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Abstract

Sparse matrix-vector multiplication (SpMxV) is one of the mostamant computational kernels in
scientific computing. It often suffers from poor cache utilization antlaeboad operations because of
memory indirections used to exploit sparsity.

We propose alternative data structures, along with reordering aigmsito increase effectiveness
of these data structures, to reduce the number of memory indirecti@bsddlproposed handling the
1x2 blocks of a matrix separately, doing only one indirection for eachkbldVe propose packing all
contiguous nonzeros into a block to reduce the number of memory indinsdurther. This reduces
memory indirections per block to one for the cost of an extra array mragtand a loop during SpMxV.

We also propose an algorithm to permute the nonzeros of the matixantiguous locations. We
state this problem as the traveling salesperson problem and use assbeiaistics. Experiments verify
the effectiveness of our techniques.

1 Introduction

One of the most important computational kernels in scientiimputing is multiplying a sparse matrix by
a vector. Many algorithms use sparse matrix-vector midggion (SpMxV) in their inner loop (iterative
solvers for systems of linear equations being just one el@mphe repeated execution of this operation
potentially amortizes the cost of a preprocessing phasihwhight lead to computational savings in sub-
sequent executions. The importance of the SpMxV operat@miade this challenging problem the subject
of numerous research efforts.

Data structures used for sparse matrices usually have twmpaoents: ij an array that stores all the
floating-point entries of the matrixji] arrays that store the sparsity structure of the matrix, peinters
to the locations of the floating-point entries in the matrba exploit the sparsity of the matrix the use of
pointers is unavoidable but often limits the memory systenfiqgmance. One reason for this is that pointers
usually lead to poor cache utilization, since they lackigp#tcality. The number of cache misses for the
right- and/or left-hand-side vectors can dramaticallyéase if the sparse matrix has an irregular sparsity
structure. Another important factor is that memory indii@as (pointers) require extra load operations. In
sparse matrix operations, the number of floating-point at@ns per load operation is lower than that of
dense matrix operations, limiting overall performance.
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We propose alternative data structures, as well as reoglalgorithms to increase the effectiveness
of those data structures, to reduce the number of memoryeittibns in SpMxV. Toledo [7] proposed
identifying 1 x 2 blocks of a matrix and writing the matrix as the sum of two neass, the first of which
contains all the x 2 blocks and the second contains the remaining entries. Thesjumber of memory
indirections is reduced to only one for eactx 2 block. In an alternative scheme, we pack all the nonzeros
in contiguous locations into a block to reduce further thenbar of memory indirections, because only
one memory indirections is required for all the nonzeros biack. However, we then need to know how
many nonzeros are in each block, which requires an extrg and an extra loop during SpMxV. This work
concentrates on the latter problem.

We also propose reordering the matrices to increase thetigfaess of our data structures. The objec-
tive of reordering is to permute the nonzeros of the matrig itontiguous locations, as much as possible,
to enlarge the dense blocks. We can show that this probleniPi€bdmplete, and thus heuristics must be
used for a practical solution. We propose a graph model tacethe problem to the well-studied traveling
salesperson problem, and thus we can use heuristics ddsmrhat problem.

We verify experimentally the effectiveness of the propodath structures and algorithms. Our new
data structures and reordering techniques produce imprents of up to 33% and improvements of 21%
on average.

The remainder of this paper is organized as follows. SedQialiscusses the shortcomings of current
sparse matrix data structures and proposes new altersafartion 3 states a new matrix reordering algo-
rithm to permute the nonzeros of the matrix into contiguameations. Experimental results are presented in
Section 4, and finally we conclude with Section 5.

2 SparseMatrix Data Structures

The most widely used sparse matrix storage schei@eispressed Row Stora@@RS). As its name implies,
this scheme stores the sparse matrix as a sequence of csatpresvs. Three arrays are employetl;,
Colind and Rowptr. The nonzeros of the sparse matrixare compressed into an arraly; in a rowwise
manner. The column index of each nonzero entry is storeceiattayColind, i.e.,Colind[i] is the column
index of the nonzero entry stored ity [:]. Finally, Rowptr stores the index of the first nonzero of each row.
Figure 1 presents a SpMxV algorithm using compressed rokago

for i <~ 1tomdo
yli] + 0;
for j < Rowptr[i] to Rowptr[i + 1] — 1 do
yli] < yli] + A[s] x 2[Colind[f]];

Figure 1: SpMxV algorithm in compressed row storage



Sparse matrix-vector multiplication (SpMxV) algorithnentl to suffer from poor memory performance.
One reason for this is ineffective cache utilization. Tenaptocality is limited to right- and left-hand-side
vectors andRowptr array. No temporal locality is present in arrayg and Colind. In CRS, there is
good temporal locality in the left-hand-side vecigrbut the access pattern for the right-hand-side vector
can be quite irregular, causing excessive cache missesdé&ew the matrix to reduce cache misses was
proposed by Das. et al. [3], who suggested reducing the bdtitwf the matrix. Temam and Jalby [6]
analyzed the number of cache misses as a function of the lidihdier various cache parameters. Burgess
and Giles [2] experimented with various ordering algorithamd found that reordering the matrix improves
performance compared with random ordering, but they diddedéct a notable sensitivity to the particular
ordering method used. Toledo [7] studied reordering, aleitly other techniques, and reported that Reverse
Cuthill-McKee ordering yielded slightly better perfornam but the differences were not significant.

Another problem with SpMxV is that the ratio of load operasois higher than with dense matrix
operations. One extra load operation is required to find thenen index of each nonzero entry for each
multiply-add operation. The innermost statement in thetigm in Figure 1 requires three load operations
for two floating-point operations. This not only increases total number of load instructions, but also can
cause the load units to be a bottleneck, especially in rerehttectures as discussed in [7].

The following two sections present data structures thademnease the number of memory indirections
during SpMxV operation.

2.1 Fixed-Size Blocking

In this approach, the matrix is written as sum of several itedr some of which contain the dense blocks of
the matrix with a prespecified size. For instance, given airmal, we can decompose it into two matrices
Ai9 andAqq, such thatd = A1, + A11, whereA;, contains thel x 2 dense blocks of the matrix andl;;
contains the remainder. An example is illustrated in FigdiréA simple greedy algorithm is sufficient to
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Figure 2: Fixed size blocking with x 2 blocks

extract the maximum number &fx I blocks in a matrix, wheré < I < n. However, the problem is more
difficult for £ x [ blocks fork > 1.

Exploiting dense blocks can reduce the number of load dpestas well as the total memory require-
ment, because only one index per block is required. Morediverentry of the right-hand-side vectercan



be used multiple times—as opposed to once in the convehsochame—after a load operation.
A similar problem has been studied in the context of vectocessors [1], but those efforts concentrate
on finding fewer blocks of larger size, whereas we are inteces much smaller blocks.

2.2 Blocked Compressed Row Storage

In this section we propose a new sparse matrix storage sclesigned to reduce the number of load
operations. The idea of this scheme is to exploit the nomsziEra@ontiguous locations by packing them.
Unlike fixed-size blocking, the blocks will have variablengghs. This enables longer nonzero strings to
be packed into a block. As in fixed-size blocking, if we know tolumn index of the first nonzero in a
block, then we will also know the column indices of all itsetimonzeros. In other words, only one memory
indirection (extra load operation) is required for eachcklo

This storage scheme requires an arfdypir (of length the number of blocks) in addition to the other
three arrays used in CRS: a floating-point array(of length the number of nonzeros) to store the nonzero
values, an arrag'olind (of length the number of blocks) to store the column numbehefirst nonzero for
each block, and an arraowptr (of length the number of rows) to point to the position whére blocks
of each row startN zptr stores the location of the first nonzero of each block in artay We refer to this
storage scheme ddocked compressed row stora@CRS). Figure 3 presents an example of BCRS, and
the SpMxV operation using this storage is presented in Eigur

5. 1. 7. 0 0 Ap = (5,1,7.,1.,2.3.,2.4.1.,3.6.,3.)
0 1. 0 2 3. Colind = (1,2,4,2,3,2,5)
A= 0 2. 4. 0 0 Rowptr (1,2,4,5,6 8)
00 1. 3 0 Nzptr = (1,4,5,7,9,11,12,13)
0 6. 0 0 3.

Figure 3: Example of blocked compressed row storage

This storage scheme reduces extra load operations bute@san extra loop during the SpMxV opera-
tion and thus suffers additional loop overhead. If the sifahe blocks are small, the overhead due to the
extra loop will dominate the gain due to decreased load dipesa Thus, the effectiveness of this storage
scheme depends directly on the sizes of the blocks in theéxmatr

The total volume of storage has a similar tradeoff. Two numljene inColind and one inV zptr) are
stored for each block in the matrix, as opposed to one nuntbeaich nonzero. Thus, if the blocks are large
enough, the total storage size can be significantly reduced.

3 Reordering to Enlarge Dense Blocks

The previous section described our data structures to #xgdose blocks of a matrix. The effectiveness
of these data structures depend directly on the availplilitdense blocks. In this section we describe



for i <— 1tom do
y[i] < 0;
for j « Rowptr|i] to Rowptr[i + 1] — 1 do
startcol <— Colind|[j];
t<+0;
for k < Nzptr[j] to Nzptr[j + 1] — 1 do
yli] < yli] + Af[k] * z[startcol + ],
t—t+1,;

Figure 4: SpMxV with blocked compressed row storage

reordering algorithms to enlarge dense blocks of a matrikst,Fwe will formally define the problem and
propose a graph model to reduce the problem to the travedtesgerson problem (TSP). Then we will
discuss briefly heuristics we used for solving TSP.

3.1 Problem Formulation

Our objective in reordering the matrix is to increase thesiaf the dense blocks in a row, i.e., to align the
nonzeros in a row in consecutive locations as much as pesdibis requires reordering of columns and is
not affected by ordering of rows. Thus, rows of the matrix barreordered without disturbing the aligned

nonzeros within a row (e.g., the same reordering can beexppi rows to preserve symmetry). These tech-
niques can also be used to align nonzeros within a columntbycimnging the roles of columns and rows.
A formal description of the problem follows.

Given anm x n matrix A = (a;;), find an ordering of columns to maximize the numbe(i of) pairs
satisfyinga;; # 0 anda;;1 # 0, i.e.,

Mazimize #((4,7):1<i<m,1<j<n:a;#0 and ajj1 #0).

In the Appendix, we show that the problem is NP-Complete lizgguseduction from Hamiltonian Path
problem. Thus, we must resort to heuristics for a practiohlt®n. Such an ordering problem is naturally
close to TSP. However, we are looking for a path, not a toutléyof vertices. Although this is a slightly
different version of the problem, heuristics designed tal fntour can still be used or adapted to find a
path of vertices. Thus, our strategy will be first to define @pgr model that reduces our matrix reordering
problem to the well-studied TSP and use heuristics alreagygded for TSP to reorder our matrices. For
the sake of presentation, we will refer to the maximizatiension of TSP, i.e.,

Given a graphG = (V, E) and a weighting functiom on its edges, find a toufg, v1, ... vy|_1) t0

maximize
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Figure 5: Edge weight computation. Graph shows edge weightsatrix on left-hand side. Matrix after
reordering is presented on right.

Z w(vi, Vit1)-

0<i<|V|
Notice that the weight of the eddey|, vo) is not included, since we need a path, not a tour.
Since we are trying to reorder columns of the matrix, the Qrépat reduces the matrix reordering
problem to TSP has vertices representing the columns of titeéxn The weight of an edge between two
vertices is defined as the number of rows where both resgectiumns have a nonzero, i.e.,

w(u,v) =#@{:1<i<m:ay#0 and a;y #0)

An alternative definition, which also gives the basics of lgodthm, is as follows. LetS, = (s;;) be a
matrix of zeros and ones with the same nonzero structurg as.,

Sij =1 & Qij ?50

LetW = S4S%. The weight function can be defined by the matfix= (w;;) asw(u,v) = wy,. Figure 5

illustrates an example of edge weight computation. In tkéaeple the weight of th€0, 1) edge is equal to
1 because columns 0 and 1 share a nonzero only in the first roereas the weight of the, 4) edge is

equal to 2 because columns 1 and 4 share nonzeros in the firseaand rows.

Notice that although a weight (possibly zero) is assignehyopair of vertices in the graph (any ordering
is a feasible solution for the matrix reordering probleh) is expected to be sparse, which must be exploited
for the sake of efficiency (or even existence) of a practioalton.

If the verticesu andw are in consecutive locations in the TSP solution, then thpeaetive columns will
be in consecutive locations in the ordered matrix, ad, v) nonzeros will be in contiguous locations. The
larger the weights of the edges in the tour, the greater tieen of nonzeros in contiguous locations will
be. In general, finding a tour with maximum weight in this draqprresponds to finding an ordering with
maximum number of contiguous nonzeros. To be more prediseyumber of blocks (as in BCRS scheme)
in the reordered matrix is equal to the number of nonzerokérmatrix minus the total weight of the TSP
tour, since each unit of weight corresponds to locating &ammadjacent to another one, thus decreasing the



number of blocks by one. Consequently, a tour with maximungktedescribes an ordering with minimum
number of blocks.

In the example of Figure 5, the matrix has 13 nonzeros. TSlisnlused to reorder the matrix is
0—2—1—4— 3, the total weight of which i® + 2 + 2 + 2 = 8. The number of blocks in the reordered
matrix is13 — 8 = 5.

3.2 Heuristicsfor TSP

As in many other combinatorial optimization problems, h&tigs for TSP can be classified into two groups:
constructive and improvement. Constructive heuristiosally construct a solution for the problem, whereas
improvement heuristics start with a given solution and erymiprove that solution by searching the neigh-
borhood. A comprehensive discussion of TSP solution metlwath be found in [4, 5]. In this work, we
adopted heuristics from the literature instead of desgrior own. Here we discuss briefly the heuris-
tics used in our experiments. Since matrix reordering ippsed as a preprocessing step, we focused on
computationally efficient heuristics.

The simplest constructive heuristic is to use the initiglesing of the matrix. Matrices often have some
natural ordering that can be used as an initial solution. 8 ased a vertex insertion procedure. The
process starts with an initial path of one random vertex, \@tices are inserted one by one to the path
until all are included in the path. At each step, a vertex thaot in the current path is randomly chosen
and inserted into the path, so that the sum of weights of eldgéssuccessor and predecessor is maximum.
The final constructive heuristic we used is to start with adoan vertex as the initial path and proceed by
inserting vertices at the end of the path. At each step, thiex¢hat is connected to the last vertex of the
current path with the heaviest edge weight is inserted agtioeof the path.

Improvement heuristics have the same flavor as construbgugistics. One of the heuristics we used
depends on vertex insertion. But this time a vertex is firstoeed from the current path, unlike the case in
constructive heuristics, and then reinserted to maxintizetdtal weight of the tour. We also used edge or
path reinsertion procedures, which are similar to verteseition. In these heuristics, edges (paths of two
vertices) or longer paths are reinserted instead of vexr{isgamed Or-opt procedure in [4]).

4 Experimental Results

We implemented the new data structures and reorderingitiigs in C and compared their performances
with that of conventional compressed row storage (CRS)meheWe experimented with a collection of
matrices selected from the Harwell-Boeing sparse-matlbection. All experiments were performed on a
Sun Enterprise 3000.

In the first set of experiments, we investigated the effeciidss of our ordering techniques. Figure 6
presents our experimental results witk 2 blocked matrices after Reverse Cuthill-McKee (RCM) ondgyi



using the initial ordering, and TSP ordering (describedeot®n 3). TSP solutions are generated by starting
with the initial ordering and then using a vertex insertiamgedure to improve the initial solution. In
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Figure 6: Effectiveness of ordering

Figure 6, SpMxV times are normalized with respect to SpMx¥es with the conventional CRS scheme.
1 x 2 blocking after TSP ordering always improves performance iaralways superior to the other two
ordering methods. The difference becomes very significard#8192 andbcsst k28. On average, TSP
ordering reduces the runtime of a SpMxV operation to 79% af tf the conventional scheme, whereas
RCM ordering and using the initial ordering are limited tdyp®5% and 92%, respectively.

Figure 7 presents our results with the two new data strustufegain, SpMxV times are normalized
with respect to SpMxV times with the conventional CRS schelieed-size blocking is superior to BCRS
for most matrices and on average. BCRS outperforms fixeslidacking for four matricesbcsst k28,
cavity26, bcsstk30,andbcsst k32.

We also experimented with minor modifications of the datacstires. For instance, usingx 3 blocks
instead ofl x 2 increases the performance by 3% on average, but furthexasirg the block size does not
help. Using blocked compressed row storage only for blodksze greater than 1 and using the conven-
tional scheme for the remainder increased the performan&) compared with blocked compressed row
storage. We are in the process of tuning our data structoreadximum performance.

The results show that significant savings can be achievedjpidng the dense blocks in a matrix.
Reordering the matrices yields notable improvement inquarénce, offsetting the cost of the preprocessing
phase, which is often amortized over repeated SpMxV operativith the same matrix.
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Figure 7: Comparison of data structures

5 Conclusions and Future Work

We have presented new data structures, along with a matrigegng algorithm to increase the effectiveness
of those data structures, designed to decrease the numienadry indirections during sparse matrix-vector
multiplication. The data structures exploit dense block&nrzeros in contiguous locations—of the matrix.
We also proposed a reordering algorithm to enlarge the delaeis of a matrix. Experiments verify the
effectiveness of proposed techniques, with observed pediace improvement of up to 33% and an average
improvement of 21%.

Currently we are working on improving the performance of piheposed techniques. We are also inves-
tigating alternative ways of exploiting the density in thEse matrices by designing additional new data
structures. Finally, we plan to experiment with varioushétexrtures to observe the performance of these
techniques with a variety of architectural parameters.
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Appendix NP-Completeness of Problem

In this section, we prove that ordering a sparse matrix toeimge sizes of dense blocks is NP-Complete by
using reduction from the Hamiltonian Path problem. Firststage a decision version of the problem:

Given anm x n matrix A = (a;;), decide if there exists an ordering of columns, where thelbaurof
(¢,7) pairs satisfyings;; # 0 anda; ;1 # 0 is greater than or equal to a given bouritl

Given a simple grapli = (V, E) (no loops, no parallel edges), construct & x |V | matrix A. In this
matrix each row represents an edge and each column remesenttex in the graph. Let théh column
represent théth vertex. The nonzero structure mateixis defined such that there are nonzeros atand
a;i, for each edge; = (v;, vy).

To increase the size of dense blocks, we have to bring thentdwof adjacent vertices to consecutive
locations in the reordered matrix. Notice that two adjacgtimns can share nonzeros in at most one row,
because there are no parallel edges. There can be at/Vfiost1 blocks of sizel x 2 after reordering,
achieved when the vertices of consequent columns shareganethe graph, which defines a Hamiltonian
path in the graph.

It is also easy to see the problem is in NP, since a given solutin be verified in polynomial time. So
we can conclude that the problem is NP-Complete. ]
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