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Abstract. Identifying small groups of lines, whose removal would cause a severe blackout, is
critical for the secure operation of the electric power grid. We show how power grid vulnerability
analysis can be studied as a bilevel mixed integer nonlinear programming problem. Our analysis
reveals a special structure in the formulation that can be exploited to avoid nonlinearity and ap-
proximate the original problem as a pure combinatorial problem. The key new observation behind
our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility
boundary of the equations that describe the flow of power in the network) and the Laplacian matrix
in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial
problem is known as the network inhibition problem, for which we present a mixed integer linear
programming formulation. Our experiments on benchmark power grids show that the reduced com-
binatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized
problems with more than 16,520 power lines.
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1. Introduction. Robust operation of a power grid requires anticipation of com-
ponent outages that could lead to catastrophic blackouts. The current practice is to
check for single contingencies to ensure the system stays intact after a single line
outage. However, a small number of line outages (e.g., 3–5) can cause catastrophic
blackouts, as evidenced by the Northeast Blackout in August 2003. In this article, we
consider the power network vulnerability analysis problem, which aims to find small
groups of lines, whose loss can cause a severe blackout. Specifically, we pose the prob-
lem of computing the minimum number of line failures that will cause a damage of at
least a specified severity.

We consider the problem in a static sense by examining the relation between
the operating point, which describes the current generation and consumption at each
node in the network, and the feasibility boundary of the power flow equations. The
severity of the events we identify could be different when dynamics and cascading
events are considered. Our main focus here, therefore, is to identify simple events
that can trigger a severe blackout, not to analyze its consequences, which requires
solving differential algebraic equations with discrete variables. Cascading events start
with a significant disturbance that forces system elements to operate beyond their
capabilities. For this reason, we look for minimal changes in the network topology
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that push the current operating point significantly outside of the feasibility region
determined by the power flow equations.

This problem statement leads to a bi-level optimization problem since we are
looking for minimal changes in network topology that maximize the distance between
the current operating point and the new feasibility region. In this article, we present
a bilevel mixed integer nonlinear programming (minlp) formulation for the power
network vulnerability analysis problem. The outer level seeks a minimal change in
the topology, and uses binary variables to specify lines to remove. The inner level
implements a load shedding mechanism and computes the distance of the operating
point to a new feasibility boundary, as a measure of the severity of the disturbance
to the system. For this purpose, we solve a nonlinear optimization problem that
optimally decreases the generation and consumption in the system to restore feasibil-
ity. We analyze the optimality conditions for the load shedding problem, present the
Karush-Kuhn-Tucker conditions for optimality, study the structure of the power flow
Jacobian, and describe an augmented system for which we prove that Mangasarian-
Fromovitz constraint qualification (MFCQ) conditions are satisfied. We use these re-
sults to present a single-level minlp formulation of the vulnerability analysis problem
that avoids solving nested optimization problems by replacing the inner optimization
problem that computes the distance between the current operating point and the new
feasibility region, with its corresponding KKT conditions.

A more detailed analysis of the structure of a feasible solution to our bilevel minlp
formulation reveals a special structure that can be exploited to reduce the problem
to a pure combinatorial problem. We show that at a feasible solution to our bilevel
minlp formulation, the power network will be divided into two groups: one with excess
generation and one with excess load, and the optimal load shedding strategy requires
that in the load-rich region, we decrease only the consumption and keep the generation
as is. Similarly in the generation-rich region, we decrease only the generation and keep
the consumption as is. Moreover, we prove that at least one line that connects these
two regions works at its maximum capacity to transfer power from the generation-rich
side to the other side. This combinatorial structure of a feasible solution means that
an optimal solution seeks a decomposition with maximum load/generation mismatch
and minimum transmission capability between the the two regions. This observation
leads to our major result: the original bilevel minlp problem can be approximated
by a pure combinatorial problem, namely the network inhibition problem. With
this reduction, we directly seek the values of discrete variables in the formulation
without solving the nonlinear equations, simplifying the problem complexity both in
a theoretical and practical sense. It is worth noting that our reduction respects the
nonlinearity of the problem, and does not linearize the power flow equations. It is the
special combinatorial structure in this nonlinear problem that enables our reduction
to a combinatorial problem.

Identification of multiple contingencies has recently drawn much interest both
from the optimization and power systems communities. Salmeron, Wood, and Baldick
[28] employed a linearized power flow model and used a bilevel optimization framework
along with mixed-integer programming to analyze the security of the electric grid. The
critical elements of the grid were identified by maximizing the long-term disruption in
the power system operation. The bilevel optimization framework has also been used
by Arroyo and Galiana [20]. In all of these formulations the optimization framework
appears promising for such types of problems where the critical system elements
that make the system vulnerable to failures must be identified. Donde et al. [11],
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proposed a method that connected the feasibility boundary of power flow equations
with spectral graph theory, when voltages are fixed at their nominal values, and only
active power flow constraints are considered. Later, Donde et al. [12] extended
their approach to include reactive power and proposed a mixed integer nonlinear
programming formulation to identify the most significant blackout that can be caused
by a specified number of lines or to identify the minimum number of lines to cause
a blackout of specified severity. More recently, Lesieutre et al. [21, 22] approached
this problem from a graph theoretical perspective, by looking for subgraphs in a
given graph that are loosely connected to the rest of the graph and have a significant
load/generation mismatch. Grijalva and Sauer [17,18] related topological cuts in the
power network with the static collapse based on branch complex flows. He et al. [19]
used a voltage stability margin index to identify weak locations in a power network.
Bienstock and Mattia used the direct current power flow model and mixed integer
linear programming to find the most cost-effective way to increase edge capacities to
avoid cascading outages for a given set of failure scenarios [3]. Oliviera et al. have
used similar models and techniques to study how to add power lines to improve system
resilience [23]. Pinar et al. proposed a method to compute criticality of lines that
can be used in a branching method [26]. In addition to these largely static analyses,
the study of system dynamics for cascading events has also drawn interest. In [4,6,8]
Dobson et al. used a long-term model of the grid to study how failure of a component
affects other components in the system, to reveal failure statistics consistent with
those observed in the power grid. The same authors have also studied probabilistic
models with the aim to better understand cascade propagation [5, 9, 10].

The remainder of this article is organized as follows. Section 2 reviews matrix
representations of graphs and the basics of spectral graph theory that are relevant to
this article. In Section 3, we discuss power flow equations, introduce load shedding,
and present a bilevel minlp formulation for the power network vulnerability analysis
problem. Section 4 presents the KKT conditions for the load shedding problem, and
describes an augmented system for which we prove the MFCQ conditions are satisfied.
Further analysis of the feasibility conditions in Section 5 reveal a special combinatorial
structure in a feasible solution to the bilevel minlp formulation of the problem. We
exploit this combinatorial structure to approximate the original formulation with a
pure combinatorial problem in Section 6, where we describe the network inhibition
problem and its integer programming formulation. We conclude with Section 7.

2. Graphs and matrices. Matrix representations of graphs have long been
used to apply algebraic techniques to analyze graphs. Here we review the arc-node
incidence matrix and the Laplacian matrix, as two of the commonly used representa-
tions for graphs. The arc-node incidence matrix of a graph is used in flow problems,
and we will use this representation to present power flow equations. The Laplacian
matrix for graphs on the other hand, underlies spectral graph theory, which can be
used to analyze the connectedness of graphs. Let G = (V,E) be a graph with n
vertices and m edges. We use (vi, vj) to denote an edge that goes from vertex vi to
vertex vj . In this article, we define the arc-node incidence matrix, A, of this graph
as an m × n matrix, where the j-th column of A represents the j-th vertex, vj , and
the i-th row represents the the i-th edge, ei, in G. Each row has only two nonzeros
at the columns that represent the end vertices of the respective edge. The entry is -1
or 1, depending on whether the respective edge is directed from or to the correspond-
ing vertex, respectively. To avoid confusion on the notation, note that the transpose
of this matrix, where rows and columns represent vertices and edges, respectively,
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Fig. 2.1. A sample directed graph

is more commonly used. Our choice here is for consistency with the power systems
literature.

Formally, we use aij to denote the matrix entry at the i-th row and the j-th
column of A, which is defined as follows.

aij =


−1 if ei = (vj , u) ∈ E
1 if ei = (u, vj) ∈ E
0 otherwise

The arc-node incidence matrix A of the graph in Fig. 2.1 is as follows.

A =



−1 1
−1 1

1 −1
−1 1
−1 1

−1 1
−1 1

−1 1


The Laplacian of a graph G = (V,E) is an n × n matrix, where each row and

column represents a vertex in the graph. The diagonal entry is equal to the degree of
the associated vertex. An off-diagonal entry is -1, if the associated vertices of the row
and column are connected in the graph, and 0 otherwise. Formally, let di denote the
degree of vertex vi, and let lij denote the entry of the Laplacian matrix at the i-th
row and the j-th column, which we define as follows.

lij =


di if i = j

−1 if (vi, vj) ∈ E or (vj , vi) ∈ E
0 otherwise

The Laplacian of the graph in Fig. 2.1 is

L =


2 −1 −1
−1 4 −1 −1 −1
−1 −1 3 −1

−1 2 −1
−1 −1 3 −1

−1 −1 2

 .
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We note that L can also be defined as

L = ATA, (2.1)

where A is the arc-node incidence matrix of the graph. This property holds regardless
of the directions of edges in G. It is possible to add edge weights to the definition of
Laplacian of a graph. In this case, the diagonal entry becomes the sum of weights of
edges adjacent to the respective vertex, as opposed to the degree of this vertex, and
the negative of the edge weight replaces “-1” as the off-diagonal entries. In this case,
Eq. (2.1) can be rephrased as

Lw = ATDwA, (2.2)

where Dw is a diagonal matrix so that the i-th diagonal entry is the weight of edge
ei, and Lw is the weighted Laplacian. Observe that if an arc is removed in the graph,
then the corresponding Lw is obtained by setting the corresponding diagonal entry of
Dw to zero.

The Laplacian of a graph is the basic element of spectral graph theory. Let
λ0 ≤ λ1 ≤ . . . ≤ λn−1 be the eigenvalues of L. The Laplacian matrix is symmetric and
semi-definite, and thus all eigenvalues are real and nonnegative. It is easy to see that
λ0 = 0, since all rows and columns of L add up to zero, and thus the vector, e, whose
entries are all the same and nonzero, is a singular vector for L. The smallest nontrivial
eigenvalue λ1 is more interesting due to its applications. Fiedler called λ1 the algebraic
connectivity of G [14], as it provides a metric for the connectedness of a graph. If
the graph inherently involves two loosely coupled sub-graphs, then λ1 will be small.
Fiedler also proved that λ1 will decrease as we remove edges from the original graph,
and it will be zero when the graph is decoupled into two disconnected components. A
fundamental result in spectral graph theory generalizes this observation so that the
multiplicity of the eigenvalue 0 gives the number of connected components in G.

Lemma 2.1. Let L be the Laplacian of graph G, and let λ0 ≤ λ1 ≤ . . . ≤ λn−1

be its eigenvalues. If λi = 0 and λi+1 6= 0, then G has exactly i + 1 connected
components.

The eigenvectors for the eigenvalue 0 reflect the connected components, as vertices
of the same component will have the same value for their entries on these eigenvectors.

3. Problem formulation. Our focus in this work is to identify simple events
that can trigger a cascading event, not to analyze consequences of cascading. Cas-
cading events start with a significant disturbance to the system, and continue with
failures of other system components, as these components are pushed beyond their
capabilities, while the system is trying to avert a blackout. It will be the initial sig-
nificant disturbance that we seek in this work, and thus we focus on static power flow
analysis. Below, we first describe our power flow model and then describe how we
measure the significance of an event. Finally, we cast the power grid vulnerability
problem as a bilevel mixed integer nonlinear programming (minlp) problem.

3.1. Power system model. We consider a lossless power system with a con-
nected network of m buses (nodes) and n lines (edges). We assume the voltages at
the buses are fixed, and thus the dependence of real power injections at buses on the
phase angle variables θ can be fully described by active power constraints, making
the reactive power constraints unnecessary. The power flowing through the lines can
be expressed as

Pline = B sin(Aθ),
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Fig. 3.1. Space of real power injections showing feasibility boundaries for various line statuses.
Γ = 0 correspond to the initial feasibility boundary. Γ1 and Γ2 include broken power lines, and
illustrate how the feasibility region collapses with missing lines.

where Pline is a vector of power flows over the lines, B is a diagonal matrix whose
diagonal entries correspond to line admittances, A is a node-arc incidence matrix that
represents the power network, and sin(Aθ) denotes a vector whose i-th component
is sin((Aθ)i). A vector of power injections P is then obtained by adding the power
flowing out of the buses into the network.

ATB sin(Aθ)− P = 0, (3.1)

with Aθ taking values between −π/2 and π/2, as required for steady state stability.
We will refer to (3.1) as the power flow equations. Details and generalizations of this
model can be found in [16,29].

Here, we will work with a given topology of the power grid and investigate the
endurance of the grid to changes in topology. To extend the power flow equations
for changing topologies, we introduce binary-valued line parameters, γi that indicate
whether the ith line is in service. That is,

γi =
{

0 if the line is in service,
1 if the line is out of service.

For simplicity of notation, we define Γ = diag(1−γ) as a diagonal matrix, whose i-th
diagonal entry is 1− γi. The power flow model (3.1), now with line parameters, can
be expressed as

F (A,B,Γ, θ, P ) = ATBΓ sin(Aθ)− P = 0. (3.2)

Removing lines from the network has the effect of collapsing the feasibility region
of solutions to (3.2), as illustrated in Fig. 3.1. This figure shows the schematic view of
(3.2) in P space. When all lines under consideration are in service, the curve shown
as a solid line represents a feasibility boundary for the power flow constraints. In the
normal case, the system operating point lies within the feasible region. When a line
is removed from service, the feasibility boundary comes closer to the operating point
(marked as P ∗ in Fig. 3.1), increasing the system’s vulnerability to failure. Eventually,
the removal of a line pushes the boundary past the operating point (dotted-lined
curve), making system operation infeasible due to the absence of a solution of (3.2).
This implies a blackout, and averting this blackout requires changing the loads and
generation, and hence moving the operating point P ∗, which we discuss next.
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3.2. Measuring the severity of a blackout. Load shedding means cutting off
supply to some loads when the demand becomes greater than the supply. While its
common use is for high energy-demand times, broken power lines create subregions
for which the demand cannot be met with the reduced transmission capability of
the grid, even though supply is available in other parts of the system. Here, we use
load shedding to minimally change load and generation to restore feasibility to the
system to avert a blackout. From a mathematical point, a blackout corresponds to the
current operating point, P , being outside of the feasibility region, and load shedding
corresponds to finding the closest point to P on the feasibility boundary, subject to
some engineering constraints. The vector Z, which moves the operating point P to
the feasibility boundary, describes how to restore feasibility with minimum changes
in loads, and the L1–norm of this vector can be used as an estimate of the size of a
blackout.

Suppose the nodes of the system are divided into two groups: generator nodes
Ng, and load nodes N l. For simplicity of presentation, we will reorder all the vectors
and matrices so that generator nodes precede load nodes. Let ZT = ((Zg)T , (Zl)T )
be the vector that represents the change in power assignment to nodes, where Zg and
Zl denote changes in generations and loads, respectively. By convention,

P li ≤ 0 for all load nodes,
P gi > 0 for all generation nodes.

This requires
Zgi ≤ 0 and Zli ≥ 0

for load shedding. Since we assume a lossless system, the decrease in generation should
match the decrease in consumption (i.e., eTZg = −eTZl), thus it is sufficient to look
at only one of Zg and Zl to measure the total volume of load shed. An optimal load
shedding strategy can be computed by solving the following optimization problem.

min
Z

− eTZg (3.3)

s.t. F (A,B,Γ, θ, P + Z) = 0 (3.4)

P l ≤ P l + Zl ≤ 0 (3.5)
0 ≤ P g + Zg ≤ P g (3.6)
− π/2 ≤ Aθ ≤ π/2 (3.7)

Here, (3.4) corresponds to the power flow equation. Constraints (3.5) and (3.6) guar-
antee that load and generation do not increase and remain as load and generation,
respectively. The last constraint (3.7) ensures steady state stability. The minus sign
in the objective (3.3) is because Zg are nonpositive as they represent how much gen-
eration will be cut.

3.3. Power network vulnerability analysis as a bilevel MINLP prob-
lem. The power network vulnerability analysis problem can be posed as a bilevel
mixed integer nonlinear optimization problem, where in the outer level we look for
the critical lines, which corresponds to the combinatorial part of the problem, and in
the inner level we measure the blackout severity by solving the load shedding prob-
lem, which corresponds to the nonlinear part of the problem. For a formal definition,
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let LS(A,B,Γ, θ, P ) denote an instance of the load shedding problem in Eqs. (3.3)–
(3.7), and let arg minLS(A,B,Γ, θ, P ) denote an optimal solution to this problem.
The power network vulnerability analysis problem can then be defined as follows.

min
θ,γ,Z

eT γ (3.8)

s.t. Z = arg minLS(A,B,Γ, θ, P ) (3.9)

− eTZg ≥ S (3.10)

γi ∈ {0, 1} for i = 1, 2, . . . ,m (3.11)

where S > 0 is a specified severity. In general, bilevel optimization problems are
hard to solve and in the next two sections, we will present approximations to this
formulation.

4. Reduction to a single level MINLP. This section analyzes the necessary
conditions of optimality for the inner optimization problem, which measures the black-
out severity. We first describe the Karush-Kuhn-Tucker (KKT) conditions and then
the Mangasarian-Fromovitz constraint qualification (MFCQ) conditions for the load-
shedding problem. Then we discuss the structure of the Jacobian of the power flow
equations, which we use to build an augmented system for which MFCQ conditions
are satisfied. Finally, we present a single level MINLP formulation for the power grid
vulnerability analysis problem, which approximates the bi-level MINLP formulation
in the previous section, by replacing the inner optimization problem with its KKT
conditions. In [12], a similar formulation is presented for a full power flow model with
active and reactive power equations, and a slightly different load-shedding model.

4.1. KKT conditions for the load shedding problem. The Lagrangian L
corresponding to (3.3)–(3.7) is

L = −eTZg + λTF (θ, P + Z) + µT1 (−Zl) + µT2 (P l + Zl) + µT3 (−P g − Zg)
+ µT4 (Zg) + µT5 (−Aθ − π/2) + µT6 (Aθ − π/2) (4.1)

where µ1, . . . , µ6, and λ are vectors of Lagrange multipliers. Karush-Kuhn-Tucker
(KKT) conditions for the problem in (3.3)–(3.7) are as follows.

∇ZL =
(
−e
0

)
+ λT

∂F

∂Z
+
(
µ4 − µ3

µ2 − µ1

)
= 0 (4.2)

∇θL = λT
∂F

∂θ
+AT (µ6 − µ5) = 0 (4.3)

F (A,B,Γ, θ, P + Z) = 0 (4.4)
µ1.(−Zl) = 0 (4.5)

µ2.(P l + Zl) = 0 (4.6)
µ3.(−P g − Zg) = 0 (4.7)

µ4.Z
g = 0 (4.8)

µ5.(−π/2−Aθ) = 0 (4.9)
µ6.(Aθ − π/2) = 0 (4.10)

µ1, . . . , µ6 ≥ 0 (4.11)



Vulnerability Analysis of the Power Grid 9

The notation “.” in (4.5)–(4.10) is used to indicate component-wise multiplication
of associated vectors. (4.2) and (4.3) correspond to the partial derivatives of L with
respect to Z and θ, respectively, and equations (4.5)–(4.10) correspond to inequality
constraints (3.5)–(3.7). Optimal solutions to problem (3.3)–(3.7) satisfy the KKT
conditions (4.2)–(4.11).

4.2. Mangasarian-Fromovitz constraint qualification conditions. MFCQ
conditions correspond to the set of possible KKT multipliers being bounded, and they
can be stated as follows. Given an optimization problem

min f(x)
s.t. Ci(x) = 0 i ∈ E

Ci(x) ≥ 0 i ∈ I,

let x∗ be an optimal solution, and let A(x∗) be the corresponding set of active con-
straints. There exists a vector w ∈ Rn such that

OCi(x∗)Tw > 0 ∀i ∈ A(x∗) ∩ I (4.12)

OCi(x∗)Tw = 0 ∀i ∈ E (4.13)

and the set of equality constraint gradients OCi(x∗), i ∈ E is linearly independent.
For our problem, let w = (wTθ , w

T
z )T . The constraints (3.7) due to active inequal-

ity constraints on angular differences can be simplified as follows.

wiθ < wjθ if θ∗i − θ∗j = π/2, and nodes i and j are connected. (4.14)

The constraints due to active load shedding constraints (3.5–3.6) can be phrased
as follows.

wiz < 0 if i is a load and Zli = −P li , (4.15)
wiz > 0 if i is a load and Zli = 0, (4.16)
wiz < 0 if i is a generator and Zgi = 0, (4.17)
wiz > 0 if i is a generator and Zgi = −P gi . (4.18)

Finally, we have the MFCQ conditions due to the equality constraints. Let F (x∗)
represent the power flow equations at point x∗. Then we have

OCi(x∗) = (
∂F ∗T

∂θ
,
∂F ∗T

∂Z
)T = (J∗, I)T , (4.19)

whose rows are linearly independent, due to the embedded identity in the second part
of the matrix. Here, we use J∗ to refer to the Jacobian of the power flow equation
with respect to the phase angle variables evaluated at x∗.

Using the identity matrix embedded in (4.19), we can merge this set of constraints
with that of (4.15–4.18) as follows.

(Jwθ)i > 0 if vi is a generator with no power shed. (4.20)
or vi is a load cut down to 0. (4.21)

(Jwθ)i < 0 if vi is a load with no reduction. (4.22)
or vi is a generator cut down to 0. (4.23)

In Section 4.4 we will use these results to describe an augmented system for which
the described MFCQ conditions are satisfied.
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4.3. Structure of the Jacobian of the power flow equations. The Jaco-
bian, J , of power flow equations in (3.2) with respect to θ is

J =
∂F

∂θ
= ATBΓdiag(cos(Aθ))A, (4.24)

where diag(cos(Aθ)) and Γ are diagonal matrices whose i-th entries are cos((Aθ)i)
and 1 − γi, respectively. Observe that B, Γ, and diag(cos(Aθ)) are all diagonal
matrices with nonnegative diagonal entries, since γ is a vector of binary variables and
the angular differences represented by Aθ are in the [−π/2, π/2] range, hence 0 ≤
cos((Aθ)i) ≤ 1. Thus the Jacobian is identical in structure to a weighted Laplacian
in (2.2).

When the diagonal entries in BΓdiag(cos(Aθ)) are all nonzero, J has only a
single zero eigenvalue, since the network under consideration is initially connected.
It is worth noting that when the power flow equation for a reference bus is removed
from (3.2), along with its variable θ, the resulting reduced order Jacobian does not
have a zero eigenvalue, and is singular only when the operating point lies on the
feasibility boundary [2]. We preserve the network structure by retaining the reference
bus in order to be able to draw direct analogies with spectral graph theory. In our
formulation, the Jacobian, J , is always singular with a single zero eigenvalue and the
corresponding eigenvector e = [1, 1, . . . , 1]T .

Recall from Section 2 that removal of an edge appears in the weighted Laplacian
as a zero weight assignment to this edge. In the Jacobian, J in (4.24), this happens
when γi = 1, which corresponds to removal of a line from the network, or when the
angular difference for a line is ∓π/2, which corresponds to capacity of a line being
fully utilized. The second smallest eigenvalue λ1 becomes zero, when the operating
point lies on the feasibility boundary. From spectral graph theory, we know that
λ1 = 0 means that the graph has at least two connected components, as discussed in
Section 2.

The power flow Jacobian, J , is analogous to the residual graph for flow problems in
graph theory, which represents the incremental transmission capability of the network.
In a residual graph, edge capacities correspond to unused edge capacities or used edge
capacities on the reverse arc. The incremental transmission capability of the system
is measured by the total flow capacity from the source to the terminal in the residual
graph. If a group of vertices is disconnected from the source, then we cannot send any
more flow to these vertices. An optimal solution (i.e. the maximum flow) is defined by
an instance of this, where the source and the terminal are disconnected in the residual
graph. In power systems, the flow between two nodes is determined by the sine of the
angular difference between the two nodes, thus the cosine of this angular difference
can be viewed as the residual capacity of this line. When the operating point is on
the boundary of feasibility, there will be a nonempty set of load change vectors that
the system will not be able to respond to, which is reflected by the multiplicity of the
zero eigenvalue being more than 1. By Lemma 2.1, the system is divided into at least
two subgroups that are connected by either saturated lines with angular difference at
∓π/2 or removed lines due to the γ variables.

4.4. An augmented system that satisfies the MFCQ conditions. This
section proves that the MFCQ conditions are satisfied for an augmented system. In
the augmented system, for each node v we add two auxiliary nodes (one generator
vg and one load vl) and two auxiliary edges (corresponding to high impedance lines)
that connect auxiliary nodes vg and vl to v. We set the generation and the load on
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these auxiliary nodes to be equal to the same infinitely small quantity. The small
values ensure that the generation/load distribution in the system is not affected, and
thus the vulnerabilities remain the same. And the high impedance lines guarantee
that the angular differences on these lines will never reach π/2.

We also augment the load shedding problem such that the objective function
contains the load nodes as well as the generation nodes, which only affects the value
of an optimal solution, but not the solution itself. We further adjust the objective
function so that the generation/load shedding on the auxiliary nodes are penalized
more than those of the other nodes. Observe that it is always possible to transfer the
power from the generator to the load of an auxiliary pair with no effect on the rest
of the system. When we set the penalty function high enough, there will be no load
shedding in the auxiliary nodes, which leads to a two-way relation between the optimal
solutions to the original and the augmented system. An optimal solution to the
original problem can be transformed to an optimal solution for the augmented system,
by changing the flow on the auxiliary edges to transfer power from the generator to
the load of each pair. Symmetrically, an optimal solution for the augmented system
defines an optimal solution for the original system.

Our proof is constructive. In the first step of our construction, we construct a
solution that satisfies (4.14). The second step guarantees that (4.20–4.23) are satisfied
for all auxiliary vertices. Then at the third step, (4.20–4.23), are satisified for the
remaining nodes. Updates at each step preserve the feasibility of conditions of previous
steps. Explanation of these steps follow.

Step1. Assigning wi = θi will automatically satisfy (4.14) for the whole system.

Step 2. At the second step, we adjust w values for the auxiliary vertices to satisfy
(4.20–4.23). For an auxiliary generator, we only need to worry about (4.20), since by
construction, load shedding does not affect the auxiliary nodes. Similarly for auxiliary
loads, we only need to worry about (4.22). Consider an auxiliary generator and its
entry wi, for which (4.20) is not satisfied. The corresponding row in the Jacobian
has two entries: a positive entry on the diagonal and a negative entry on the column
of the vertex it is connected to, which add up to 0. By choosing the wi value of the
auxiliray generator larger than that of the node it is connected to, we can guarantee
that (4.20) is satisfied. Symmetrically, for an auxiliary load vertex, choosing its wi,
smaller than that of the node it is connected to satisfies (4.22). At the end of this
intermediate step, (4.20–4.23) are satisfied for all auxiliary nodes.

Step 3. By our analysis in Section 4.3, we know that the (Jw)i value of a node can
be increased or decreased by, respectively, decreasing or increasing the wj values of
any of its neighbors connected to this node with an unsaturated edge. Now consider
a node, for which one of the (4.20–4.23) conditions is not satisfied. That is, we can
linearly increase or decrease the (Jw)i value, by respectively, increasing the wj value
of its auxiliary generator or decreasing the wj value of its auxiliary load. Further
increasing or decreasing the wj values will not violate (4.20) or (4.22) and will not
affect any other nodes. Therefore, we can adjust the w values for the auxiliary nodes
to satisfy all constraints. And this concludes our construction.

Changing our formulation for the augmented system requires redefining A, B,
and P , which describe the system and vector e in Eq. (3.10). For simplicity and
clarity of the presentation however, we will not change the notation in the remainder
of the paper.
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4.5. A MINLP formulation. The power network vulnerability analysis prob-
lem can be formulated as the following minlp problem.

min
θ,γ,z

eT γ (4.25)

s.t. ATBΓ sin(Aθ)− (P + Z) = 0 (4.26)
− π/2 ≤ AΓθ ≤ π/2 (4.27)

Pl ≤ P l + Zl ≤ 0 (4.28)
0 ≤ P g + Zg ≤ Pg (4.29)

− eTZg ≥ S (4.30)(
−e
0

)
− λ+

(
µ4 − µ3

µ2 − µ1

)
= 0 (4.31)

Jλ+ATΓ(µ6 − µ5) = 0 (4.32)

µ1.(−Zl) = 0 (4.33)

µ2.(P l + Zl) = 0 (4.34)
µ3.(−P g − Zg) = 0 (4.35)
µ4.Z

g = 0 (4.36)
µ5.(π/2 +AΓθ) = 0 (4.37)
µ6.(AΓθ − π/2) = 0 (4.38)
µ1, . . . , µ6 ≥ 0 (4.39)
γi ∈ {0, 1} for i = 1, 2, . . . ,m (4.40)

Here, (4.26) and (4.27) guarantee that there is a feasible solution to the power flow
equations at P+Z, and (4.30) enforces that the resulting blackout is no smaller than a
specified severity, S. Inequalities (4.28) and (4.29) are the load shedding constraints,
and (4.31)–(4.39) correspond to the KKT conditions, so that Z satisfies the necessary
conditions for an optimal solution for the load shedding problem. In these equations,
we have substituted ∂F

∂Z = I, and J = ∂F
∂θ . Finally, (4.40) correspond to discrete line

parameters, which indicate whether a line is cut (γi = 1) or active (γi = 0).
This formulation reduces the bi-level optimization problem to a single-level minlp

problem. Next, we will analyze the structure of an optimal solution to the problem
(4.25)–(4.40) to approximate it as a pure combinatorial problem, with a lower com-
plexity, both in theory and in practice.

5. Analysis of the formulation. In this section, we analyze the structure of a
feasible solution to our minlp formulation to reveal a special combinatorial structure
that can be exploited to approximate our minlp formulation with a pure combina-
torial problem. While we will be referring to the single-level minlp formulation, our
analysis does not depend on reducing the bi-level optimization problem to a single-
level optimization problem. Our arguments are based on optimality conditions for
the load-shedding problem, but not necessarily on replacing an optimization problem
with necessary conditions for its optimality. Our reduction enables us to directly seek
the values of binary variables in the problem, without solving the nonlinear equations.

5.1. Structure of a feasible solution. An analysis of the Lagrangian multi-
pliers sheds light onto the structure of a solution for problem (4.25)–(4.40). We will
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show that the system is decomposed into a generation-rich region and a load-rich
region. Then, we will study the flow on the lines between these regions.

5.1.1. Decomposition into load and generation-rich regions. Let λ =
(λgT , λlT )T be partitioned into variables for generator and load nodes, so that we can
split (4.31) into two equations.

−e− λg + µ4 − µ3 = 0 (5.1)
0− λl + µ2 − µ1 = 0 (5.2)

Consider a generator vertex and the associated Lagrangian multiplier λgi . If λgi < −1
then by (5.1), the corresponding µ3 variable must be positive. This requires Zgi +P gi =
0 by (4.35), which means the generation at this node will be zero after load shedding.
If λgi = −1, then the corresponding µ3 and µ4 variables must be equal by (5.1). This
is only possible when they are both zero, since µ3 and µ4 correspond to lower and
upper bounds on P g + Zg. In this case, neither bound is binding and the generation
after load shedding is anything in the range [0, P gi ]. Finally, if λgi > −1 then by (5.1),
the corresponding µ4 variable must be positive. This requires Zgi = 0 by (4.35), which
means that there will be no decrease in the generation at this node.

We can do a similar analysis for the load nodes. Consider a load vertex and the
associated Lagrangian multiplier λli. If λli > 0 then by (5.2), the corresponding µ2

variable must be positive. This requires Zli +P li = 0 by (4.34), which means the load
at this node will be zero after load shedding. If λli = 0, then the corresponding µ1

and µ2 variables must be equal by (5.2). This is only possible when they are both
zero, since µ1 and µ2 correspond to lower and upper bounds on P l +Zl. In this case,
neither bound is binding and the load after shedding is anything in the range [0, P li ].
Finally, if λli < 0 then by (5.2), the corresponding µ1 variable must be positive. This
requires Zli = 0 by (4.35), which means that there will be no decrease in the load at
this node.

This yields the following load-shedding model. For generation nodes,

Zgi = 0 if λi > −1, (5.3)
0 ≤ Zg + P g ≤ P g if λi = −1, (5.4)

Zgi = −P gi if λi < −1. (5.5)

And for loads

Zli = 0 if λi < 0, (5.6)

P l ≤ Zl + P l ≤ 0 if λi = 0, (5.7)

Zli = −P li if λi > 0. (5.8)

Observe that not all λi ≥ 0, since that requires Zg = 0 for all generation nodes, which
contradicts the blackout severity constraint, −etZg ≥ S. Similarly, not all λi < 0,
since that requires Zl = 0 for all loads. Since we have a lossless system, Zl = 0
implies, Zg = 0, which again contradicts the blackout severity constraint.

Based on these observations, we can decompose the system into two regions based
on their Lagrangian multipliers. Let the first group be composed of nodes for which
λi < 0, and the second group be composed of the remainder for which λi ≥ 0. For the
first region (λi < 0), we know by (5.6) that the loads should not be decreased while
the generation can be decreased as necessary. For the second region (λi ≥ 0), we
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know by (5.3) that the generation should not be decreased, whereas the loads can be
decreased as necessary. Thus the Lagrangian multipliers give a decomposition of the
system into two regions: a generation-rich region, P1, defined by λi < 0, where only
the generation can be decreased and loads remain the same, and load-rich region, P2,
defined by λi ≥ 0, where only the loads can be decreased and the generation remains
the same.

The reason for a blackout is the failure to transmit power from the generation-
rich part to the load-rich part, and moreover, the best way to restore the system to
feasibility is to decrease the generation in the generation-rich part and the load in the
load-rich part.

5.1.2. Flow between the two regions. In the previous section, we showed
that at a feasible solution to (4.25)–(4.40), the system will be decomposed into a
generation-rich region, P1 and a load-rich region, P2. Now, we study the flow between
these two regions by investigating (4.32), and show that there is at least one line
between the two regions that uses its maximum capacity to carry power from the
generation-rich side to the load-rich side.

For simplicity of presentation, we assume all vectors are permuted so that the
nodes in the generation-rich region are ordered before those in the load-rich region,
and the same permutation is applied to matrices symmetrically. Let λ = (λ1T , λ2T )T ,
so that λ1 corresponds to the nodes in the generation-rich region (λ1

i < 0), and
λ2 corresponds to the nodes in the load-rich region (λ2

i ≥ 0). Then (4.32) can be
rewritten as (

J11 J12

J21 J22

)(
λ1

λ2

)
+ATΓ(µ6 − µ5) = 0, (5.9)

where J11, J12, J21, and J22 are submatrices of J that conform with (λ1T , λ2T )T .
Recall that J is symmetric and diagonally dominant, with the only nonnegative en-
tries on the diagonals, and the sum of absolute values of the remaining entries on a
column/row is equal to the diagonal entry. Thus, eTJ11λ

1 ≤ 0, where the equality
is satisfied only when J21 = M0, where we use M0 to denote a matrix of all zeros.
Observe that J12 and J21 matrices correspond to the lines between the two regions,
and their nonzeros correspond to lines that are neither cut (γi = 1) nor saturated due
to the angular difference being ∓π/2.

In Section 5.1.3 we discuss the special case where J12 = J21 = 0. In general,
J12 = JT21 6= 0, thus there may be unsaturated lines between the two regions. In this
case,

eT (J11, J12)(λ1T , λ2T )T < 0,

since eTJ11λ
1 < 0, J12 is composed of all negative entries, and λ2 is composed of all

nonnegative entries. This means for (5.9) to be satisfied, ATΓ(µ6 − µ5) 6= 0. The
Lagrangian multipliers µ5 and µ6 are for lower and upper bounds on Aθ, and thus
only one can be nonzero, when the angular difference at the corresponding line is
∓π/2. Thus there must be at least one active line (γi = 0) that is saturated. Recall
that each column of AT has one “-1” and one “1”, and thus the saturated line that
is internal in one of the regions will not help, and we need a saturated line that goes
between the two regions.

Assume this line is directed from P1 to P2, that is the column in AT for this line
has its -1, in the generation-rich part, and its 1 in the load-rich part. This implies that
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the corresponding entry in µ5 needs to be positive, since we need a positive addition
to the first part. The Lagrangian multiplier µ5 can be positive only when the angular
difference for this line is −π/2, which means the power flows from the generation-rich
side P1 to the load-rich side P2. Symmetrically, if the line is directed from P2 to P1

in matrix AT , then µ6 needs to be positive, which means angular difference for this
line is π/2, and thus power flows again from the generation-rich side to the load-rich
side. This observation does not hold for each line on the boundary, but we know that
it holds for at least one boundary line.

5.1.3. Analysis of a special case. In this section we analyze a special case
where the Lagrangian multipliers for the constraints on angular differences are set to
be zero, i.e., µ5 = µ6 = 0. This corresponds to a degenerate case, and our goal here
is to better disclose the combinatorial structure in a solution to (4.25)–(4.40). While
our results in the remainder of the paper do not rely on the results in this section, we
believe what we present can play an important enabling role for future studies.

The Lagrangian multipliers µ5 and µ6 being zero reduces (4.32) to Jλ = 0. As
shown in Section 5.1.1, all entries of λ cannot be the same, and some of them need to
be nonnegative, and some need to be negative. This excludes the λ = (1, 1, . . . , 1)T ,
solution, thus we need another singular vector for J . By our discussions in Section 2,
we know that for J to have another singular vector the graph corresponding to J
should be decomposed into multiple components, which is possible due to broken and
saturated lines. This means in a solution to our problem, the power grid will be
decomposed into at least two groups, so that the edges connecting these groups are
either cut (γi = 1), or saturated (the angular difference is ∓π/2). For brevity, we
assume there are exactly two groups in the system.

The entries in the associated singular vector λ will reflect this decomposition of the
grid and each λi will be assigned one of the two real numbers, c1 and c2. Let c1 < c2,
and let P1 be the set of nodes for which λi = c1 and P2 be the set of remaining nodes,
for which λi = c2. In Section 5.1.1 we showed that there must be some generators,
for which λgi ≤ −1, and there must be some loads, for which λli ≥ 0. Assume c1 =−1
and c2 = 0. Note that this choice does not constrain the other variables, and any
other solution can only be as good as a solution with c1 = −1 and c2 = 0. The load
shedding model in (5.3)–(5.8) still applies, which means that a feasible solution does
not decrease the loads on the P1 nodes, and does not decrease the generation on the
P2 nodes. This shows that the λ vector decomposes the system into a generation-rich
part P1 and a load-rich part P2, as discussed before. The reason for the blackout is the
failure to transmit power from the generation-rich part to the load-rich part, since all
lines between these two parts are either cut, or already operating at their maximum
limits. Moreover, the best way to restore the system to feasibility is to decrease the
generation in the generation-rich part, and the load in the load rich part.

5.2. Power network vulnerability analysis as a combinatorial problem.
A solution to the problem (4.25)–(4.40) not only provides a small set of critical lines,
but also computes how load can be shed optimally, phase angles at nodes after load
shedding, and a decomposition of the system into load and generation-rich regions.
What we really need is only the set of broken lines, i.e, the vector γ. We need to know
the L1 norm of the Z vector is above a specified severity threshold, but we don’t need
to compute its entries individually.

By our analysis in Section 5.1, we know that optimal load shedding requires
decreasing the loads in the load-rich region, while keeping the generation as is. Sym-
metrically, we need to cut the generation in the generation-rich region, and retain the
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loads. The total volume to be shed is defined by the load-generation mismatch in
a part, and the total flow on the active boundary edges between the two parts. In
this model, the blackout severity is a function of the decomposition of the system and
depends on the load generation mismatch in the two regions. Therefore, constraint
(4.30) can be satisfied with the right choice of partitioning. Let T denote the total
power being transmitted from one part to another in the remaining network after
lines are removed. Then −eTZg can be computed as

(
∑
λi<0

Pi)− T. (5.10)

Here, the summation computes the excess generation in P1, and since we cannot cut
the loads in this part, the generation must be reduced to match the load after the
lines leaving this part are loaded maximally.

We know that at a feasible solution, the power grid will be decomposed into two
parts as a load-rich region and a generation-rich region. What (5.10) shows is that
an optimal solution seeks for a decomposition that maximizes the generation/load
mismatch and minimizes the potential power transmission between the two regions,
which reveals a combinatorial structure in the problem. This raises an interesting
question of whether we can solve problem (4.25)–(4.40), by directly looking for such
a decomposition. Below, we discuss how such a decomposition can be used to find
an approximation to the minlp formulation and why this is a good approximation.
The big gain here is that the decomposition problem can be formulated as a milp,
as opposed to a minlp. It should be noted that our reduction is more than merely
solving the discrete portion of a minlp problem in a decomposition algorithm such as
Benders decomposition or outer approximation. Our formulation foresees the change
in the nonlinear part, and directly seeks values of discrete variables in an optimal
solution to the minlp, without explicitly solving the nonlinear part.

For a formal definition, let Lines(P1, P2) denote the set of lines between parts P1

and P2, Cap(E) be the total capacity of lines in set E, and L(P1) and G(P1) be the
total load and generation in part P1, respectively. We define the network vulnerability
analysis problem as follows.

Let G = (V,E) be a graph with V as the set of nodes (buses), and E as the set of
edges (lines), and let S be a specified severity threshold. Find a minimum cardinality
subset of edges C ⊆ E, so that there exists a partitioning of nodes V into P1 and
P2 = V \ P1, so that

G(P1)− L(P1)− Cap(Lines(P1, P2) \ C) ≥ S. (5.11)

This problem can be solved as the network inhibition problem in graph theory [24],
which we address in the next section. There are two reasons for why the combinatorial
model is an approximation, and not an exact model. Both reasons cause underesti-
mation of the severity of a blackout, and thus a solution to the combinatorial problem
will yield a feasible solution to (4.25)–(4.40), but not necessarily an optimal one.

Firstly, we know that a feasible solution involves a decomposition of the system,
where only the generation (load) will be shed in the generation (load)-rich region, but
we do not know if this holds for an arbitrary decomposition. That is in a feasible
solution, it is sufficient to shed the load or generation to merely match the other,
but this is not necessarily the case for all decompositions, as we might have to lower
the generation even in the generation rich region to restore feasibility. This will
cause underestimating the blackout severity, as our combinatorial model does not
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Fig. 5.1. IEEE 30-bus system

fully capture the complexity of power flow equations. However, this is not as serious a
drawback, since we are only looking for significant blackouts and will cut a significant
portion of the generation and loads. This translates to a large feasible space for the
minimal load shedding problem, within which it is possible to find an instance where
only cutting the loads or generation is sufficient.

The second reason why the combinatorial model is not exact is that the total flow
between the two parts may be less than the cumulative capacities of the connecting
edges. We know that there will be at least one line that uses its maximum capacity to
transfer power from the generation-rich side to the load-rich side. And in our analysis
of a special case in Section 5.1.3, we showed that all lines between the two parts
will be saturated. While the cumulative capacity of lines is not always utilized for a
given decomposition of the system, the particular decomposition we choose creates a
load/generation mismatch, and minimizing the total volume of load shedding requires
maximizing the total flow from the generation-rich side to the load-rich side. Thus
the goal of load shedding can be considered as maximizing the flow between the two
regions. Therefore, what we use as an approximation is an upper bound on the value
of a maximization problem that is implicit in the load shedding problem in (3.3)–(3.7).

5.3. Empirical evaluation. In this section, we present an empirical study that
shows that the gap between our combinatorial approximation and the original minlp
formulation is small and rapidly closes as the severity of the blackout increases.

In our experiments, we used a slightly modified version of the IEEE 30 bus sys-
tem [1] as described in [12], where the generator active power injections are modified
so that there is no natural power balance in the system, providing a better test case
for vulnerability analysis. This modified data set is presented in detail in [12], and
the IEEE 30 bus system is illustrated in Fig. 5.1. We used the original system, as
opposed to the augmented system described in Section 4.4.

In this system, the generation-rich lower subsystem (the shaded region in Fig. 5.1)
is connected to the load-rich upper subsystem with only 4 lines (lines 28, 29, 30, and
36). Failures among these lines can cause a blackout, as the remaining lines are not
sufficient to transfer power from the generation-rich subregion to the load-rich region.
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Fig. 5.2. Accuracy of our combinatorial approximation

These 4 lines are the source of all significant, nontrivial vulnerabilities in this system.
In our experiments, we have looked at 5 different combinations of line failures, as
lines 28, 29, and 30, lines 28, 29, and 36, lines 28 and 29, lines 29 and 30, and
lines 29 and 36 are cut. To observe how the accuracy of our approximation changes
with blackout severity, we increased the generation at the generation-rich region in
the lower subsystem and load in the load rich region. For each of these test cases,
the excess generation and load were equally distributed among the generators and
load nodes in the respective regions. The results of our experiments are presented in
Fig. 5.2.

In Fig. 5.2, the horizontal axis correspond to the estimated size of a blackout,
which we compute by (5.11). The vertical axis correspond to the measured size of a
blackout, which we compute by solving the optimal load shedding problem in (4.25)–
(4.40). To solve the associated nonlinear optimization problem, we used Matlab’s
fmincon with default settings. For each instance, 10 different initial solutions were
used, and here we report the best one. Both axes are normalized with respect to the
total generation in the system. Each data point corresponds to an experiment with a
specified set of broken lines, and a generation/load assignment. Experiments with the
same set of broken lines are marked with the same sign. Ideally, all points should lie on
the main diagonal, which means the estimation is equal to the measurement. However,
this does not always hold, either due to our approximation, or due to the nonconvexity
of the load shedding problem. Note that our combinatorial approximation offers a
lower bound on the blackout severity, and the results we obtain by fmincon offer only
an upper bound on severity due to the nonconvexity of the problem. The optimal
solution value, the real severity lies between the two. Thus, the gap between the real
severity and our approximation is less than what is presented in Fig. 5.2.

The results show that our approximation works effectively, especially for blackouts
with high severity. The first two sets of broken lines, leave only a single line between
the generation-rich and load-rich regions. By our analysis, we know that this line will
be saturated, and thus our combinatorial approximation will be exact. We can see
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that the empirical results are consistent with our theoretical studies. The other three
cases leave two lines between the two regions. The results show that our combinatorial
model underestimates the severity of a blackout (sometimes even misses a blackout,
which correspond to the points on the vertical axis), but the gap between estimated
and measured values closes rapidly as the blackout severity increases. Note that we are
only interested in severe blackouts, and our combinatorial approximation is accurate
for these cases.

6. Solving the network inhibition problem. In the network inhibition prob-
lem, we aim to find the best way to attack a network to minimize its transmission
capability. In graph theoretical terms, the network inhibition problem tries to find
the most cost-efficient subset of lines, removal of which minimizes the maximum flow
on the remaining network. The network inhibition problem naturally involves the
maximum flow problem as a subproblem. Below, we first discuss flow networks, and
define the network inhibition problem. Then we provide an integer programming for-
mulation for this problem, and discuss how the power network vulnerability analysis
problem can be posed as the network inhibition problem.

6.1. Flow graphs and the maximum flow problem. A flow network G =
(V,E) is defined by a set of vertices V , a set of edges E, where each edge (u, v) has
a nonnegative capacity c(u, v), and two special vertices: a source s and a terminal t.
A flow in G is a real valued function, f : E → R. We use f(u, v) to refer to a flow
on the edge from vertex u to vertex v. Using a single source and a single terminal
vertex provides a standard form for the maximum flow problem, and even if there are
multiple vertices with production, a single source vertex, s, is used, which is connected
to all other vertices with production, and the capacity of the connecting edge is equal
to the production on that node. Similarly, only a single terminal vertex, t, is used,
which is connected to all other vertices with consumption, and the capacity of the
connecting edge is equal to the consumption on that node. We say a flow is feasible if
it respects conservation of flow and the capacity constraints on edges. Conservation
of flow requires that the total flow into a node is equal to total flow out of that node
except for the source and terminal vertices. The value of a flow is defined by the total
flow leaving the source, and the maximum flow problem aims to find a feasible flow
with maximum value.

A closely related concept to maximum flow is the minimum cut. A cut in a flow
graph is defined by a bipartitioning of vertices V into V1 and V2 = V \ V1, so that
s ∈ V1 and t ∈ V2. We say an edge is in the cut if one of its end vertices is in V1 and
the other is in V2. The capacity of a cut is defined as the sum of capacities of the
edges on the cut, and a minimum cut is one with minimum capacity among all the
cuts. It is easy to see that the capacity of any cut is an upper bound on the value
of a maximum flow, since the edges on the cut block all paths from the source to the
terminal, and thus the total flow cannot exceed their cumulative capacity. As one of
the earliest and fundamental results in combinatorial algorithms, Ford and Fulkerson
proved that the capacity of a minimum cut is equal to the value of a maximum flow.
This duality between maximum flow and minimum cut underlies many algorithms for
flow problems and in this work we compute the value of a maximum flow by finding
the capacity of a minimum cut. A more detailed discussion on flow algorithms along
with proofs of this duality can be found in [7, 30].

An example for the maximum flow minimum cut property is illustrated in Fig. 6.1.
In this figure, the numbers on edges represent the flow assignment and the capacity
of the edge. For instance, the edge from v1 to v3 has a capacity of 9 units and uses 7
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Fig. 6.1. Maximum-flow and minimum cut on a flow graph. Numbers on the edges represent
flow assignment/capacity. The dashed line represents the cut.

units of this capacity in the current flow assignment. The volume of a maximum flow
in this graph is 13 units, and the current flow assignment is optimal. The associated
minimum cut in this graph is V1 = {s, v1, v2, v3} and V2 = {v4, t} with capacity 13.

6.2. Network inhibition problem. In [24], Phillips defines the network inhi-
bition problem as follows. Each edge in the network has a destruction cost, and a
fixed budget is given to attack the network. A feasible attack removes a subset of the
edges, whose total destruction cost is no greater than the budget, and the network
inhibition problem is to find an attack that optimally reduces the value of a maximum
flow in the graph after the attack. The network inhibition problem has two objectives
and/or constraints: the cost of an attack and the resulting damage. Phillips’ formula-
tion, which we call the maximum damage version of the network inhibition problem,
constrains the budget of the attack and seeks to maximize the damage. Here, we work
on the minimum cost version of the problem, where we look for the most cost-effective
attack, where the damage is no smaller that a specified bound.

The network inhibition problem is closely related to the maximum flow/minimum
cut problem. More specifically, the minimum cut problem is a special version of the
network inhibition problem, where the value of a maximum flow in the network after
the attack should be zero. In terms of complexity however, the network inhibition
problem is much harder. While maximum flow problems can be efficiently solved by
polynomial-time algorithms [15], the network inhibition problem is NP-complete [24].
Phillips provides a comprehensive study on the network inhibition problem [24]. Roy-
set and Wood [27] studied this problem as a bi-objective problem, and Pinar et al. [25]
studied the inhibiting bisection problem, where a graph decomposition with maximum
production/demand mismatch is sought.

6.3. MILP formulation for the network inhibition problem. A formula-
tion for the network inhibition problem requires measuring the value of a maximum
flow on the graph after the attack, which we do by finding a minimum cut. For clarity
of presentation, we first present an integer programming formulation of the minimum
cut problem and then extend this formulation for the network inhibition problem.

6.3.1. MILP formulation for the minimum cut problem. Let G = (V,E)
be a flow network with n vertices and m edges, and let A be the m × n node-arc
incidence matrix of this graph. We assume the first and last columns of A correspond
to the source and terminal vertices, respectively. We use ci to refer to the capacity of
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the i-th line. We define a binary variable ρi for each vertex vi ∈ V , so that

ρi =
{

0 if vi ∈ V1

1 if vi ∈ V2
,

where V1 and V1 = V \ V2 denote the partitioning of V that defines the cut. We also
define a binary variable ωi for each edge, so that

ωi =
{

1 if ei is on the cut
0 otherwise

The minimum cut problem can then be formulated as follows.

min
ρ,ω

cTω (6.1)

s.t. Aρ− ω ≤ 0 (6.2)
Aρ+ ω ≥ 0 (6.3)
ρ1 = 0 (6.4)
ρn = 1; (6.5)
ρi ∈ {0, 1} for i = 1, 2, . . . , n (6.6)
ωi ∈ {0, 1} for i = 1, 2, . . . ,m (6.7)

Here, the objective function minimizes the cumulative capacity of the cut edges. Con-
straints (6.4) and (6.5) guarantee that s ∈ V1 and t ∈ V2, respectively. Constraints
(6.6) and (6.7) guarantee that the ρ and ω are binary variables. Constraints (6.2)
and (6.3) are used to enforce any edge between parts V1 and V2 to be labeled as a cut
edge. Consider an edge ek that goes from vi to vj , for which we have the following
constraints.

ρj − ρi − ωk ≤ 0 (6.8)
ρj − ρi + ωk ≥ 0 (6.9)

We need to show that ωk = 1, if vi and vj are on different parts (ρi 6= ρj). If ρj = 1
and ρi = 0, (6.8) forces ωk to be ≥ 1. Symmetrically, if ρj = 0 and ρi = 1, it will
be (6.9) that forces ωk to be ≥ 1. When the two vertices are in the same part, i.e.,
ρi = ρj , ωk can be either zero or one. However, since the objective is to minimize cTω,
when the edge is not on the cut, ωk will be at its minimum, zero. This analysis further
shows that, we do not need to impose ω variables to be binary explicitly. When edge
ek is on the cut, we need ωk ≥ 1, and when ek is an internal edge, ωk will be at
its minimum due to the objective function. In an optimal solution to (6.1)–(6.6), ω
variables naturally take binary values, when they are constrained to be in the [0, 1]
region. Therefore we can replace (6.7) with

0 ≤ ωi ≤ 1 for i = 1, 2, . . . ,m

6.3.2. MILP formulation for the network inhibition problem. Since the
network inhibition problem seeks to minimize the maximum flow/minimum cut of a
graph in a cost optimal way, we can use our formulation for the minimum cut as the
core of our formulation for the network inhibition problem. We start by defining a
binary variable di for each edge that defines whether a line is destroyed.

di =
{

1 if ei is destroyed
0 otherwise
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Let p be a vector that indicates line-destruction costs. The minimum cost version
of the network inhibition problem can be formulated as a milp problem as follows.

min
ρ,ω

pT d (6.10)

s.t. cTω ≤ S′ (6.11)
Aρ− (ω + d) ≤ 0 (6.12)
Aρ+ (ω + d) ≥ 0 (6.13)
ρ1 = 0 (6.14)
ρn = 1; (6.15)
ρi ∈ {0, 1} for i = 1, 2, . . . , n (6.16)
di ∈ {0, 1} for i = 1, 2, . . . ,m (6.17)
ωi ∈ [0, 1] for i = 1, 2, . . . ,m (6.18)

Here, the objective corresponds to minimizing the cost of the attack, and the ω vector
identifies the cut edges on the remaining graph. While this cut is not necessarily the
minimum cut, it provides an upper bound on the maximum flow in the graph, which is
sufficient for our purposes. Inequality (6.11) guarantees the capacity of this cut, thus
the volume of a maximum flow, is no bigger than a specified threshold S′. Equations
(6.12)–(6.15) ensure that the ω vector identifies the cut edges. The source and the
terminal vertices are on different parts of the cut due to (6.14) and (6.15), and for
each line ek = (vi, vj) in the graph we have the following two constraints.

ρj − ρi − ωk − dk ≤ 0 (6.19)
ρj − ρi + ωk + dk ≥ 0 (6.20)

It suffices to show that ωk = 1, if vi and vj are on different parts (ρi 6= ρj) and the
edge is not destroyed (dk = 0). Note that we do not need to show that ωk = 0 for
other cases, since ωk > 0 redundantly increases the cTω value, which we are trying
to keep small. In other words, the ω vector defines a valid cut in the graph, but it is
not necessarily minimum, and a subset of the edges it provides, might provide a valid
cut. If ρj = 0, ρi = 1, and di = 0, (6.19) forces ωk ≥ 1. Symmetrically, if ρj = 1,
ρi = 0, and di = 0, then it will be (6.20) that forces ωk to be ≥ 1. Also observe that
when di = 1, the two inequalities will be satisfied, regardless of ρi, ρj and ωk.

The formulation in (6.10)–(6.18) is the minimum cost version of the network
inhibition problem, where we look for the most cost-efficient way to cause a damage
of specified severity. We can easily switch the positions of the objective function and
the severity constraint (6.11) for the maximum damage version of the problem, where
we try to find an attack of specified cost that will give the maximum damage.

6.4. Power grid vulnerability as a network inhibition problem. The com-
binatorial version of the vulnerability analysis problem of Section 5.2 can be posed
as the network inhibition problem. Observe that the severity constraint, which we
stated as the volume of load shed being above a threshold, S, can be rephrased as the
remaining flow in the graph being below S′ = |G| − S, where |G| denotes the total
generation in the system. Here, we replace the severity threshold S of the power grid
vulnerability analysis with |G| − S for the network inhibition problem. The graph of
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a power grid can be transformed to a flow graph by adding a source vertex s and a
terminal vertex t, and connecting each generator to the source with an edge whose
capacity is equal to the generation at that node and connecting each load to the ter-
minal with an edge whose capacity is equal to the consumption at that node. All
other edges that correspond to power lines retain their capacities, by assigning the
capacity of an edge as the capacity of the corresponding power line. We define the
destruction cost of the source and terminal edges to be ∞, and all other edges to be
1, to guarantee that the solution to the network inhibition only chooses actual power
lines to cut.

A solution to the network inhibition problem identifies a bipartitioning of the
nodes into V1 and V2, which correspond to generation-rich region P1 and load-rich re-
gion P2, respectively. The cut edges potentially include source edges that connect s to
generation nodes, terminal edges that connect t to terminal nodes, as well edges that
represent power lines. Observe that a source edge will be cut, if the respective genera-
tor is in V2, and similarly a terminal edge will be cut if the respective load is in V1. The
capacity of the cut can then be expressed as L(P1)+G(P2)+Cap(Lines(P1, P2)\C).
Here L(P1) represents the total load in V1 and is equal to the cumulative capacity of
the terminal edges on the cut. Similarly, G(P2) represents the total generation in V2

and is equal to cumulative capacity source edges on the cut. C is the set of cut edges
identified by the d vector, and Cap(Lines(P1, P2) \ C) is the total capacity of the
active edges on the cut that represent power lines. Constraint (6.11) then becomes

L(P1) +G(P2) + Cap(Lines(P1, P2) \ C) ≤ |G| − S
L(P1) + |G| −G(P1) + Cap(Lines(P1, P2) \ C) ≤ |G| − S

L(P1)−G(P1) + Cap(Lines(P1, P2) \ C) ≤ −S
−L(P1) +G(P1)− Cap(Lines(P1, P2) \ C) ≥ S,

which is the same as (5.11).

6.5. Solving the network inhibition problem. We applied our integer pro-
gramming formulation for the network inhibition problem to identify vulnerabilities
of a simplified model of the Western states power grid with 13,374 nodes and 16,520
lines. We used PICO [13], a massively parallel integer programming solver, developed
at Sandia National Laboratories, to solve the associated milp problems.

We solved instances of the network inhibition problem for the Western states
power grid with varying number of lines being broken. The solution times for these
problems were only in the order of tens of seconds on an Opteron 2.2 GHz processor
with 4.4 GFlops/sec theoretical peak and 6 Gbytes of physical memory. These results
show that our integer programming formulations are practical, and applicable to large
systems.

7. Conclusions and future work. One of the most important criteria for
the secure operation of the electric power grid is the identification of small groups
of lines, the removal of which would cause a severe blackout. We first presented a
bilevel mixed integer nonlinear programming (minlp) formulation of this problem, and
then described the associated optimality conditions. Our analysis of this formulation
revealed a special combinatorial structure that we exploited to avoid nonlinearity and
approximated the original problem as a pure combinatorial problem. The key new
observation behind our analysis was the correspondence between the Jacobian matrix
(a representation of the feasibility boundary of the power flow equations that describe
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the flow of power in the network) and the Laplacian matrix in spectral graph theory
(a representation of the graph of the electric power grid). Our reduction allowed
us to directly seek values of discrete variables in an optimal solution to our minlp
formulation, without explicitly solving the nonlinear part, thereby simplifying the
problem complexity, both theoretically and practically. The reduced combinatorial
problem is known as the network inhibition problem, for which we presented a mixed
integer linear programming formulation. Our empirical studies demonstrated that
our combinatorial approximation is accurate and efficient, especially as the blackout
size increases, and we can solve the corresponding integer programming problems for
problems with tens of thousands of lines.

This work leads to new research problems both for optimization and for power
systems communities. First, we used a simplified model of power flow equations, where
we fixed the voltages and focused only at active power. Our formulation can be easily
extended to include reactive power, but our analysis of an optimal solution needs to
be revised. It remains to be seen if there exists a combinatorial structure when the
reactive power is also included in the analysis. Another interesting question is whether
it is possible to find tighter bounds for the flow between generation-rich and load -rich
regions, as defined in Section 5. We believe our current bound of cumulative sum of
capacities of active lines can be improved by careful analysis of power flow equations,
which will be an interesting question, especially for power systems experts. Finally,
it would be interesting to include system dynamics in vulnerability analysis, without
solving differential algebraic equations, where stochastic models might be useful.

On the optimization front, solving the bilevel minlp formulation remains a chal-
lenge. In particular, using our discrete approximation within a decomposition method
needs further investigation. Recall that our approximation involves more than merely
solving for binary variables, where continuous variables for the nonlinear part are
fixed. The reduced problem can foresee changes in the nonlinear part, and directly
seeks values of binary variables (i.e., the broken lines in this problem) in an optimal
solution. Therefore, our reduction can still be used to accelerate a decomposition al-
gorithm. We believe that these studies will be closely related to how flow between two
regions can be bounded. Another area for further investigation is the development of
improved solution methods for the network inhibition problem, and in particular the
use of additional constraints that better bound the flow between two regions. Both
heuristics and exact algorithms would be interesting in this context.

Finally, this article focuses on the formulations of the power grid vulnerability
analysis problem. A more practical study that applies existing software tools, and
algorithms to our formulations will be valuable to identify new research directions.
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