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Abstract 

The lowest-energy singlet (1 1A') and two lowest-energy triplet (1 3A' and 1 3A") electronic 

states of CO2 are characterized using dynamically-weighted multireference configuration 

interaction (dw-MRCI+Q) electronic structure theory calculations extrapolated to the complete 

basis set (CBS) limit. Global analytic representations of the dw-MRCI+Q/CBS singlet and triplet 

surfaces and of their CASSCF/aug-cc-pVQZ spin-orbit coupling surfaces are obtained via the 

interpolated moving least squares (IMLS) semiautomated surface fitting method. The spin-

forbidden kinetics of the title reaction is calculated using the coupled IMLS surfaces and 

coherent switches with decay of mixing (CSDM) non-Born–Oppenheimer molecular dynamics. 

The calculated spin-forbidden association rate coefficient (corresponding to the high pressure 

limit of the rate coefficient) is 7–35x larger at 1000–5000 K than the rate coefficient used in 

many detailed chemical models of combustion. A dynamical analysis of the multistate 

trajectories is presented. The trajectory calculations reveal direct (nonstatistical) and indirect 

(statistical) spin-forbidden reaction mechanisms and may be used to test the suitability of 

transition-state-theory-like statistical methods for spin-forbidden kinetics. Specifically, we 

consider the appropriateness of the “double passage” approximation, of assuming statistical 

distributions of seam crossings, and of applications of the unified statistical model for spin-

forbidden reactions. 

 
aElectronic mail: ajasper@sandia.gov 
bElectronic mail: dawesr@mst.edu 



 2

I. Introduction 

 The spin-forbidden oxidation of CO to CO2 by ground-state (triplet) atomic oxygen O  

  O(3 P)+ CO(X1Σ+ ) (+ M)→ CO2 (X1Σg
+ ) (+ M) , (1) 

has been identified as important in some combustion systems (particularly at high pressures), 

where it competes with the oxidation of CO by OH, N2O, etc.1 Reaction 1 is a sink for O atoms 

and can therefore inhibit chain branching. Few theoretical studies of the spin-forbidden kinetics 

or dynamics of this system have appeared previously. Troe2 calculated the high-pressure 

association rate coefficient (k1∞), and Westmoreland et al.3 fit experimental falloff kinetics to the 

results of QRRK calculations. These expressions (with some adjustments1) are used in many 

detailed chemical models for combustion.4,5 

 Hwang and Mebel6 characterized the energetics of the lowest-energy singlet and lowest-

energy triplet surfaces of CO2 using several levels of electronic structure theory. They identified 

two spin-forbidden mechanisms for the oxidation of CO by O: a “direct” mechanism via a 

singlet–triplet curve crossing associated with a collinear geometry and an extended incipient C–

O bond distance 

  O + CO ~> CO2  (direct) 

(“ ~>” denotes a spin-forbidden event) and an “indirect” mechanism where a short-lived triplet 

complex 3CO2 is formed and quenched via a singlet–triplet curve crossing associated with a bent 

geometry, i.e., 

  O + CO ⇄ 3CO2 ~> CO2 . (indirect) 

Based on the energetics and spin–orbit coupling strengths calculated at the linear and bent 

crossing seams both mechanisms were suggested to be important,6 but no dynamics or kinetics 

calculations were carried out. 

 Analytic potential energy surfaces for the three lowest triplet states of CO2 based on 

multireference perturbation theory calculations were developed and used in adiabatic (i.e., 

uncoupled, single state) classical trajectory calculations of hyperthermal scattering,7,8 with 

favorable comparisons with experimental results. Singlet potential energy surfaces and spin-

forbidden multistate dynamics were not considered in Refs. 7 and 8. Six singlet states of CO2 

were recently characterized in detail,9 but no triplet states or spin-forbidden dynamics were 
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considered. In earlier work,10 excited singlet and triplet states of CO2 were characterized at C2v 

geometries using multireference methods. 

 Experimental kinetics studies of the thermal decomposition of CO2 (reaction –1) have 

been carried out at high temperatures and low pressures.11,12,13 Under these conditions, the CO2 

decomposition reaction is 2nd order (i.e., reaction –1 is in the low-pressure CO2 + M limit), and 

in this limit the unimolecular decomposition rates are determined by the rates of collisional 

energy transfer14,15 and not by the spin-forbidden dynamics. There has been some experimental 

work at elevated pressures, with decomposition studied at pressures as high as 250 atm16,17 and 

association measured up to 24 atm.18 In both of these studies, extrapolations to higher pressures 

resulted in limiting values consistent with Troe’s value of k1∞. However, even at the highest 

pressures experimentally probed, the reaction was observed to be consistent with (or close to) a 

second order (low-pressure-limit) picture. We are not aware of any experimental studies that 

have directly probed the high-pressure limit spin-forbidden kinetics of reaction 1 in either the 

forward or reverse direction. 

 Finally, we note that the photodissociation of CO2 to the spin-forbidden products O + CO 

has been studied by several groups.19,20,21,22,23 This process is thought to involve spin-forbidden 

transitions out of a photoexcited singlet state. These dynamics therefore may not be directly 

relevant to the present study, which considers coupling of the triplet states of CO2 to the ground-

state singlet state. 

 Here we present a detailed electronic structure and spin-forbidden molecular dynamics 

study of reaction 1, and its high-pressure limit rate coefficient (k1∞) is reported from 1000–5000 

K. Pressure-dependent kinetics and low-pressure-limit kinetics are not considered. In the high-

pressure limit, the kinetics of reaction 1 is determined principally by its spin-forbidden 

dynamics. While electronically adiabatic kinetics is readily and accurately calculated via 

transition state theory24,25 (TST) and other methods, fewer strategies exist for accurately 

predicting electronically nonadiabatic (including spin-forbidden) kinetics. Here we employ 

multistate (also called “electronically nonadiabatic” or “non-Born–Oppenheimer”) 

trajectories26,27 and in particular the coherent switches with decay of mixing (CSDM) method.28 

This method includes desirable features of both mean-field29 and surface hopping30 multistate 

trajectory methods, and it was found to be the most accurate of several methods included in a 

systematic set of tests.27 A discussion of the expected accuracy of this approach for this system is 
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included. Spin-forbidden kinetics may also be characterized using statistical formulations, such 

as so-called “nonadiabatic transition state theory” (NA TST).31,32 Another goal of the present 

work is to use the multistate trajectory results to critically evaluate some features of available 

electronically nonadiabatic statistical approaches. 

 This paper is organized as follows. In Sec. II.A, multireference quantum chemistry 

calculations are used to characterize three electronic states of CO2 and two spin–orbit coupling 

surfaces. In Sec. II.B, analytic fits based on the multireference quantum chemistry methods are 

obtained for each of the five surfaces using the IMLS method.33,34,35,36 In Sec. III.A, theoretical 

details of the present CSDM trajectory calculations are presented. In Sec. III.B, the CSDM 

method is used to calculate the rate coefficient for reaction 1 from 1000–5000 K. In Sec. III.C, 

dynamical details of the CSDM calculations are analyzed and used to infer the relative 

importance of the direct and indirect spin-forbidden mechanisms discussed above. Details of the 

trajectory calculations are also used to comment on the appropriateness of using statistical 

models for studying spin-forbidden reactions. Section IV is a summary. In the Appendix, the 

expected accuracy of the present kinetics calculations is discussed. 

  

II. Spin-orbit coupled potential energy surfaces 

II.A. Quantum chemistry  

 Reaction 1 proceeds initially on one of three triplet surfaces, and the formation of stable 

CO2 requires a spin-forbidden transition to the ground-state singlet surface. The lowest-energy 

singlet (1A' or S0) and the two lowest-energy triplet (3A' or T1 and 3A" or T2) surfaces were 

characterized at the dw-MRCI+Q/CBS level of theory, where: three triplet and five singlet states 

were dynamically weighted37,38 (dw) in the CASSCF step with a weighting range parameter of β 

= 4.5 eV, the Davidson correction (+Q) was applied to the multireference configuration 

interaction (MRCI) energies, the complete basis set CBS limit was extrapolated using a two-

point l–3 formula39 and the aug-cc-pVTZ and aug-cc-pVQZ basis sets, and an active space of 12 

electrons in 10 orbitals (12e,10o) was used, corresponding to a nearly full valence active space 

(the 1s and 2s orbitals of both oxygen atoms and the 1s orbital of carbon were closed). The third 

nonreactive triplet surface is not considered here. 

 For small systems like CO2 where a nearly full valence active space and large-basis-set 

CBS extrapolations can be employed, the dw-MRCI+Q/CBS method is very accurate. The 
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present dw-MRCI+Q/CBS stationary points energies, frequencies, and geometries are compared 

with experimental and past theoretical work in Table 1. The present calculated values are in 

excellent agreement with available experimental data,40 with an error of only 0.3 kcal/mol for the 

triplet–singlet gap in atomic O and less than 0.001 Å for the CO and CO2 bond distances. The 

calculated CO2 bond energy agrees with the experimental value within its reported uncertainty 

after corrections for zero point energy and spin–orbit splitting. The dw-MRCI+Q/CBS method 

has recently been used to characterize multiple electronic states for several small systems with 

multireference character (e.g., BeC, CHCl, and O3) with similarly excellent agreement with 

experimental energies, frequencies, and geometries.41,42,43  

 Spin–orbit coupling surfaces were calculated using: the Breit-Pauli Hamiltonian44 ( ĤSO) 

as implemented in the electronic structure program Molpro,45 the dw-CASSCF/aug-cc-pVQZ 

method, and the (12e,10o) active space. The two geometry-dependent spin–orbit coupling 

surfaces considered here are defined 

  ε1 = 1A ' ĤSO
3A '  (2a) 

   ε2 = 1A ' ĤSO
3A" , (2b) 

where the triplet wave functions include a sum over three triplet spin-states. The magnitudes of 

the matrix products in eq 2 were calculated using the full Breit-Pauli Hamiltonian (i.e., including 

all 3 spin-states for each of the triplet states) and are invariant to the choice of representation of 

the triplet spin-states. 

 The electronic structure of the spin–orbit coupled states for the O + CO reaction is similar 

to that for the O + H2 reaction, which has been characterized in detail by other workers.46,47,48 

Schatz et al.46,47 showed that the full 7 × 7 Breit-Pauli Hamiltonian matrix (including the lowest-

energy singlet and two lowest-energy triplet states) could be factored into a 4 × 4 subblock and 3 

× 3 subblock, where only the 4 × 4 subblock contains the spin–orbit coupling matrix elements 

responsible for intersystem crossing. Furthermore, they showed that a unitary transformation of 

the triplet wavefunctions allows for an entirely real-valued representation of the Hamiltonian 

matrix. Here we have adopted a similar model. We have further neglected matrix elements of 

ĤSO between the triplet states. This simplification reduces the 4 × 4 model to a 3 × 3 one. One 

result of this neglect of triplet-triplet coupling is that the the atomic spin–orbit interactions that 

split the 3P states of O into 3P2, 3P1, and 3P0 states are not included. 
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 The present model for CO2 includes what are likely the most important nonadiabatic 

couplings for the O + CO reaction at the high temperatures considered here, namely those 

associated with spin-forbidden transitions between the triplet and singlet surfaces that occur at 

the singlet-triplet crossing seams. This model neglects various other nonadiabatic couplings that 

would complicate the dynamics but that are likely either well-approximated via simple models or 

else negligible. Specifically, the couplings between the three triplet states in the entrance channel 

are not explicitly considered, and instead it is assumed that the triplets are equally populated 

when they emerge from this region of the potential energy surfaces. Although there are certainly 

electronic transitions among the triplet states as O approaches CO, the net effect of these 

transitions is likely negligible at the temperatures considered here. The suitability of such a 

statistical model for the populations of the triplet states in the entrance channel was recently 

demonstrated (down to low energies) using quantum scattering calculations for O + D2.49 We 

have also neglected nonadiabatic couplings between the triplet surfaces. Spin–orbit-induced 

transitions between the triplet surfaces are unlikely to be important away from the entrance 

channel due to the nonzero energetic separations of the triplets for the bent 3CO2 species. The 

present model therefore includes the assumption that population transfer between T1 and T2 is 

negligible. We will briefly consider the limit of fast T1/T2 quenching below.  

 The calculated ε1 surface was found to show some sensitivity to the choice of active 

space. Table 2 summarizes calculated values of ε1 and ε2 at reference geometries near the 

minimum-energy geometries of the S0/T1 and S0/T2 crossing seams at several levels of theory 

differing in the choice of: level of correlation, basis set, active space, and state averaging 

strategy. The calculated values of ε1 and ε2 are largely insensitive to the choice of basis set, level 

of dynamical correlation (i.e., CASSCF or MRCI), and state averaging strategy, with the 

calculated spin–orbit coupling strengths differing from one another by less than ~10%. For ε1, 

there is a significant dependence on the choice of active space, however, with the smallest active 

space predicting ε1 = 20.6 cm–1, which is more than a factor of two smaller than what the 

(12e,10o) active space predicts (46.7 cm–1). Hwang and Mebel reported ε1 = 20.3 cm–1 using 

CASSCF and a full valence (16e,12o) active space; the present full valence CASSCF calculation 

predicts a larger value (53.4 cm–1). The absolute difference of the largest and smallest computed 

values for ε1 is small (only 33 cm–1). Benchmark calculations of the splitting for ground state 

atomic oxygen (using CASSCF/aug-cc-pVQZ as employed here) confirm the accuracy of the 
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Breit-Pauli method (lowering the 3P2 component by 79.3 cm–1 in nearly exact agreement with 

experiment).50,51 Nonetheless, the relative differences in the present range of computed values for 

ε1 may be kinetically important. Spin-forbidden rates scale as ~ε 2, such that an error in ε of a 

factor of two results in a factor of four error in the spin-forbidden kinetics. We have chosen to 

use the (12e,10o) active space to fit the analytic coupling surfaces discussed next. At this level of 

theory, the S0/T1 and S0/T2 crossing seams feature spin–orbit coupling strengths with similar 

magnitudes. 

 

II.B. IMLS diabatic potential energy matrix 

 An analytic global representation of the 3 x 3 diabatic (or, quasidiabatic52) potential 

energy matrix  

  U =
VS0 ε1 ε2

ε1 VT1 0
ε2 0 VT2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
, (3) 

where VX is the energy of state X (X = S0, T1, or T2), was obtained by fitting the results of the ab 

initio methods discussed in Sec. II.A using the IMLS semiautomatic fitting method.33 The PESs 

were fit in Jacobi coordinates in the ranges rCO = [0.92, 1.42] Å, RO—CO = [0.8, 4.0] Å, and θ = 

[0, π]. The number of ab initio data included in the fits is 3057, 1477, and 1675 for the S0, T1, 

and T2 PESs, respectively. For all three PESs the estimated interpolation errors (randomly 

sampled over the geometry ranges) are ~3 cm–1. Estimated errors are based on deviations 

between the fitting basis of 180 functions and a smaller basis of 138 functions. Details of the 

error estimation procedure have been reported previously.33 Small test sets of ab initio data (not 

included in the fit) confirm the estimated error as an RMS measure. The fitting errors for some of 

the stationary points in Table 1 are slightly larger (<0.2 kcal/mol). Overall, the accuracy of both 

the quantum chemistry method and the fitting strategy is expected to be very good for the present 

application, as discussed in detail in the Appendix. 

 Contour plots of the five fitted diabatic potential surfaces are shown in Fig. 1, where R is 

the incipient C–O bond distance and θ is the O–C–O bond angle. The remaining C–O distance 

was optimized. As discussed previously,6,7 the 3A' (T1) and 3A" (T2) triplet surfaces both feature 

weakly bound bent 3CO2 minima behind low barriers for association. These barriers (indicated 
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with o’s in Fig. 1) have classical thresholds of 6.5 and 8.0 kcal/mol relative to O + CO for T1 

and T2, respectively.  

 The S0/T1 and S0/T2 crossing seams are also shown in Fig. 1, and in both cases the 

seams separate the saddle points from the triplet wells. The minimum-energy geometry on the 

seam of crossings (MSX) is sometimes used to characterize spin-forbidden dynamics.31,32 In fact, 

an analogy with electronically adiabatic dynamics is sometimes made, where the MSX is treated 

as a kind of “spin-forbidden saddle point.” The MSXs are indicated by x’s in Fig. 1. As reported 

previously,6 the S0/T1 MSX has a geometry similar to that of the T1 3CO2 equilibrium structure 

with C2v symmetry and a smaller bond angle than that for 3CO2. In contrast, the S0/T2 MSX 

geometry is similar to that of the T2 saddle point, with one extended CO distance and a bond 

angle of 122o. (We note that the second S0/T1 MSX reported previously6 at collinear geometries 

is a local maximum on the crossing seam, not a local minimum. This feature can be seen in Fig. 

2(b) near R = 1.9 Å and θ = 180o.) One may be tempted to interpret the qualitative differences 

between the S0/T1 and S0/T2 MSX geometries as suggesting different spin-forbidden 

mechanisms, just as one often uses saddle point geometries to infer adiabatic reaction 

mechanisms. If the global crossing seam is considered, however, the S0/T1 and S0/T2 spin-

forbidden mechanisms appear more similar to one another, as both seams pass near the triplet 

saddle points and minima. The full dimensional multistate trajectories reported in Sec. III will be 

used to characterize and compare the S0/T1 and S0/T2 spin-forbidden dynamics in detail. 

 The spin-orbit coupling strengths (ε1 and ε2) vary from 45–80 cm–1 near the crossing 

seams, with similar magnitudes for the S0/T1 and S0/T2 seams. In the perturbative limit, spin-

forbidden kinetics varies as the square of the spin-orbit coupling, such that a factor of two 

variation in ε1 and ε2 along the seams can lead to a factor of four variation in the local spin-

forbidden probability. 

 Before the results of the dynamical calculations are presented in Sec. III, the global 

potential energy surfaces in Fig. 2 may be interpreted to indicate the following mechanism for 

reaction 1. The reaction proceeds initially with equal populations on the two triplet surfaces (and 

a third nonreactive triplet surface). On either reactive surface, the system first encounters an 

electronically adiabatic transition state associated with a triplet saddle point and an incipient 

bond distance of R = 1.9 Å. This dynamical bottleneck focuses the reactive fraction of collisions 

with respect to the O–C–O bond angle θ, such that the system likely first encounters the 
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subsequent singlet–triplet crossing seam with bond angles similar to that of the saddle point. At 

the crossing seam, there is some small probability for switching to the singlet surface, and a 

successful surface switch quickly leads to the formation of singlet CO2. The system is more 

likely, however, to stay on the triplet surface and to encounter the shallow 3CO2 well. The triplet 

well is not deep enough to significantly trap the system, but it may delay the system and promote 

multiple seam crossings. If the 3CO2 species are long lived enough, one might expect a statistical 

distribution of seam crossings. At each seam crossing there is some small probability of 

switching to the singlet surface and subsequently forming CO2. The spin-forbidden transition 

probability is approximately proportional to ε2, such that the location of the seam crossing can 

affect the transition probability by as much as a factor of four. We may therefore identify the 

following direct and indirect spin-forbidden mechanisms: The “direct” spin-forbidden 

mechanism is associated with the first set of seam crossings and features a nonstatistical 

distribution at the crossing seam shaped by the preceding saddle point. The “indirect” spin-

forbidden mechanism, on the other hand, is the result of sufficient equilibration in the 3CO2 wells 

and features a statistical distribution at the crossing seam. The relative importance of these two 

mechanisms will be quantified in Sec. III for the present system and generally depends on the 

temperature or energy, the depth of the transient well, the local nonadiabatic transition 

probabilities, etc. These mechanisms are in the spirit of the direct and indirect mechanisms 

suggested earlier6 and discussed in the Introduction, although here we associate the two 

mechanisms with distinct dynamical effects and not with local minima on the crossing seam. 

 

III. Non-Born–Oppenheimer molecular dynamics 

III.A. Theory 

 A variety of multistate trajectory methods have been developed that incorporate 

electronic state changes into molecular dynamics (classical trajectory) simulations, including the 

trajectory surface hopping,30,53 spawning,54 and decay-of-mixing28,55 classes of methods. These 

methods all rely on classical trajectories to describe the nuclear motion of the system, and they 

differ from one another in their treatments of the electronic motion and in their schemes for 

coupling nuclear and electronic degrees of freedom. While the term non-Born–Oppenheimer 

molecular dynamics (NBO MD) could be used to refer to any of these methods generally, we 

have used this term in the past to describe the methods we have developed. A series of 
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systematic studies of the accuracy of several NBO MD methods was carried out,56,57,58 and the 

results have been reviewed.27,59,60 Here we primarily consider the coherent switches with decay 

of mixing (CSDM) NBO MD method.28 

 CSDM trajectories are propagated on a mean-field29 potential energy surface, which is a 

weighted average of the diabatic potential energy surfaces. Although CSDM calculations may be 

carried out in adiabatic, diabatic, or mixed representations, the diabatic representation given by 

eq 3 was used exclusively in the present work. This choice is supported by past studies showing 

that the most accurate representation for semiclassical trajectory methods is the one in which 

coupling is minimized.61 In many mean-field nonadiabatic trajectory calculations, the weights of 

each diabatic surface are given by the electronic state populations and coherences, which are 

obtained by integrating the solution to the time-dependent electronic Schrödinger equation along 

each trajectory.26 In the CSDM method, these weights are modified to include electronic 

decoherence62,63,64 via additional de-mixing terms with first-order de-mixing times given by55 

 τ =
ΔV

1+ E0

Ts

⎛

⎝
⎜

⎞

⎠
⎟, (4) 

where ΔV is difference in the diabatic electronic energies of the diabatic state toward with the 

system is de-mixing and some other state, E0 is a parameter, and Ts is the kinetic energy 

associated with the component of the momentum where energy is being added or removed as the 

trajectory de-mixes. De-mixing forces each CSDM trajectory into a quantized electronic state in 

the absence of coupling, which also causes the mixed electronic state of a CSDM trajectory to 

decohere as the same rate. The electronic state toward which the trajectory de-mixes is 

determined by a fewest-switches26 criterion based on a locally coherent set of electronic state 

populations.  

The CSDM method may be thought of as intermediate of surface hopping and mean field 

methods. Like surface hopping trajectories, CSDM trajectories are electronically quantized away 

from regions of coupling and therefore share the desirable features of being able to explore low-

probability events, having physical internal energy distributions, etc.30 Unlike surface hopping 

trajectories, however, CSDM trajectories do not feature sudden momentum changes and the 

associated problem of frustrated hops.57,65 Furthermore, the mean-field nonadiabatic dynamics in 

regions of coupling leads to predicted reaction probabilities and internal energy distributions that 

are more accurate and less dependent on the choice of electronic representation than surface 
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hopping trajectories.27,59 The CSDM method was shown to be the most accurate of several 

multistate trajectory methods in tests against quantum mechanical results for atom–diatom 

scattering reactions and featuring several different couplings types and strengths.27,59 

The CSDM method was initially employed with E0 = 0.05–0.2 Eh (1 Eh = 27.21 eV), and 

the results were not overly sensitive to this parameter for small systems.28 A recent study showed 

some sensitivity for larger systems.66 Here we choose E0 by comparing τ from eq 4 with 

semiclassical decoherence times τ SC calculated via a model based on the short-time behavior of 

minimum-uncertainty wave packets.67 Specifically, for several values of E0, the de-mixing rates 

τ −1 were averaged over the spin-forbidden interaction regions encountered by a small batch of 

CSDM trajectories. The interaction regions were defined as the segments of the trajectories 

immediately following a seam encounter and then preceding a local minimum in the magnitude 

of the vector (or gradient) nonadiabatic coupling26 strength. These regions include the majority 

of the important spin-forbidden dynamics; outside of these regions, the trajectories largely 

behave adiabatically. For a CSDM ensemble at 4000 K, setting E0 = 0.01 Eh resulted in 

interaction-region-averaged de-mixing rates that agreed with those of the semiclassical model 

within 3%, whereas values of E0 = 0.1, 0.02, and 0.005 Eh resulted in interaction-region-averaged 

de-mixing rates that differed from the averaged semiclassical decoherence rates by –60%, –20%, 

and +25%, respectively. We note that in general the CSDM de-mixing times are somewhat larger 

than τ SC for short decoherence times and are somewhat shorter than τ SC for long decoherence 

times. Despite this (weak) inverse correlation, with E0 set to 0.01 Eh both models predict 

similarly fast decoherence (e.g., typically τ SC < 5 fs), as expected for the localized spin-

forbidden dynamics considered here.  

 CSDM trajectories were initiated in either the T1 or T2 electronic state. While in 

principle a trajectory initiated in the T1 state may eventually couple to the T2 state (via the S0 

state) and vice-versa, this effect was found to be was negligible. Reduced 2 x 2 diabatic 

representations 

  UTx =
VS0 εx

εx VTx

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟, (5) 
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where x = 1 or 2, were therefore used in many of the trajectory simulations. Spin-free or 

“valence” nonadiabatic coupling68 for the representations defined by eqs 3 and 5 is neglected; 

i.e., all of the nonadiabatic dynamics is assumed to arise from the spin-orbit interactions in eq 2. 

 The initial rovibrational state of CO was selected classically from a thermal distribution 

at temperature T by sampling the initial coordinates and momenta evenly in time from isolated 

CO trajectories subject to an Andersen thermostat.69 The impact parameter b was selected evenly 

in b2 from 0– bmax
2  (bmax = 2 Å), with the relative collision energy selected from a thermal 

distribution and an initial O–CO center-of-mass distance of 4 Å. These sampling limits were 

confirmed to be suitable for the high temperatures considered here. We emphasize that the 

present prescription for initial conditions is entirely classical. Quasiclassical70,71 or Wigner72 

initial conditions, particularly for rovibrational-state-selected collisions, are often used when 

performing classical trajectories. Here we are not concerned with state-selected chemistry but 

instead with high temperature kinetics. Therefore, we choose to calculate “classical” rate 

coefficients (these rate coefficients are of course not entirely classical, as they include 

nonclassical spin-forbidden transitions) and then to estimate the effect of quantized vibrations via 

corrections to the partition functions and threshold energies. For this system, these corrections 

are negligible above 2000 K and are small at 1000 K, as detailed in the Appendix. 

 Product channels α were assigned to each trajectory by monitoring the two C–O 

distances and the electronic state populations, with α = “S” for the spin-forbidden singlet CO2 

product and α = “E” for the O exchange reaction to give 3O + CO. A few trajectories produced 

the 1O + CO product channel at high temperatures, but this negligible fraction is not considered 

here. Bimolecular products were identified when one C–O bond distance exceeded 4 Å, and the 

molecular product CO2 was identified when the incipient bond distance was shorter than 1.3 Å 

and the instantaneous electronic state population for the singlet was greater than 0.99. 

 Using standard formulas, the bimolecular reaction cross section for product channel α 

is70,71  

  σα
s (T ) = πbmax

2 Fα
s (T ), (6) 

where s = T1 or T2 and labels the initial electronic state, and Fα
s  is the fraction of trajectories 

that finish the trajectory simulation in the α product channel. The related rate coefficients are70,71 
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  kα
s (T ) = ge

8kBT
πμ

σα
s , (7) 

where μ is the reduced mass of CO and O, and ge is the ratio of the electronic partition functions 

for the reactive surfaces and reactants. One-sigma uncertainties were calculated in the usual way 

for binned quantities.70,71 The total rate coefficient includes contributions from both reactive 

triplet states: 

  kα (T ) = kα
T1 + kα

T2 , (8) 

where k1∞(T ) ≡ kS (T ) . In eq 8, the T1 and T2 states are assumed to be equally populated prior to 

reaction, which is appropriate for the temperatures considered here. 

 The ensembles for each temperature and each initial electronic state included 25600–

51200 CSDM trajectories, such that one-sigma statistical uncertainties in the calculated rate 

coefficients were typically converged to better than 10%. 

 We also briefly consider the fewest-switches with time uncertainty53 (FSTU) surface 

hopping method. This method is a modification of Tully’s fewest switches method,30 where 

some hopping attempts that would otherwise be frustrated57 are instead allowed to hop by 

incorporating uncertainty into the hopping location. The calculations were carried using the 

stochastic decoherence73 (SD) model for electronic decoherence and the “ ∇V ” criterion.74 The 

other details of the FSTU trajectories are as described above for the CSDM calculations. 

 

III.B. Spin-forbidden kinetics 

 The calculated CSDM rate coefficients for reaction 1 are shown in Fig. 2. The results 

were fit to the modified Arrhenius expressions 

 kS
T1(T ) =1.2 ×10−11(T / 298K)−0.83 exp(−4400K / T ) cm3  molecule−1  s−1, (9) 

 kS
T2 (T ) = 6.3×10−13 exp(−4750 K / T ) cm3  molecule−1  s−1, (10) 

 k1∞(T ) = 2.8×10−11(T / 298K)−0.96 exp(−4950K / T ) cm3  molecule−1  s−1 , (11) 

The present value of k1∞(T ) is 7–35x larger than the single existing theoretical literature value2 

for the high pressure limit of reaction 1, with larger differences at higher temperatures. These 

differences are outside the expected accuracy of the present approach, as discussed in the 

Appendix, but may not be outside the combined uncertainties of the two calculations. 
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 In general, both reactive triplet states contribute to the total rate for reaction 1, with 

kS
T1 / kS

T2 = 4 at 2000 K and 1.4 at 5000 K. The difference in the temperature dependence of kS
T1  

and kS
T2  can be attributed to their different spin-forbidden reaction thresholds. The submerged 

threshold for the S0/T1 crossing seam leads to a flat temperature dependence in kS
T1  above 2000 

K, where the spin-forbidden event is rate limiting. Below 2000 K, the adiabatic transition state 

associated with the T1 saddle point is rate limiting, which leads to the positive the temperature 

dependence observed at these temperatures. For kS
T2 , the positive S0/T2 crossing seam threshold 

leads to a positive temperature dependence for the entire temperature range considered here. The 

two spin-forbidden rates tend to similar values at high temperatures, where the effects of the 

different threshold energies are mitigated by the larger total energies. 

 As mentioned in Sec. II.A, the present model neglects direct population transfer between 

the triplet states. It is also interesting to consider the limit of fast population transfer between 

these two states. In this limit, trajectories that pass through the adiabatic transition state 

associated with the T2 saddle point are assumed to be quenched to T1 and then may react via the 

S0/T1 seam. At high temperatures, the main bottleneck on T2 is the crossing seam and fast 

T2/T1 population exchange would then tend to increase the total rate coefficient for reaction (by 

up to 30% at 5000 K). At 1000 K, the maximum effect would be to increase the total rate 

coefficient by 80%, but this increase is mitigated by the increased importance of the saddle point 

bottlenecks at low temperature. 

 The sensitivity of the predicted results on various parameters in the multistate trajectory 

method is briefly considered next. For kS
T1(4000 K), varying the de-mixing parameter E0 from 

0.01 to 0.005 and 0.02 Eh resulted in relative changes in the predicted rate coefficient of –13% 

and +18%, respectively. The weak sensitivity of the present predictions with respect to the 

choice of the parameter E0 is encouraging; the choice of E0 = 0.01 Eh for the results reported in 

Fig. 2 was motivated by comparisons with a semiclassical model for decoherence, as discussed 

above. Using a different model for decoherence altogether has a more significant effect on the 

present predictions. Specifically, the rate coefficient predicted by the FSTU surface hopping 

method and the stochastic decoherence (SD) model is ~4x larger than the CSDM rate coefficient 

reported above. Similarly large differences in CSDM and FSTU predictions were previously 

reported for weakly coupled systems27,58 and may be attributed in part to the presence of 
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frustrated hops in the FSTU method. The present FSTU trajectories suffer significantly from 

frustrated hops, with nearly equal numbers of FSTU trajectories experiencing frustrated hops and 

classically allowed hops. 

 The CSDM results were confirmed be close to the perturbative limit with respect ε1 and 

ε2, with rate coefficients that scale as ~εi
2  over entire temperature range considered here for T2 

and above 2000 K for T1. For T1 at 1000 and 2000 K, the adiabatic saddle point transition state 

is significantly rate limiting, and so changes to the spin–orbit coupling have a small effect on the 

overall kinetics. 

 Finally, we note that symmetric exchange reactions (O' + CO → O + CO') were found to 

be 4–40x more likely than the spin-forbidden reactions. The calculated rate coefficients for the 

exchange reaction are 

 kE
T1(T ) = 9.5×10−12 (T / 298K)−0.39 exp(−4300K / T ) cm3  molecule−1  s−1, (12) 

 kE
T2 (T ) = 2.5×10−12 (T / 298K )−0.86 exp(−4600K / T ) cm3  molecule−1  s−1 , (13) 

     kE
T1(T )+ kE

T2 (T ) = 8.5×10−12 (T / 298K)−0.65 exp(−4200 K / T ) cm3  molecule−1  s−1. (14) 

 

III.C. Spin-forbidden dynamics 

 In this section, dynamical details of the spin-forbidden CSDM trajectories are presented, 

with an emphasis on quantifying the relative importance of the direct and indirect mechanisms 

discussed in Sec. II.B. First, we consider the extent to which the T1 and T2 3CO2 wells delay the 

system and promote multiple seam crossings. In the following statistics, only those trajectories 

that access the seam at least once (i.e., only those trajectories that get past the dynamical 

bottlenecks associated with T1 or T2 adiabatic saddle points) are included. The probability of 

undergoing a spin-forbidden transition at each seam crossing depends on the total energy, the 

local properties of the crossing seam, etc., but is always small (less than 0.005). Seam crossings 

therefore typically come in pairs, as the first seam crossing is associated with the formation of 
3CO2 and a second seam crossing is required to produce the most likely product, O + CO.  

 At 5000 K, 58% of T1 trajectories are trapped, at least temporarily, by the 3CO2 well and 

access the S0/T1 seam more than twice: 42% access the seam exactly twice, 29% access the 

seam exactly four times, and the majority of the remaining trajectories access the seam more than 

four times with successive pairs of crossings exponentially less likely. A small number of 
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reactive trajectories access the seam an odd number of times. Much less trapping is observed for 

trajectories initiated on the T2 surface, which features a shallower 3CO2 well than the T1 surface. 

At 5000 K, 87% of trajectories encounter the S0/T2 seam exactly twice, with the majority of the 

remaining trajectories encountering the seam exactly four times. For T1, the fraction of trapped 

trajectories increases significantly at lower temperatures. At 2000 K, for example, 16% of T1 

trajectories that access the seam do so exactly twice, with the majority of the remaining 

trajectories accessing the seam four or more times. For T2, in contrast, the fraction of trapped 

trajectories is relatively insensitive to temperature. These results are consistent with the 

submerged surface crossing threshold for T1 and the positive surface crossing threshold for T2, 

as well as the shallower T2 well. 

 The paired seam crossings identified above might be used to motivate the “double 

passage” transition probabilities used in some statistical models for nonadiabatic kinetics.31,32,75 

The double passage approximation incorporates two effects: First, it accounts for passage 

through the seam in both directions. (In an adiabatic TST calculation, on the other hand, flux 

only in the reactive direction is counted.) Second, it accounts for depletion of population at the 

second pass, i.e., if the probability of a nonadiabatic transition at the first pass is P1, the 

probability of crossing the seam a second time is reduced by (1–P1). The double passage 

formulation is most readily motivated by considering a one-dimensional (e.g., diatomic) system. 

In one dimension, if P1 is not too large,76 both of the effects identified above are accounted for 

properly via the double passage method and the system accesses the seam (which in one 

dimension is a single geometry) at the same geometry. For polyatomic systems, the accuracy of 

the double passage method is less clear, despite the paired crossings noted above. In the present 

calculations, a significant fraction of trajectories access the seam more than twice, which would 

result in probabilities further reduced by (1–P1)(1–P2), (1– P3)(1–P2)(1–P3), etc. at each pass. 

These “more than double passage” effects (which do not arise in one dimension) are not included 

in the “double passage” approximation. (If Pi is small enough such that depletion may be 

neglected, golden rule formulations of nonadiabatic kinetics may be more appropriate than the 

double passage approach.77) Furthermore, we note that the paired seam crossings identified 

above are not typically associated with similar locations on the crossing seam. As mentioned 

above, the local nonadiabatic transition probability can vary significantly along the crossing 

seam. In general, the nonlocal (history-dependent, dynamical) effects identified here are difficult 
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to incorporate into statistical theories. The present trajectory calculations explicitly include these 

nonlocal population-depletion and history-dependent effects. 

 Fig. 3 shows the distribution of the geometries where 5000 K ensembles of 2000 CSDM 

trajectories encounter the S0/T1 and S0/T2 crossing seams as a function of M, where M = 1 for 

each trajectory’s first encounter with the crossing seam, M = 2 for each trajectory’s second 

encounter, etc. To make Fig. 3, a generalized seam coordinate s was defined that describes the 

location each trajectory’s encounters with the curved crossing seam (see Fig. 1): 

  s = ± (R − R0 )2

δR2 + (θ −θ0 )2

δθ 2
 (15) 

where (R0, θ0) = (1.71 Å, 121o) is a reference geometry, δR and δθ are scaling factors that bound 

the magnitudes of each term to 1, and the sign of s is determined by the sign of θ – θ0. The S0/T1 

MSX has a value of s = –0.43. Regions of the seam close to the T1 saddle point have values of s 

near 0. For S0/T2, the MSX has a value of s near zero, which is also close to the T2 saddle point.  

 As shown in Fig. 1(a), the geometries associated with the initial seam crossing (M = 1) 

are greatly affected by the preceding saddle point, with a distribution clustered near s = 0 (near 

the T1 saddle point). The distribution of geometries at the second crossing (M = 2) is clustered 

closer to the MSX with s = –0.35. Subsequent pairs of seam crossings appear more and more 

statistical and peaked near s = –0.4 with oscillating minor contributions near s = 0. Together 

these features give rise to the broad statistical distribution for M > 2 shown in Fig. 3(a). We may 

generally associate the initial seam crossing with a direct nonstatistical mechanism and later 

seam crossings with an indirect statistical mechanism. The two mechanisms differ in the 

distributions of their seam crossings geometries, and, notably, these differences in seam crossing 

geometries give rise to different average local (i.e., per-crossing) nonadiabatic transition 

probabilities. These differences are principally due to variations in the spin–orbit coupling 

strength along the seam (cf. Fig. 1), although they arise from other differences in the local 

crossing seam, as well. The direct (M = 1) encounters with the crossing seam have larger spin–

orbit coupling strengths, on average, than those associated with the indirect mechanism. 

Specifically, the average value of ε1 for s ≈ 0 is 65 cm–1, whereas the average value near s = –0.4 

is 47 cm–1. These differences, along with other differences in the local seam properties, give rise 

to per-crossing nonadiabatic transition probabilities that are ~2x larger near s = 0 than near s = –

0.4. At 5000 K, the direct mechanism accounts for only 20% of total seam crossings, however, 



 18

such that the direct mechanism accounts for only 33% of the total spin-forbidden rate despite its 

larger per-crossing transition probability. As mentioned above, the relative importance of the 

direct mechanism decreases at lower temperatures for T1. 

 Fig. 3(b) shows seam crossing statistics for the S0/T2 seam and for 2000 5000 K 

trajectories initiated on the T2 surface. For this surface, the saddle point is close to the MSX (cf. 

Fig. 1) such that the distributions for M = 1, 2 and > 2 are all peaked near s = 0. As mentioned 

above, relatively fewer trajectories are trapped in the T2 well than the T1 well, and the total spin-

forbidden dynamics is dominated by the first and second seam crossings for T2. We could again 

associate the first seam crossing (M = 1) with a direct mechanism for spin-forbidden reactions on 

the T2 surface (nearly half of seam crossings would be so assigned), but in this case both the 

direct and indirect mechanisms have similar seam crossing geometry distributions and so the 

distinction between indirect and direct mechanisms is less important. 

 Statistical assumptions about the distribution of seam crossings would therefore not 

introduce significant errors for either triplet state, but this is not necessarily a general result. In 

fact, for the two cases considered here, the statistical assumption is accurate for different reasons. 

For T1, the triplet well is deep enough to trap a significant enough fraction of the trajectories, 

such that the trapped statistical trajectories outnumber the initial direct seam crossings. For T2, 

on the other hand, the triplet well does not significantly delay the trajectories and nearly half of 

the total seam crossings are “direct” ones. However, the S0/T2 MSX happens to be close to the 

T2 saddle point, such that the direct and indirect geometry distributions are similar, with similar 

per-crossing nonadiabatic transition probabilities. 

 Overall, the present dynamical picture is similar to the one proposed by Hwang and 

Mebel6 based on their characterization of static properties of the S0/T1 crossing seam, but differs 

in some important details. Most notably, the present dynamical picture suggests that the relative 

importance of the direct and indirect mechanisms depends on the depth of the transient well and 

on the similarity or difference of the saddle point and MSX structures. 

 The above discussion highlights the importance of including geometry dependence in the 

spin–orbit coupling surface. If the spin–orbit coupling surfaces were instead assumed to be 

independent of geometry (which is a common assumption in the literature) and assigned the 

values calculated at the MSX geometries, the overall spin-forbidden rate coefficients would be 

reduced by a factor of ~2. 
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 Some statistical treatments of spin-forbidden dynamics treat the MSX similarly to a 

saddle point, with the crossing seam playing the role of the transition state dividing surface 

dynamical bottleneck. Within this picture, one is tempted to employ an analog of UST78 in the 

present case, where one transition state is associated with the conventional saddle point on the 

triplet surface and the other is given by the MSX. Miller’s UST describes the total rate 

coefficient for a system encountering two transition states in succession as78 

N −1 = N1
−1 + N2

−1 − Nx
−1 . The derivation of UST recognizes that each transition state is local 

dynamical bottleneck (a local minimum in the nuclear flux) with values N1 and N2. When two 

such dynamical bottlenecks are in succession along some reaction coordinate, there is necessarily 

a maximum in the flux, Nx, associated with some intermediate geometry, most likely a well. If 

the intermediate well is “deep” enough, statistical assumptions about branching between the two 

adjacent transition states are expected to be good, Nx
−1 → 0 , and eq 16 reduces to the expected 

statistical two transition state model.79 When the well is shallow, however, the magnitude of Nx
−1  

may become comparable to N1
−1  or N2

−1 , such that the UST rate reduces to N1 or N2, whichever 

is rate limiting. When one of the “transition states” is a crossing seam instead of a conventional 

transition state, the formal foundation of the UST model breaks down. An MSX is not associated 

with any local minimum in the nuclear flux, and one cannot therefore rely on the appropriate 

reduction of UST to the two limits discussed above.  

 More generally, Wigner’s fundamental assumption of TST associates the transition state 

with a local minimum in the nuclear flux.80 The formal equivalence of TST with full-

dimensional classical dynamics relies on the fact that once the flux through the transition state 

dividing surface is fully minimized, dynamical recrossing is minimized to zero, and every state 

on the transition state dividing surface reacts with unit probability. This fundamental property of 

classical dynamics gives rise to the variational principle in TST and to useful and accurate 

applications of TST for molecular systems. For spin-forbidden dynamics, in contrast, the 

probability of reaction at the seam is not unity and is in fact very small (the transition is 

forbidden, after all). “Recrossing” is indeed often required for appreciable spin-forbidden rates. 

The violation of the fundamental assumption of TST for spin-forbidden reactions gives rise to 

the nonlocal nonadiabatic dynamics discussed above (i.e., the breakdown of the double passage 

assumption in polyatomic systems), makes nonstatistical effects more likely than in 
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electronically adiabatic reactions, and cautions against the quantitative application of UST-like 

approaches. While statistical formulations of spin-forbidden (or more generally electronically 

nonadiabatic) dynamics may be practically useful, we emphasize that these formulations do not 

share the formal foundations of TST. Further critical evaluation of nonadiabatic statistical 

models may be required to enable quantitative predictions with these methods. The formal 

distinction between TST and nonadiabatic statistical theories has been previously emphasized by 

Miller.77 

  

IV. Summary and conclusions 

 The spin-forbidden kinetics and dynamics of the reaction O + CO → CO2 was 

characterized theoretically. A global full-dimensional spin–orbit-coupled representation of the 

lowest-energy singlet and the two lowest-energy triplet states was developed based on nearly full 

valence dw-MRCI/CBS calculations and using the IMLS surface fitting method. The resulting 

potential energy surfaces were shown to agree very well with available experimental properties 

for CO2 and CO. Geometry dependence was explicitly included in the calculated and fitted spin–

orbit coupling surfaces. The magnitude of the spin–orbit coupling was shown to vary from 45–80 

cm–1 along the crossing seams. 

 The association kinetics was calculated using the CSDM method, which is a previously 

validated non-Born–Oppenheimer molecular dynamics (i.e., semiclassical coupled-states 

trajectory) method. Both triplet states were found to contribute non-negligibly to the total 

association rate coefficient. The total CSDM rate coefficient is 7–35x larger than the value used 

in many combustion kinetic models. A detailed analysis of potential sources of error in the 

present calculations was presented in the Appendix. The present calculations may be assigned an 

error of 40%, arising principally from the calculated spin–orbit coupling strength. The present 

results were found to be somewhat sensitive to choice of the electronic decoherence model used 

in the non-Born–Oppenhiemer trajectory calculations. The CSDM method features an explicit 

treatment of electronic decoherence, which was previously validated against quantum scattering 

calculations and was again tested here against a semicalssical model based on the short-time 

behavior of wave packets. We note that other semiclassical trajectory methods either neglect 

electronic decoherence or use other (sometimes simpler) models.  
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 Dynamical details of the CSDM trajectories revealed distinct direct (nonstatistical) and 

indirect (statistical) mechanisms associated with different distributions of seam crossings. The 

direct mechanism features seam crossings shaped by the preceding saddle point, whereas the 

indirect mechanism features statistical distributions of seam crossings. Similar nonstatistical 

effects are likely generally important for spin-forbidden systems, although for the present system 

the application of an entirely statistical model would not lead to significant errors. The general 

appropriateness of statistical models for treating the inherently nonlocal dynamics of spin-

forbidden processes was also discussed.  

 

Appendix. The accuracy of the present theoretical kinetics calculations 

 To estimate the accuracy of the present classical description of the nuclear dynamics, 

electronically adiabatic rate coefficients for 3O + CO → 3CO2 for the T1 and T2 triplet states 

were each calculated three ways: via classical trajectories and the classical initial conditions 

described above ( kdyn
c ), via classical rigid rotor–harmonic oscillator (RRHO) variational 

transition state theory (TST) ( kTST
c ), and via quantum mechanical RRHO variational transition 

state theory ( kTST
q ).24 None of these calculations included tunneling corrections. The variational 

TST calculations were performed using POLYRATE,81 with stretch/stretch/bend curvilinear 

coordinates82 and the re-orientation of dividing surfaces83 (RODS) method. The ratio 

  κdyn (T ) = kdyn
c / kTST

c  (17) 

defines a dynamical correction to TST due to trajectory recrossing24,84 and also includes the 

effect of vibrational anharmonicity. For both T1 and T2, κdyn = 0.92–1.0 for T = 1000–5000 K, 

where the small deviation from unity increases with temperature. 

 The ratio 

  Cq (T ) = kTST
q / kTST

c  (18) 

defines a correction to the trajectory-based rate coefficients that arises from the use of classical 

partition functions and thresholds. This can be seen more clearly by substituting into eq 6 the 

classical and quantal bimolecular TST expressions, i.e., 

  kTST
z = kBT

h
Qz

≠

Qz
R exp(−Vz

≠ / kBT ), (19) 
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where z = “q” or “c”, kB is Boltzmann’s constant, Qz
≠  is the pseudopartition function for the 

transition state, Qz
R  is the total partition function for the reactants, the partition functions are 

defined relative to their classical or quantal (i.e., zero point inclusive) thresholds, and Vz
≠  is the 

classical or quantal barrier height. One can then write eq 18 as 

  Cq (T ) =
Qc

R / Qq
R

Qc
≠ / Qq

≠ ≡
Cq

R

Cq
≠  (20) 

where the over-tilde indicates that the quantal partition functions are evaluated relative to the 

classical reference energies. By construction, the correction terms Cq
‡ and Cq

R each tend to unity 

at high temperatures, as the classical limit is approached. In general, one expects the classical 

description to be poor for molecules at low and moderate temperatures (and even sometimes at 

high temperatures for high-frequency vibrations, for example). The terms in eq 20 may be 

readily evaluated. For the present system, Cq
‡ and Cq

R are significant at 300 K (15 and 17, 

respectively), are non-negligible at 1000 K (1.4 and 1.5, respectively), and are within 10% of 

unity for temperatures above 2000 K; i.e., this heavy-atom system is well represented as a 

classical system for temperatures greater than ~2000 K. The use of classical mechanics for the 

overall rate coefficient, however, is much more accurate, even at low temperatures, due to the 

significant cancellation in the ratio of Cq
‡ and Cq

R. The overall quantal correction to the predicted 

rate coefficient Cq is only 17% at 300 K and is less than 2% at temperatures above 1000 K. 

Classical rate coefficients for the present system may therefore be expected to be very accurate at 

low temperatures––despite the fact that the partition functions themselves may not be near their 

classical limits––due to cancellation of the quantal corrections for the reactants and at the 

transition state. Some cancellation is expected in general but the present significant cancellation 

down to very low temperatures relies on the fact that one of the harmonic transition state 

frequencies is very close to the reactant CO frequency (both near 2100 cm–1) and the other 

transition state frequency (322 cm–1) is small enough to be well approximated classically. 

 The above analysis considered the adiabatic dynamics associated with the conventional 

adiabatic bottlenecks (saddle points) on the triplet surfaces. The spin-forbidden kinetics 

governing reaction 1 is sensitive to the state densities at the crossing seams, where one cannot 

necessarily rely on the excellent cancellation discussed above. Regardless, as noted above, the 

partition functions themselves are close to their classical limits above 2000 K. We estimate that 
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the error due to classical nuclear dynamics is less than 10% for this system for temperatures 

above 2000 K and may be somewhat larger at 1000 K. 

 Next we consider the accuracy of the CSDM method for describing the electronically 

nonadiabatic dynamics. The CSDM method has been tested against quantum scattering 

calculations for product branching and for internal energy distributions for a series of atom-

diatom reactions featuring a variety of electronically nonadiabatic interaction types.56,57,58 The 

results of these tests have been recently summarized.27,59 The overall relative error in the CSDM 

method was found to be only 23%, averaged over several systems and several observables. The 

errors obtained in these previous tests include errors arising from both the nuclear and 

electronically nonadiabatic dynamics, and as discussed above, one expects the nuclear dynamics 

of the present system to be well approximated classically. We therefore assign an overall error of 

~20% to the CSDM method for the present application. 

 Historically, errors arising from the potential energy surface have dominated the overall 

error in many kinds of dynamics calculations. The high general accuracy of the dw-

MRCI+Q/CBS method for small systems like CO2 and the very small fitting error associated 

with the ILMS method significantly minimizes the error in the present calculations arising from 

the potential energy surfaces. These errors are likely very small, even relative to the small error 

assigned to the CSDM method. For example, a 0.2 kcal/mol error in a barrier height (this is the 

maximum fitting error of the present IMLS application for the stationary points listed in Table 1) 

introduces only a 10% error into a TST calculation at 1000 K and a 2% error at 5000 K. 

 The most significant source of error in the present calculation is likely the calculated 

spin-orbit coupling strengths. It is difficult to estimate the error associated with the Breit-Pauli 

model for HSO described in Sec. II.A and used to calculate ε1 and ε2. Our own85 and earlier50,51 

studies of the accuracy of this model for halogen atoms suggest that, for the lighter halogens at 

least, the error is only a few percent. The absolute magnitude of the error in these studies was 

tens or even hundreds of cm–1, however, which is significant relative to the magnitude of ε1 and 

ε2. However, as mentioned in section II.A. above, calculations for atomic oxygen using the 

methods employed in this study were found to be highly accurate. Our analysis in Sec. II.A 

showed some sensitivity to the choice of quantum chemistry method (primarily for significantly 

smaller active spaces). We may reasonably assign an error of ~20% arising from the Breit-Pauli 
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model, the choice of quantum chemistry method, and from the IMLS fitting error. Such an error 

would contribute a 40% error to the predicted spin-forbidden rate coefficient.  

 We confirmed that the present dynamics are close to the perturbative limit with respect to 

ε (except for kS
T1 for T < 2000 K) such that if more accurate values of ε1 and ε2 could be obtained, 

the present results could be corrected via the simple relation 

  ′kS (T ) = kS
T1(T ) ′ε1

ε1

⎛

⎝
⎜

⎞

⎠
⎟

2

+ kS
T2 (T ) ′ε2

ε2

⎛

⎝
⎜

⎞

⎠
⎟

2

 (21) 

where the primes indicate improved spin-orbit coupling strengths evaluated at some reference 

geometries (e.g., at the MSXs). 
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Table 1. Experimental, fitted, and calculated energiesa (kcal/mol), geometries (R/Å, R'/Å, θ/o), and harmonic frequencies (cm–1) 
Stationary point Experimentalb IMLS dw-MRCI+Q/CBS Ref. 6c Ref. 7d Ref. 10e

3O + CO (0.0)f 
1.128 
2170 

0.0f 0.0 (0.0)f

1.127 
0.0
1.15 
2119

0.0 0.0

1O + CO (45.38) 
1.128 
2170 

44.82 (45.05)f

1.127 
51.1
1.15 
2119

CO2 (–125.8) 
1.162, 1.162, 180.0 
667.4(x2), 1333, 2349

–130.0 (–125.9)
1.160, 1.160, 180.0 
665.3(x2), 1361, 2402

–130.1
1.161, 1.161, 180.0 

–129.1
1.17, 1.17, 180 
636(x2), 1333, 2447

CO2 (3A')  –21.26
1.241, 1.242, 118.6 
584.0, 1113, 1426

–21.16
1.242, 1.242, 118.0 

–18.6
1.20, 1.33, 121 
601, 1092, 2348

–22
1.26, 1.26, 118 
540, 1110, 1310

–20.5
1.251, 1.251, 118.5 
622, 752, 1414

CO2 (3A")  –5.424
1.248, 1.256, 128.1 
497.6, 875.2, 1312

–5.350
1.251, 1.251, 127.2 

 –5.4
1.27, 1.27, 127 
580, 880, 1040

–5.42
1.261, 1.261, 127.4 

[3O + CO ⇄ 3CO2]‡ (3A')  6.461
1.134, 1.920, 119.3 
489.2i, 321.8, 2098

6.539
1.134, 1.92, 120.8 

5.9
1.16, 1.81, 122 
663i, 317, 2067

5
1.16, 2.0, 112 

[3O + CO ⇄ 3CO2]‡ (3A")  7.805
1.135, 1.863, 125.9 
423.5i, 322.5, 2087

7.979
1.136, 1.86, 126.2 

 7
1.16, 1.85, 122 

S0/T1 MSX (3A')  –17.06
1.255, 1.255, 106.6 
1025, 1234

–10.0
1.25, 1.25, 110 

S0/T2 MSX (3A")  6.970
1.143, 1.740, 121.6 
440.3, 1996

 

aElectronic energies are reported relative to 3O + CO, with spin-orbit- and zero-point-corrected energies given in parenthesis. 
bNIST Webbook40 
cSeveral levels of theory were considered by Hwang and Mebel.6 Here the average of their QCISD(T)/6-311+G(3df)//CASSCF/6-
311+G(3df) energies for MSX (3A') (their MSX1) and their G2(MP2) energies for the other stationary points are shown. 
dCASSCF-MP2/6-31+G(d) with a (12e,10o) active space 
eMRCI//CASSCF with a (16e,12o) active space and a custom basis set 
fThe CO + O asymptote is not explicitly included in the IMLS fit. The asymptotic triplet energy is zero by construction. 
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Table 2. Spin–orbit coupling strengths for several levels of theory calculated at geometries near 

the crossing seam minima 

Method Basis set Active space State averaging ε1, cm–1 ε2, cm–1 

IMLSa n/a n/a n/a 47.94 63.08 

CASSCF aug-cc-pVQZ (16e,12o) dynamicb 53.36 56.44 

CASSCF aug-cc-pVQZ (12e,10o) dynamic 46.69 56.47 

CASSCF aug-cc-pVQZ (10e,8o) dynamic 30.45 56.71 

CASSCF aug-cc-pVQZ (8e,6o) dynamic 20.60 53.61 

CASSCF aug-cc-pVTZ (12e,10o) dynamic 46.00 55.20 

CASSCF aug-cc-pVDZ (12e,10o) dynamic 44.03 52.95 

CASSCF aug-cc-pVQZ (12e,10o) fixedc 49.88 63.79 

MRCI aug-cc-pVDZ (12e,10o) dynamic 44.61 50.48 
aThe IMLS coupling surfaces were fit using the dynamically-weighted CASSCF/aug-cc-pVQZ 

(12e,10o) method. 
bThe dynamic weighting (dw) scheme was used. 
cEqual fixed weights were used for the two lowest singlet and the two lowest triplet states. 
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Figure Captions 

Fig 1.  IMLS surfaces for (a) VS0, (b) VT1, (c) ε1, (d) VT2, and (e) ε2. The remaining CO distance 

was optimized with respect to VS for (a), VT1 for (b) and (c), and VT2 for (d) and (e). For 

(a), (b), and (d), the contours lines indicate the O + CO zero of energy (bold), 10 kcal/mol 

contour increments (solid), and 1 kcal/mol contour increments from 1–9 kcal/mol 

(dashed). For (c) and (d), the contour spacing is 10 cm-1, and some contours are labeled. 

The S0/T1 and S0/T2 crossing seams are shown in red and blue, respectively. The triplet 

saddle points and the minima on the crossing seams (MSXs) are labeled with ‘o’ and ‘x’, 

respectively. 

Fig. 2. Rate coefficient for reaction 1 calculated using the CSDM method (symbols) for 

trajectories initiated on the T1 (red squares) and T2 (blue triangles) surfaces. The total 

calculated rate coefficient is shown as black circles. The modified Arrhenius fits in eqs 

9–11 are shown as the associated solid lines. Two sigma statistical error bars are shown 

and are sometimes smaller than the symbols. The rate coefficient from Ref. 2 is shown as 

a thick black line. 

Fig 3.  Seam crossing statistics for 2000 CSDM trajectories at 5000 K initiated on the (a) T1 and 

(b) T2 surfaces. The seam coordinate s is defined in eq 15. 
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Fig 1.  IMLS surfaces for (a) VS0, (b) VT1, (c) ε1, (d) VT2, and (e) ε2. The remaining CO distance 

was optimized with respect to VS for (a), VT1 for (b) and (c), and VT2 for (d) and (e). For 
(a), (b), and (d), the contours lines indicate the O + CO zero of energy (bold), 10 kcal/mol 
contour increments (solid), and 1 kcal/mol contour increments from 1–9 kcal/mol 
(dashed). For (c) and (d), the contour spacing is 10 cm-1, and some contours are labeled. 
The S0/T1 and S0/T2 crossing seams are shown in red and blue, respectively. The triplet 
saddle points and the minima on the crossing seams (MSXs) are labeled with ‘o’ and ‘x’, 
respectively. 



 29

Figure 2 

 
 

Fig. 2. Rate coefficient for reaction 1 calculated using the CSDM method (symbols) for 
trajectories initiated on the T1 (red squares) and T2 (blue triangles) surfaces. The total 
calculated rate coefficient is shown as black circles. The modified Arrhenius fits in eqs 
9–11 are shown as the associated solid lines. Two sigma statistical error bars are shown 
and are sometimes smaller than the symbols. The rate coefficient from Ref. 2 is shown as 
a thick black line. 



 30

Figure 3 

 
Fig 3.  Seam crossing statistics for 2000 CSDM trajectories at 5000 K initiated on the (a) T1 and 

(b) T2 surfaces. The seam coordinate s is defined in eq 15. 
  

(a) S0/T1

(b) S0/T2
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