calculated the max, mean and min over all edges. For
each of the graphs, the data series representing the median and max have each had
their x-values perturbed slightly for clarity.
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Table II. A summary of the Estimate Integrated Autocorrelation Times

Dataset |E| mean: mean max min
Karate 78 288.92 444.1 221.13

Dolphins 159 383.21 553.84 256.13
LesMis 254 559.77 931.35 129.45

AdjNoun 425 688.71 1154.9 156.49
Football 616 962.42 2016.9 404.77
celegans 2,359 3340.2 4851.4 2458.8

netscience 2,742 1791.4 3147.2 1087.7
power 6,594 6624.5 17933 2166.9
hep-th 15,751 26552 36816 14976

as-22july 48,436 89637 139280 60627
astro-ph 121,251 121860 298970 37706

median: mean max min
Karate 78 288.31 443 217.63

Dolphins 159 377.4 550.99 211.44
LesMis 254 542.43 895.57 57.492

AdjNoun 425 659.06 1160.3 66.851
Football 616 925.97 1646.9 349.12
celegans 2,359 3235.7 4861.4 2323.6

netscience 2,742 1658.3 3033.2 937.8382
power 6,594 4768.8 16901 250.6012
hep-th 15,751 25608 37004 14130

as-22july 48,436 87190 152490 58493
astro-ph 121,251 119900 321730 46830

maximum: mean max min
Karate 78 382.59 608.06 268.95

Dolphins 159 528.86 1134.1 397.35
LesMis 254 894.08 2598.6 342.76

AdjNoun 425 1186.1 4083.6 350.97
Football 616 1546.4 7514.3 967
celegans 2,359 4844.6 7836.9 3065.5

netscience 2,742 3401 7404 1894.7
power 6,594 20599 54814 7074.7
hep-th 15,751 46309 64936 25753

as-22july 48,436 121930 256520 76214
astro-ph 121,251 152930 408000 84498

Mean refers to taking the mean autocorrelation time for each edge,
and then the mean, min and max of these values over all measured
edges. Similarly, the next set of results is the median for each edge,
with the min, mean and max reported. Finally, maximum is the max
for each edge, again with the mean, min and max reported.

These values are graphed on a log-log scale plot. Further, we also present a graph
showing the ratio of these values to the number of edges. The ratio plot, Figure 15,
suggests that the autocorrelation time may be a linear function of the number of edges
in the graph, however the estimates are noisy due to the limited number of runs.

All three metrics give roughly the same picture. We note that there is much higher
variance in estimated autocorrelation time for the larger graphs. If we consider the
evidence of the log-log plot and the ratio plot, we suspect that the autocorrelation time
of this Markov Chain is linear in the number of edges.

6.6. The Sample Mean Approaches the Real Mean for Each Edge
Given the results of the previous experiment estimating the integrated autocorrelation
time, we next executed an experiment suggested by Raftery and Lewis [Raftery and
Lewis 1995]. First we note that for each edge e, we know the true value of P (e ∈
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Fig. 16. The Dolphin Dataset with 5,000 to 40,000
samples
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Fig. 17. The Karate Dataset with 5,000 to 40,000
samples
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Fig. 19. The AS-22July06 Dataset with 20,000
samples

G|G has J ) is exactly Jk,l

DkDl
or Jk,k

(Dk
2 )

if e is an edge between degrees k and l. This is

because there are DkDl potential (k, l) edges that show up in any graph with a fixed
J , and each graph has Jk,l of them. If we consider the graphs as being labeled, then
we can see that each edge has an equal probability of showing up when we consider
permutations of the orderings.

Thus, our experiment was to take samples at varying intervals, and consider how the
sample mean of each edge compared with our known theoretical mean. For the smaller
graphs, we took 10,000 samples at varying gaps depending on our estimated integrated
autocorrelation time and repeated this 10 times. Additionally, we saw that the total
variational distance quickly converged to a small, but non-zero value. We repeated
this experiment with 20,000 samples and, for the two smallest graphs, Karate and
Dolphins, we repeated the experiment with 5,000 and 40,000 samples. These results
show that this error is due to the number of samples and not the sampler. For the
graphs with more than 1,000 edges, each run resulted in 20,000 samples at varying
gaps, and this was repeated 5 times. We present these results in Figures 18 through
28. If Se,g is the sample mean for edge e and gap g, and µe is the true mean, then the
graphed value is

∑
e |Se,g − µe|/

∑
e µe.
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Fig. 21. The Celegans Dataset with 20,000 sam-
ples
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Fig. 22. The Football Dataset with 10,000 and
20,000 samples
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Fig. 23. The Hep-TH Dataset with 20,000 samples
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Fig. 24. The LesMis Dataset with 10,000 and
20,000 samples
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Table III. Summary of Estimates

|E| Max EI Mean Conv. Thresh.
AdjNoun 425 1,186 900 700

AS-22July 48,436 256,520 95,000 156,744
Astro-PH 121,251 408,000 120,000 343,154
Celegans 2,359 7,836.9 3,750 7,691
Dolphins 159 528 400 600
Football 616 1,546 1,000 900
Hep-TH 15,751 64,936 28,000 22,397
Karate 78 382 175 400
LesMis 254 894 800 1,000

Netscience 2,742 7,404 2,000 7,017
Power 6,594 54,814 8,000 7,270

The values are the Maximum Estimated Integrated Autocorre-
lation time (Max EI, the third column of Table II), the Sample
Mean Convergence iteration number, and the time to drop un-
der the Autocorrelation Threshold. The Autocorrelation thresh-
old was calculated as when the average absolute value of the
autocorrelation was less than 0.0001

In all of the figures, the line runs through the median error for the runs and the
error bars are the maximum and minimum values. We note that the maximum and
minimum are very close to the median as they are within 0.05% for most intervals.
These graphs imply that we are sampling uniformly after a gap of 175 for the Karate
graph. For the dolphin graph, we see very similar results, and note that the error
becomes constant after a sampling gap of 400 iterations.

For the larger graphs, we varied the gaps based on the graph size, and then focused
on the area where the error appeared to be decreasing. Again, we see consistent re-
sults, although the residual error is higher. This is to be expected because there are
more potential edges in these graphs, so we took relatively fewer samples per edge. A
summary of the results can be found in Table III.

6.7. Summary of Experiments
Based on the results in this table, our recommendation would be that running the
Markov Chain for 5m steps would satisfy all running time estimates except for Power’s
results for the Maximum Estimated Integrated Autocorrelation time. This estimate is
significantly lower than the result for Chain A that was obtained using the standard
theoretical technique of canonical paths.
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7. CONCLUSIONS
This paper makes two primary contributions. The first is the investigation of Markov
Chain methods for uniformly sampling graphs with a fixed joint degree distribution.
Previous work shows that the mixing time of A is polynomial, while our experiments
suggest that the mixing time of B is also polynomial. The relationship between the
mean of an edge and the autocorrelation values can be used to efficiently experiment
with larger graphs by sampling edges with mean between 0.4 and 0.6 and repeating
the analysis for just those edges. This was used to repeat the experiments for larger
graphs and to provide further convincing evidence of polynomial mixing time.

Our second contribution is in the design of the experiments to evaluate the mixing
time of the Markov Chain. In practice, it seems the stopping time for sampling is
often chosen without justification. Autocorrelation is a simple metric to use, and can be
strong evidence that a chain is close to the stationary distribution when used correctly.

APPENDIX
Designing Synthetic Data. Our goal was to represent all of the potential means for i

20
for 0 < i ≤ 20. We note that 20 factors into 4 and 5, so we want to first fix some degrees
such that Dk = 4 and Dl = 5. For convenience, because the maximum number of edges
we will be assigning is 20, we will pick these degrees to be K = {20, 21, 22, 23, 24} for
Dk = 4 and L = {25, 26, 27, 28} for Dl = 5. The number of each we picked was to
guarantee that there were at least 20 combinations of edge types. We can now assign
the values 1−20 arbitrarily to JK×L. This assignment clearly satisfies that Jk,l ≤ DkDl
so far.

Now, we must fill in the rest of J so that D is integer valued for degrees. One way is
to note that we should have 4×20 degree 20 edges. We can sum the number of currently
allocated edges with one end point of degree 20, call this x and set J1,20 = 80−x. There
are many other ways of consistently completing J , such as assigning as many edges
as possible to the K ×K and L× L entries, like J20,21. This results in a denser graph.
For the synthetic graph used in this paper, we completed J by adding all edges as
(1, 20), (1, 21) etc edges. We chose this because it was simple to verify and it also made
it easy to ignore the edges that were not of interest.
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