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The present chapter is concerned with this difficult third class; we call this
area of chemistry “non-Born—Oppenheimer chemistry” in recognition of the
classic work of Born and Oppenheimer? in analyzing the basis for the sep-
aration of electronic and nuclear motion when there is no change in the
electronic quantum numbers. Collisions that either conserve or change the
electronic quantum numbers are called electronically adiabatic and elec-
tronically nonadiabatic, respectively.

The work of Born and Oppenheimer? and later Born® and Born and
Huang* developed the foundation for the separation of electronic and
nuclear motion that underlies the modern theory of electronically adiabatic
processes, and they also worked out the leading nonadiabatic coupling terms
(NACTS). Section 2 begins by reviewing this fundamental theory for both
electronically adiabatic and electronically nonadiabatic processes. A special
topic that dominates many aspects of the considerations is the question
of intersections of adiabatic potential energy surfaces, especially conical
intersections. The key role of conical intersections in many photochemical
processes was pointed out by Teller’ in 1937.

Section 2 also presents a general multi-state approach that may be
used to treat a wide variety of processes; this is called the generalized
Born—-Oppenheimer approximation. An important practical issue in the
use of the generalized Born—Oppenheimer approximation is the choice of
electronic basis states used to span the generalized Born—Oppenheimer
finite electronic state space. Although the adiabatic electronic states are
uniquely defined and are very useful for defining the space, they sometimes
present practical difficulties when used for dynamics calculations because
the NACTs that provide the coupling between electronically adiabatic
states are multidimensional vectors with singularities, and they involve
inconvenient differentiation of the electronic wave functions with respect
to nuclear coordinates. These practical difficulties are not insuperable, and
many useful calculations and discussions are based on the adiabatic repre-
sentation. Nevertheless, there is also considerable interest in so-called dia-
batic bases in which the state coupling is dominated by nonsingular scalars
that do not require the inconvenient differential operators mentioned above.
Thus the final main subject of Sec. 2 is the question of adiabatic-to-diabatic
transformations. The use of diabatic states is already implicit in the old-
est dynamical theories of electronically nonadiabatic collisions,>® but their
systematics have been more slow in development, 938

With potential energy surfaces and their couplings in either the adia-
batic or the diabatic representation in hand, one may proceed to modeling
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or calculating the dynamics. In most cases an accurate quantum mechanical
dynamical treatment is not computationally affordable or is otherwise not
suitable, and one employs approximate “semiclassical” methods where the
full dynamics of the system is approximated in some way using classical
ideas.39~41 Semiclassical mechanics may be rigorously defined as the small-
k (or large-mass, high-temperature, etc.) limit of quantum mechanics, and
semiclassical algorithms are often presented in this way. More often, how-
ever, semiclassical methods are obtained using the more intuitive procedure
of incorporating quantum effects ad hoc into classical theories. Although
semiclassical algorithms presented in this way may not be rigorously justi-
fied, the theoretical importance of the work lies in its ability to provide a
physical picture (i.e., a language) for interpreting elusive quantum mechan-
ical phenomena. The semiclassical picture that is provided aids in inter-
preting experimental results and in the search for more accurate approxi-
mate methods. Semiclassical methods for non-Born-Oppenheimer collisions
have a long history.5842-46 The semiclassical approach is important from
a practical point of view because it can be readily applied to large systems.
It is likely that a fully-dimensional quantal treatment of a chemical system
with more than a few atoms and a few electronic states will remain pro-
hibitively expensive for some time, leaving semiclassical methods the task
of modeling the bulk of chemically interesting phenomena. In Sec. 3.1, we
describe several semiclassical trajectory methods that have been validated
against accurate quantum mechanical results for realistic chemical systems.
Specifically, we consider the time-dependent self-consistent field method,
the trajectory surface hopping method, wave packet spawning, and their
variants.

For systems with only two!” or three*””7* atoms, it is possible to
solve the nuclear-motion Schrédinger equation accurately, for example,
by propagating the solution of time-independent coupled-channel equa-
tions as a function of a radial'?194749 or hyperradial®®—5%55-58 coor-
dinate, by a time-independent linear algebraic variational method,%%™
or by propagating wave packets as a function of both time and
coordinates.33:54.7579 Accurate quantum mechanical solutions for nuclear
motion on coupled potential energy surfaces are of great fundamental inter-
est, and they are also important for providing benchmark results that can be
used to test semiclassical solutions. The use of accurate quantum dynam-
ical methods to treat nuclear motion on coupled potential energy surfaces
is discussed in Sec. 3.2.
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2. Born—Oppenheimer Electronic Potential Energy
Surfaces and Their Interactions

2.1. The Born-Oppenheimer Expansion
2.1.1. Fundamentals

Consider a molecular system with electronic coordinates designated collec-
tively by r and nuclear coordinates designated by R, with an individual
nuclear coordinate denoted by Zu, Ty, etc. The nuclear configuration space
will be called . We will use atomic units, in which the unit of length is
the bohr, and the unit of energy is the hartree (twice the ionization energy
of the ground-state hydrogen atom). In these units, the electronic mass,
Dirac’s k, and the electronic charge are all unity, so that, in the nonrela-
tivistic, spin-free case, the only parameters remaining in the Schrédinger
equation are the masses of the various nuclei. We use mass-scaled coordi-
nates in which all distances are scaled to the same reduced mass M, which
is assumed to be the mass of the lightest nucleus in the molecule. The
nonrelativistic, spin-free Schrédinger equation for the system may then be
written symbolically as

M

In Eq. (1), the Laplacian extends over all nuclear coordinates. The “elec-
tronic” Hamiltonian H (R, r) consists of all the terms in the Hamiltonian
except nuclear kinetic energy, including the electronic kinetic energy as
well as the electron—electron, electron-nuclear, and nuclear—nuclear inter-
actions. The only parameter appearing in (1) is the nuclear mass M, and in
atomic units M can be considered to be a large number, at least 1800. Thus,
quantities calculated from Eq. (1) that are proportional to some negative
power of M will normally be small in some sense, and those proportional to
positive powers of M will be large, while quantities independent of M will
be neither particularly large nor small, but a priori of order of magnitude
unity.

In the method of Born and Oppenheimer,? as further developed by
Born and Huang,3* one makes use of the smallness of 1/M to obtain an
approximate treatment which has been the basis for nearly all molecular
theory to date. First, one treats erl(R, ) as an operator in the electronic
space depending parametrically on R and formally obtains its complete set
of eigenfunctions ¢;(R,r) and eigenvalues U;(R):

H.(R,7)$;(R,r) = U;(R)¢;(R, 1), (2)

{ 1 v§+Hel(R,r)} ¥(R,r) = E¥(R,7). (1)
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where the eigenfunctions ¢; (R,r) are required to be normalized in the elec-
tronic space for all R:

/ 83(R,7) (R, r)dr = ((R)IK(R)) = 6. 3)

The electronic eigenfunctions satisfying Eqgs. (2) and (3) are called adiabatic
electronic basis functions.
One then expands the full wave function ¥(R,r) as

(R, 7') Z ¥;(R)¢; (R, 1), (4)

which on insertion into (1) yields the well-known coupled equations for the
nuclear-motion wave functions ¥;(R):

[V + U @)+ X, { - PR 9 = 537G | (R

= Ev;(R) (5)
where

Ful®) = [ (Rr)Vade(Rar) dr = GRIVER):  (6)

Ga(R) = [6i(Rr)Vadu(R ) dr = GRIVR). (1)

[The gradient operator is, like the Laplacian, multidimensional in the whole
space R. Note that we sometimes omit the subscript R on the gradient and
Laplacian operators where the function to which the operator is applied
depends only on R.] Note that the sum in Eq. (5) contains both diagonal
and off-diagonal terms, and that neglect of the off-diagonal terms would
break Eq. (5) down into uncoupled Schrodinger equations, one for each elec-
tronic state j, with the U;(R) playing the role of effective nuclear potential
energy functions, and therefore U;(R) is called a potential energy surface.
We can also define matrices F(R) [with components F,(R)] and G(R)
with elements Fji(R) [components F, jx(R)] and G,i(R). The quantities
F, jx and Gjyi arise from the operation of nuclear momentum operators on
electronic wave functions. The matrices F(R) and G(R) are called nonadi-
abatic coupling matrices (NACMs). In Eq. (5), all NACMs are multiplied
by the small quantity 1/M, and we will refer to terms containing NACMs
and a reciprocal of M as nonadiabatic coupling terms (NACTs). It should
be clear that neglect of the terms containing NACMs is the mathemati-
cal translation of neglecting nuclear motion on the time scale of electronic
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motions because of their mass differences. We shall make this argument
more carefully in Secs. 2.1.2 and 2.2.
" In actually evaluating the NACMs, one must be careful in treating the
origin of the electronic coordinates consistently.6+80.81 _
By differentiating Eq. (3) and making use of relations such as
(7(R)IVE(R)) = (VK(R)|j(R))* one easily obtains the following relations
between the NACMs:

F4+Ft =g (8)
G+G!+2F.F =0; (9)
V-F=G+F.F (10)

(2F -V +G) =2F -V + G; (11)
] d
EE;F,, -_ a—va#-‘l- [F“,F,,] = O, (12)

where in obtaining Eq. (11) we have also made use of the anti-Hermitian
character of the gradient operator.

With the aid of Eq. (10), the Schrodinger equation, Eq. (5), can be
recast as follows:

{Gg+ AP +um)vm) - Bew), @

where U(R) is the diagonal potential energy matrix with elements U;(R),
[¥(R)} is a column vector with elements ¢;(R), § = —iV is the nuclear
momentum operator, and A(R) = —iF. It will be of importance later [in
particular, in Egs. (15) and (16)] that A(R) appears to formally play the
role of a vector potential, and in fact we have formulated Eq. (13) in terms
of A instead of F precisely to emphasize that analogy.

2.1.2. Hierarchy of Terms

In the Born—Oppenheimer (BO) procedure, one takes advantage of the
relative smallness of 1/M to obtain the leading terms in an asymptotic
expansion®283 of the molecular wave function, energy, and other quan-
tities of interest in powers of the small BO parameter k = (1/M)Y/4,
Here we present just a sketch of the procedure, referring the reader to
the literature4:84:85 for more details.

The NACM elements F), jx and G;i appearing in Eq. (5) are indepen-
dent of x and hence a priori of order of magnitude unity. However, they
appear multiplied by k* = 1/M, so there is hope that the contribution of
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these terms will be small. Therefore, we will provisionally neglect them,
later estimating the magnitude of their contribution. At first we restrict
our attention to low-lying states of a quasi-rigid molecule undergoing small
vibrations about an equilibrium position.

With our provisional neglect of the NACTs, we can isolate a single elec-
tronic state, say state 0. The nuclear coordinates can be separated into
translational and rotational coordinates that do not affect the potential
energy and the internal (vibrational) coordinates upon which the potential
energy Uy depends. Assuming that Up has a minimum (equilibrium config-
uration), we take this as our origin and expand the potential energy in the
neighborhood of the origin as a power series:

1 1
Uo(R) = Up(0) + 3 Z kpzuz, + 8 Z kpvoZuTuTo + -+ (14)

The coefficients in the expansion (14) do not depend on , and their magni-
tude is thus considered to be of the order of unity. Keeping for the moment
only the quadratic terms, we can find the normal modes, and are left with
a series of uncoupled harmonic oscillators, each equivalent to a particle of
mass ~M in a harmonic potential whose force constant is of the order of
unity. In this approximation, then, the energy is just Uy (0) plus a vibra-
tional energy proportional to w = /k/M o x2. The rotational energy
may be estimated by fixing the nuclei at the origin, and this energy is pro-
portional to 1/M o< k*. According to standard harmonic oscillator theory,
excursions from the origin are of order of magnitude x meaning that correc-
tions due to anharmonic terms in the potential energy and to vibrational-
rotational interaction are also of higher order in .

What about the effect of the NACTs neglected up to now? The mag-
nitude of these terms can be estimated using perturbation theory. Matrix
elements of F and G may also be expanded about the origin, with the lead-
ing terms equal to the values at the origin. The corrections to these terms
will be higher order in k because of the excursions being proportional to .
Diagonal terms in F - V will vanish in lowest order because diagonal ele-
ments of V do so. There is a correction to the energy due to the diagonal
part of G, but this is proportional to k* and is just a constant to this
order. As for the off-diagonal part of F- V, this can be estimated by per-

turbation theory. The term couples a rovibrational state of one electronic

level to another such state of another electronic level. Matrix elements of
U between vibrational states are proportional to 1/, again because of the
excursions being of order s, and the whole thing is multiplied by k*. Thus,
the matrix element is of order x3, with an energy denominator of order
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unity, resulting in a correction to the wave function of order x2 and to the
energy of order 5.

To lowest order in k, therefore, one is justified not only in neglecting
the NACTs, but also in making the harmonic approximation for vibration
and neglecting rotation—vibration interaction. This gives the wave function
to zero order in k and the energy through second order. To get the energy
through fourth order, one must include a constant contribution from the
diagonal elements of G (independent of vibrational and rotational quantum
numbers), the first-order contribution of the quartic term in the potential
energy, and the second-order contribution of the cubic term. Further correc-
tions due to the NACTs and to higher-order anharmonicity and vibration—
rotation interaction are of higher and higher order in . Thus, in making
further corrections, it is in general necessary to consider all of these effects
simultaneously. However, it often happens that different kinds of correc-
tions, though of the same order in «, depend differently on the quantum
numbers. For instance, the energy correction due to the off-diagonal ele-
ments of F - V is of sixth order, as is the second-order contribution of
the quartic term in the potential energy; but the latter depends on the
vibrational quantum number through the fourth power, the former only
through the first. Thus, the F - V coupling to this order furnishes an effec-
tive correction to the vibrational frequency, while the anharmonic term
gives corrections of the sort more normally associated with anharmonicity.

In dealing with degrees of freedom other than vibrational, the main
differences are the absence of analogs of the anharmonic corrections and
the fact that the contribution of the gradient operator is not necessarily of
order 1/k. For rotational degrees of freedom the contribution of the gra-
dient operator is normally of order unmity, while for translational degrees
of freedom such as those that appear in scattering problems, its magni-
tude depends on that of actual nuclear momenta appearing in the problem.
In most cases, this results in the contribution of the NACTSs being of higher
order in « than is the case with vibrational degrees of freedom. Consider, for
example, the generalization to scattering states and metastable states (such
as those important for many unimolecular reactions and photodissociation
processes). When the nuclear kinetic energy is low, the NACMs are of the
order of magnitude of unity, just as for low-energy vibrational states. How-
ever, if the nuclear velocity is increased by a factor on the order of x2
(corresponding, for a proton or hydrogen atom, to a nuclear kinetic energy
in excess of 10keV), then the nuclear wave function varies rapidly with
position and the Fy factor in Eq. (5) is multiplied by a Vi factor that is
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greater than unity by one or more orders of magnitude; in such a case the
term containing F jk is no longer negligible.

In summary, in the usual cases where the NACM is of order unity in
atomic units, we are justified in neglecting the NACTs for low-energy bound
states and low-energy dynamical processes, such as “slow collisions” but not
for very high-energy collisions. As we will see below, the other case where
the BO approximation is expected to fail is when ij itself is large. Then
the BO approximation may fail even for low-energy nuclear motion states.

The above approach enables one to classify contributions to the wave
function, energy, etc. according to the power of x contained in each term.
Thus, in the limit £ — 0, the lowest-order terms dominate. In practice, «
can have values as large as about 0.15, so it is quite possible in a particular
case for the coefficients to be such that, e.g. a given term proportional to
% might be larger than another one proportional to x*.

2.2. The Born-Oppenheimer Approzimation

In practice, based on the reasoning in Sec. 2.1, one often uses the term
“Born-Oppenheimer approximation” to mean the one-state approximation,
i.e. the neglect of all off-diagonal terms involving F and/or G, usually
neglecting diagonal terms as well. All effects due to the off-diagonal F and
G terms are then called “BO corrections.” We will adhere to this tradition,
which usually results in a useful and accurate approximation. However, in
calculating any effects that turn out to become small for small «, one should
never take for granted the justification for ignoring the BO corrections.

2.2.1. Effective Schrédinger Equation

If off-diagonal coupling is neglected, the coupled Eq. (5) or (13) become
decoupled, and one can confine oneself to a single electronic state, say state
0. The nuclear wave function 19 obeys the effective Schrédinger equation

L o A
11t Ao)®+ Y Aok - Ako ¢ %o + Uoto = Etdo. (15)
k70

In using Eq. (15), many workers omit the terms containing A matrix
elements, while some include only the diagonal part. One sees that Ao
behaves like an electromagnetic vector potential, while the summation over
off-diagonal elements has the effect of a small correction (proportional to
k%) to the potential energy Up.
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The electronic eigenfunction ¢y must obey Egs. (2) and (3), but still
may be subject to the transformation

¢o(R,7) — ¢o(R,r)e 9P (16)

where g(R) is any real function of R. The transformation (16) leaves
(15) unchanged, except that the vector potential Agy undergoes the
transformation

Agy — Ago + Vg, (17)

which is identical to a gauge transformation in electromagnetic theory. The
transformation given by Egs. (16) and (17) is thus often called a gauge
transformation. As in electromagnetic theory, the gauge may be chosen for
convenience in any particular problem.

Equation (15), together with appropriate boundary conditions, is an
effective Schrédinger equation for the nuclear motion.

2.2.2. Dependence of Electronic Wave Function on Nuclear
Coordinates: Geometric Phase

Up to now, we have omitted effects of electronic spin entirely. Nuclear spin
will be neglected throughout. If spin is neglected, each electronic eigenfunc-
tion ¢; can be split into a spin part which plays no role in the calculation
and an orbital part which can be chosen real. (That is, the eigenvalue equa-
tion that it satisfies does not require it to be complex, though it may be
made complex through a gauge transformation. If this is done, the phase
of the wave function still depends only on the nuclear coordinates.) If spin
is included, the most important effect is the spin-orbit interaction, which
in atomic units is proportional to the square of the fine structure constant,
about 13772 or roughly of order x* for typical values of . Thus, although
it is a small effect, it is likely to be larger than the BO corrections, and it
is not inconsistent to include it within the one-state BO treatment.

If spin is included, one must distinguish between two cases: an even
number of electrons with integer total electronic spin and an odd number
of electrons with half-odd integer electronic spin. In the former case, it is a
consequence of time-reversal invariance®6—89 that the electronic eigenfunc-
tions can still in effect be chosen real, i.e. that all matrix elements of real
operators are real. The case of an odd number of electrons with inclusion
of spin is more complicated and will be discussed briefly in Sec. 2.5.

If the electronic wave function is chosen real, then it is defined up to an
overall sign change by Egs. (2) and (3) plus the reality condition.
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Now imagine that the nuclear coordinates R are made to move con-
tinuously along a closed curve C in R. At each point along C, the elec-
tronic eigenfunction ¢; must satisfy Egs. (2) and (3), and it also must vary
smoothly and continuously with R. This still leaves open the possibility of
a smoothly and continuously varying phase factor (gauge transformation)
(16), but this is fixed if one also requires that ¢; remain real. When R has
returned to its starting point, ¢; satisfies the same eigenvalue equation as
at the beginning, is still normalized, and is still real, so it must be the same
function as before, except for a possible sign change. The possibility of a sign
change was recognized early on by Longuet-Higgins and coworkers,?%! and
has later been recognized as a special case of the geometric phase, which
has been of much interest in recent decades.??~9°

If a sign change is possible, then (for each electronic eigenstate 7) the set
of closed curves in R splits into two classes: Positive (+) curves in which no
sign change occurs and negative (—) ones in which there is a sign change.
Moreover, if a curve is continuously distorted, it can never change gradually
from + to —; the change must be abrupt and discontinuous if it occurs at all.
The situation is shown schematically in Fig. 1. Curve A is positive and curve
B negative, even though they differ only infinitesimally from one another.
If one goes counterclockwise around B and then clockwise around A, the
net effect is a sign change, and also a traversal of the infinitesimally small
curve enclosing the shaded area, which is therefore negative. The locus
of the limit points of such infinitesimally small negative curves we call
a transition manifold . To determine the dimensionality of a transition
manifold assuming that R is of dimension n, consider an infinitesimally
small negative circle, which with appropriate choice of coordinates may be

Fig. 1. The inside curve (A) is positive, and curve B on the outside is negative,
even though they differ only by the infinitesimal curve enclosing the shaded area. This
infinitesimal curve must therefore also be negative.
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described by u = dcosf, v = dsin (d very small). The center of the circle
is a point in &, and it can be taken as the origin, with all coordinates set
equal to zero. In the small neighborhood of the origin, then, what is the
dimensionality of I7 If it is of a dimension less than (n — 2), then it may
be described in this neighborhood by the equations u =v=w= ... =0.
But if this is true, then the circle, while remaining in the wvw space, may
be continuously deformed into a curve not encircling any part of &, and
without crossing any part of & in the process. On the other hand, if < is
of dimension more than (n — 2), then it either covers the entire space or
divides it into two parts, and curves do not encircle it but are contained
within it, or intersect it, etc. We conclude that transition manifolds are of
dimension (n — 2).

2.3. Conical Intersections and Geometric Phases
2.3.1. Conditions for Degeneracy

The eigenvalues of He;(R,) do not depend on «, so in general they, and
differences between them, are of order unity in atomic units. Nevertheless,
degeneracies can occur in submanifolds of R, and we will now investigate
the conditions for these. In the well-known derivation, one first assumes
that two states, say 1 and 2, are at least very nearly degenerate, so that
in a small neighborhood the electronic Hamiltonian can be reduced to just
the submatrix involving these two states. One can then choose a point at
which states 1 and 2 are very nearly degenerate, take the eigenstates at that
point as basis functions (not allowed to move with the nuclei in the small
neighborhood), and consider the two-by-two effective Hamiltonian:

Aa(R) = BRI+ (U7 M), (18)
where I denotes the unit matrix, Ho(R) is half the trace of the matrix,
and u(R) is half the difference between its diagonal elements. (We are con-
tinuing to assume that all matrix elements can be chosen real.) Evidently,
the eigenvalues of the Hamiltonian (18) will be degenerate if and only if
u(R) = v(R) = 0, meaning that R must satisfy two conditions in order for
degeneracy to occur. In the case of diatomics, where the only “internal”
coordinate (coordinate other than translation and rotation) on which the
electronic energy depends is the internuclear distance, this leads to the well-
known noncrossing rule for states of the same symmetry. For molecules with
more than two nuclei, the number of internal coordinates is 3N — 6, where
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N is the number of nuclei. Thus, for triatomic systems there can be degen-
eracy on a curve in the three-dimensional internal space, in tetratomics
on a four-dimensional submanifold in the six-dimensional internal space,
etc. The noncrossing rule and generalizations thereof have been discussed
most thoroughly and elegantly by Longuet-Higgins,% with some further
elaborations given by one of us.®

2.3.2. Electronic Energy Eigenvalues and Eigenfunctions Near a
Degeneracy: Conical Intersection Manifolds as Transition

Manifolds

To investigate the eigenvalues and eigenfunctions in the near neighborhood
of a degeneracy, let us consider a polyatomic system and select as our
origin a point in the manifold u(R) = v(R) = 0. Since this origin has been
selected only based on the vanishing of v and v, it would be an improbable
coincidence for either u or v to have vanishing gradient or for their gradients
to be parallel. Accordingly, let z and y be a coordinates in the direction
of the gradients of u and v, respectively. In the small neighborhood of the
origin, therefore, the Hamiltonian has the form

Ha(R) = Ho(R)I+ (‘”” _”gw) _ Ho(R)1+d.(°°s" sinf 9) ()

by sin @
The eigenvalues of this Hamiltonian are
E = Ho(R) + d, (20)
with eigenfunctions
cos Q —sin 3
; (21)
sin 7 cos 5

In examining Egs. (20) and (21), one notes first that the separation
between the eigenvalues increases linearly with the distance from the degen-
eracy manifold. For this reason intersections of this kind are called conical
intersections. They are to be distinguished from glancing intersections, in
which the separation goes quadratically with distance from the intersection.
Normally, a glancing intersection requires a coincidence, but an exception
is a degenerate II state of a linear triatomic, which splits on bending into
two levels which are symmetric and antisymmetric under reflection in the
plane of symmetry (Renner or Renner—Teller effect®7).
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Another important thing to note is that the eigenfunctions (21) change
sign when 6 advances by 2, i.e. when a closed path is traversed around
the conical intersection. It follows that conical intersection manifolds are
transition manifolds.

It should also be noted that these qualitative conclusions are rigorous,
despite the apparently approximate nature of the Hamiltonian (19). The
error incurred by using (19) shrinks to zero as one approaches the inter-
section, so the sign change certainly applies to infinitesimally small curves
around the intersection. If such a curve is distorted continuously into a
larger one, then it must remain negative unless in the course of distortion
it crosses either this transition manifold or another one. Also, the conical
nature of the intersection refers only to the behavior of the eigenvalues in
the infinitesimal neighborhood of the intersection.

A special effect of a conical intersection is the case in which the degen-
eracy (perhaps only in a submanifold of the overall degeneracy manifold) is
dictated by symmetry. In this case, Eq. (20) tells us that there will always
be a nonzero gradient of the energy eigenvalues leading away from the sym-
metrical configuration (Jahn—Teller effect®6:98:99),

2.3.3. Nonadiabatic Coupling Terms, Conical Intersections, and
Sign-Change Transitions

By differentiating Eq. (2), using the definition given in Eq. (6), and taking
matrix elements, it is easy to obtain the result

(i (R)|VHa(R)[k(R))

Ur(R) - U;(R) ’
where the above result applies only to off-diagonal elements j and k. Neither
the numerator nor denominator of Eq. (22) depends on k, so in general both
are of order unity, so F}k(R) will also normally be of order of magnitude
unity. One frequently hears the statement that F’jk(R) will be small if the
energy difference in the denominator is large enough. Of course this is true
as far as it goes, but it must be clearly understood what is meant by “large
enough”. A “large” value for the denominator in atomic units would mean
roughly an energy difference of thousands, or at least hundreds, of hartrees;
in other words, one of the states would have to be very highly excited for
this conclusion to apply. Of course, F}k(R) may coincidentally be small
(due to the numerator) for a particular region of a particular system, but
one cannot simply assume that it is small without proof. Its effect is small
in many cases because it appears multiplied by 1/M = *.

Fix(R) = (22)




==

t
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The vector NACM elements F}-k(R), then, will not normally be small.
Can it be large, perhaps even singular? A little thought convinces one that
the numerator will be large or singular only very rarely if at all. The opera-
tor whose matrix element is taken is basically the force exerted on a partic-
ular nuclear degree of freedom, for a given nuclear configuration. The sin-
gularities in the electron—electron and electron-nuclear forces are washed
out in integrating to take the matrix element, while the nuclear-nuclear
force is diagonal in the electronic states and thus does not contribute. The
denominator, however, vanishes at a degeneracy, leading to a singularity.
We conclude that F‘jk(R) becomes singular at a conical (or glancing) inter-
section, but not elsewhere.

Moreover, it is easy to convince oneself that just this kind of singularity
is necessary in order to have a transition manifold. From the definitions

given above it is clear that

Véi(R) = 3 6e(R)Fis (R). (23)
ki

Now consider an infinitesimally small circle of radius d — 0 about a transi-
tion manifold. The circumference of the circle is just 2nd, yet ¢;(R) under-
goes a sign change, i.e. ¢;(R) changes by an amount of order unity. This
means that at least one of the terms in the sum (23) must be singular of
order 1/d. But we have just seen that this kind of singularity occurs only at
a conical intersection. We thus conclude that conical intersection manifolds
are the only transition manifolds.

2.3.4. Effects of Conical Intersections and Geometric Phase

According to Eq. (21), a BO electronic wave function will not be single-
valued as a function of R if the level with which it is associated experiences
a conical intersection; and this double-valuedness will persist even in regions
far from the intersection, as long as traversals of closed paths around the
intersection are possible. In the one-state BO approximation, the full molec-
ular wave function is approximated as

‘Il(Rr 1") ~ ¢0(R)¢0(R7 7‘). (24)

Of course, ¥(R,r) must be single-valued, so something has to be done,
either to vg or ¢y, to restore single-valuedness. We will consider two meth-
ods, both suggested previously.®! Method (a), which has been used notably
by Kuppermann and coworkers, %7203 js to require that 1o undergo a sign
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change on traversal of a negative path; this amounts to imposition of bound-
ary conditions on g different from the familiar one of single-valuedness.
Method (b) is to drop the requirement that ¢q be real, requiring instead
that it be single-valued. This can be achieved by a gauge transformation of
the form of Eq. (16), with

o(R)= 2+ 5(B) (25)

where f(R) is any real function of R such that exp[if(R))] is single-valued.
For example, f(R) could be an integer multiple of 6, a function independent
of 8, or a combination of these. If method (b) is used, then vy is subject to
normal, single-valued boundary conditions, but

Ao = Vg #0, (26)

so that the effective nuclear Hamiltonian in this case is that of a system
of nuclei moving under the influence of a vector potential as well as the
scalar potential Up(R). This vector potential is called the geometric vector
potential. The two methods, of course, are completely equivalent. Addi-
tional considerations required to treat permutational symmetry when there
are identical nuclei are discussed elsewhere.91:104-109

The geometric phase/vector potential clearly has consequences for
chemical reactions and for properties of bound molecular systems, and there
have been a number of theoretical studies of such effects.94:99-103,105,110-119

2.3.5. Confluences of Conical Intersections

In a nuclear internal space of n dimensions, we have seen that a conical
intersection can occur on an (n — 2)-dimensional manifold, and that this
will also be a transition manifold. In general, moreover, there may be two
or more distinct intersection manifolds, and in turn it is possible for two of
these to intersect. Such “confluences” of intersection manifolds have been
studied extensively by Yarkony.36:120:121 Here we confine ourselves to a few
simple remarks.

First, each manifold is of dimension (n — 2), so that, in the absence of
symmetry, a point must satisfy two conditions (say z = y = 0) to be on one
manifold, and two others (say £ = 5 = 0) to be on the other. The conflu-
ence in this case consists of all points that are on both manifolds, and thus
is of dimension (n — 4), with each point on the confluence satisfying four
conditions (a confluence of larger dimensionality requires a coincidence, or
the presence of symmetry). Since the dimensionality of the internal space




i
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is n = 3N — 6 for N = 3 nuclei, triatomics should exhibit no confluences,
but confluences may occur of dimension 2 for N = 4, of dimension 5 for
N =35, etc.

Recall that the quantities that must vanish at an intersection are essen-
tially the off-diagonal matrix element and the difference of the diagonal
elements of the 2 x 2 Hamiltonian matrix. Thus, the quantities z, y, £, and
n may be identified with these for the two separate manifolds. Each pair
can also be formed into a complex number:

T +iy =re’’; € +in=pe'’. (27)

The product of these two complex numbers will be a complex number
that will vanish everywhere on either intersection manifold (but nowhere
else) and whose real and imaginary parts may be taken respectively as half
the difference of diagonal elements and the off-diagonal element of a model
Hamiltonian matrix. We thus have for our model Hamiltonian

_(zE—yn Tn+yE cos(s+o) sin(s+o)
- <a:77 +y€ yn— zf) =T (sin(s +0) —cos(s+ a)) ’ (28)

With eigenvalues

E=4rp (29)

cos3(s+0) —sin (s + o)
; . (30)
sini(s+o) cos 3(s+ o)

For a tetratomic system there are six internal coordinates, and in the
near neighborhood of the confluence we can take four of these to be z, y,
&, and 7. The other two, say u, and v play no role. The gradient of each
eigenvalue vanishes at the confluence, but there are nonvanishing crossed

second derivatives for all pairs of variables in which one is Latin and one is
Greek:

and eigenvectors

0’E 9’E _ O0°E _ O°E

5206 ~ Bzdn ~ OydE ~ Bydn (31)

A closed path cannot be considered as surrounding the confluence or
not doing so, because the confluence is of too low dimension; any path can
be distorted into any other without at any time touching the confluence.
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But an example of a closed path around both intersections involving z, y,
¢, and n would be :

z=§=ccost; y=mn=esint, (32)

with ¢ advancing from zero to 2. Here we find that s = o0 = ¢, and
s+ o = 2t, so there is no sign change. This should come as no surprise,
since this path encloses an even number (two) of transition manifolds.
The above considerations apply to the usual case in which there is no
symmetry. If symmetry is present, the situation is modified. Consider for
example a triatomic system X,Y, with two of the nuclei identical. If the
two XY distances are equal, there is Cs, symmetry. Consider two electronic
states that, in the Cs, configurations, have different symmetries under the
C, rotation and/or the reflection in the plane. Let z denote the difference
in the two XY distances, and let z and y be the other appropriately cho-
sen internal coordinates, symmetric in the XY distances. Then, referring to
Eq. (18), we have v = zf(z,y, z), where f(z,y, 2) is even in z. An intersec-
tion will occur if either u = z = 0 or u = f = 0, and there can be a conflu-
ence of these intersections seams at the point where u = z = f = 0. In the
infinitesimal neighborhood of such a confluence, the intersection will appear
glancing for excursions in the uf place and conical in other directions.

2.4. The Generalized Born—Oppenheimer Approximation

2.4.1. Introductory Comments

The standard BO approximation is very accurate for a large class of molec-

ular problems. However, its validity depends on the smallness of terms like
1 (73l Fie - Y1k, 7i)
M U - U;j ’

(33)

where 7; and 7; denote quantum numbers of nuclear motion associated
with electronic states j and k, respectively. As discussed in Sec. 2.1, the
factor of 1/M in front normally guarantees the smallness of these terms,
but exceptions can occur if one or both of the following holds: (a) the energy
denominator becomes arbitrarily small, such as near a degeneracy; and/or
(b) the nuclear energy is so large for the state |k, 7x) that the V operator
leads to a large matrix element. When terms such as Eq. (33) are large,
we can usually still truncate the set of coupled Egs. (5) to not just one
electronic state but to two, three, or some other relatively small number
of states (in practice, usually two, seldom more than three or four). This
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truncation to a few states rather than just one is called the generalized
Born—Oppenheimer approximation.

Accordingly, we restrict ourselves not to one state, but to a subspace @
of dimension ¢ in the electronic Hilbert space, spanned by g of the adiabatic
states, and we will number the electronic states so that the first ¢ of these
are the chosen ones, the rest the excluded ones. This, we hope, will furnish
an adequate basis for calculating molecular properties, at least within a
given region of interest S in R.

It is important to recognize that not all regions of strong interaction
of electronic states are associated with conical intersections. Conical inter-
sections occur in manifolds of up to n — 2 dimensions, whereas regions of
strong interaction due to small adiabatic energy gaps may occur even in
manifolds of n—1 or even n dimensions. Furthermore, regions of interaction
or strong interaction due to small adiabatic energy gaps may also occur in
dimensionality smaller than n — 2 and may be important for initial condi-
tions or other circumstances that lead to appreciable probabilities of the
system visiting these regions.

The use of the generalized Born—Oppenheimer approximation is most
well justified when there are no strong interaction regions between states
in Q and states not in Q with appreciable nuclear wave function amplitude
in the entire region of interest S. Accordingly, we require that there exists
a positive number V, much larger than 1/M, such that

[U;(R) - Uk(R)| >V, j<gq, k>gq, RCS. (34)

Restricted to the subspace Q, the effective Schrédinger Eq. (13) (now
again in terms of F instead of A) takes the form

{_2_11\_4_ [(V + F@)2 4 (Flod) . Filod))@ 4 U(q)]} v@ = po@  (35)

where the superscript (¢) denotes the part of a matrix restricted to @,
while (od) denotes the part coupling @ to its complement (i.e. coupling
states 1,2, ..., ¢ to the other states).

2.4.2. Transformation of Electronic Basis

In Eq. (35) the potential energy matrix U@ is diagonal, but the other
terms on the left side are not. Since a solution will in any case contain con-
tributions from more than one electronic state, there is no clear advantage
in using the eigenfunctions of H./(R) as basis functions; it may be useful
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to use other electronic functions as basis functions, chosen as linear com-
binations of the eigenfunctions of H,;(R). Accordingly, we define a unitary
(real orthogonal) ¢ x ¢ matrix S(R), and make the transformation

$i(R) = > ¢x(R)Sk;(R). | (36)

k=1

The other quantities appearing in Eq. (35) are transformed as follows

= (q) -
F  =stF9@s 4 stvs; (37)
U@ = stu@s; (38)
=(0d) =(od)\ (q) _, . (9)
(F-F )" =st(Fe . Fe) s, (39)

2.4.3. Strictly Diabatic Basis

A particularly attractive possibility is to choose S in such a way that F=
0. An electronic basis with this property is called a strictly diabatic basis
(as opposed to an adiabatic basis in which U@ is diagonal). Referring to
Eq. (37), one sees immediately that this can be achieved if

VS = —FS. (40)
Taking mixed second partial derivatives of (40), one arrives at
0 0
—F@ _ _Z_ ) (9) p(a)] —
LA [F,FP] =0 (41)

as the condition for the existence of a solution of Eq. (40) and thus for the
existence of a strictly diabatic basis, i.e. a strictly diabatic basis exists if
Eq. (41) is satisfied, otherwise it does not. Because the left hand side is a
kind of generalized curl, Eq. (41) is sometimes called the “curl condition.”
Equation (41) looks much like Eq. (12) restricted to @, but it is not the same
because Eq. (12) includes off-diagonal contributions. Separating Eq. (12)
into diagonal and off-diagonal contributions, one easily finds

0 0

— pFlo _
oz, * T,

It is easy to verify that both right and left sides of Eq. (42) transform
as ST...S under the transformation given in Eq. (36). Thus, while such
a transformation can rearrange matrix elements, etc. it cannot make this
expression small or zero. The conclusion is that, in general, no strictly
diabatic basis erists.10:21

RO + [F0,FO] = ~[FC9,ECD). ()
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2.4.4. Diabatic Bases

Although there is no strictly diabatic basis, it may nevertheless be possi-
ble in certain problems to make the coupling less troublesome by means of
a transformation like Eq. (36). Here one may speak of having achieved a
“quasidiabatic” basis, by having (in some sense) removed part of the cou-
pling, leaving the “nonremovable” part. Under suitable circumstances, this
nonremovable part may be small enough to neglect, leaving only the scalar
coupling arising from the off-diagonal matrix elements of the electronic
Hamiltonian, which is often easier to work with than the vector NACMs
that arise in the adiabatic representation. Since strictly diabatic bases do
not exist, we follow the popular convention of just saying “diabatic” rather
than “quasidiabatic” for any basis designed so as to reduce the effect of the
NACMs in some particular problem, thus justifying their neglect at some
level of approximation.

In particular, there is one troublesome part of the coupling that is always
removable, and that is the part that becomes singular near a conical inter-
section. To see this, we need only note that the matrix elements entering
into the right-hand side of Eq. (42) are all between states belonging to @
and those belonging to its complement, and according to Egs. (22) and (34),
these can never be singular. The singularities in the NACMs can therefore
be removed by a transformation of the type described by Eq. (36). A neat
way of doing this is to choose S so as to diagonalize the @) part of some
nondegenerate operator Z other than the energy, e.g. a component of the
dipole moment.16-20:35 If this is done, the new NACMs within Q will evi-
dently obey an equation analogous to Eq. (22), with H.; replaced by Z,
and if Z is nondegenerate they will never become singular.

2.4.5. The Caseqg=2

If ¢ = 2, the treatment becomes simpler. In this case, each component of
F(@ is just a real antisymmetric 2 x 2 matrix:

s _ [ 0. f).
F —(_f 0), (43)

the transformation matrix S is now a real orthogonal 2 x 2 matrix

cosA  sinA
S= (— sinA cos /\> ' (44)
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the transformation, Eq. (37), is now

-

F=f+vx (45)
Eq. (40) becomes ,
VA= —f; (46)

and the curl condition, Eq. (41), for the existence of a strictly diabatic basis
is now

0 7]
6 f v
z, Oz,
The curl condition now is just the familiar result from vector calculus that
only a vector of zero curl can be the gradient of a scalar.
By making a Fourier transform, one can decompose f, as follows:

0 = 0
fp, = 5:;;‘:(@ + ‘;1 ‘a‘z_uAu,u., (48)

fu=0. (47)

where n is the dimension of R, ® is a scalar, and A,, are components
of an antisymmetric tensor. The longitudinal (irrotational) term in @ has
zero curl and is removable, while the other transverse (solenoidal) term
has zero divergence and is nonremovable. Equation (48) is a rather obvi-
ous n-dimensional generalization of Helmholtz’s theorem.’?? Using the
antisymmetry of A,,,, one easily derives the relations

V. f=v3%® (49)
0 0 . 9 0 0
5;;fu - Efu = ; . <6—z:Aau - 'a_:;;Aou> . (50)

Inserting Eq. (48) into Eq. (45), one sees how the transformation affects
the two parts:

d=0+) A=A (51)

It is now easy to see, at least in principle, how to choose A so as to
remove the longitudinal part. Referring to Eqs. (51) and (49), we see that
removal of ® requires that

V2A=-V-f, (52)

i.e. A must satisfy a Poisson equation.

Based on the theory presented here, one expects that the singular part of
the coupling can be removed, but that apart from this there is a nonremov-
able part that is, in general, of order unity. Numerical computations bear
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this out. 34123126 Reference 126 in particular makes use of the Poisson equa-
tion to decompose the coupling into removable and nonremovable parts.

Since, far from a conical intersection, the nonremovable coupling is in
general of the same order of magnitude as the removable coupling, the
terms that couple the nuclear motion due to the nonremovable part of the
coupling will be of the order 1/M or x*, thus justifying the neglect of these
terms and the usefulness of diabatic representations. The inconvenience of
fully removing the nonremovable part when it is the same order of mag-
nitude as the removable part may be more trouble than it is worth.12?
In general it may be better to take advantage of the arbitrariness of dia-
batic representations to simplify the calculation. Simplifying the adiabatic-
to-diabatic transformation may facilitate other aspects of the calculation
that are more important. When one considers regions of strong interac-
tion that do not contain conical intersections, identifying the most impor-
tant contributions to the nonadiabatic coupling may require careful system-
specific analysis. This may, for example, involve an examination of orbital
and configurational uniformity!!:14-18,23-25,27-33,38 of the electronic state
functions.

It is also important to make a distinction between the “internal” nona-
diabatic coupling, due to vibrations and relative translational motions, and
Coriolis coupling due to rotation which has so far been mentioned only
briefly. One obvious difference is that rotational degrees of freedom merely
rotate the electronic eigenfunctions rigidly, while internal motions change
the Schrédinger equation that they must satisfy. In a diatomic (either bound
or unbound), 8/8s from relative momentum, where s is the internuclear
distance, is the source of the internal part and rotational angular momen-
tum is the source of the Coriolis part. In a diatomic, the internal part of
the coupling conserves the electronic angular momentum quantum num-
ber A, while the Coriolis term couples states differing in A by +1. That
illustrates one reason why diatomics are special, namely the internal part
is one-dimensional and so it can be removed if we limit ourselves to &
states.’? A nice example of transforming coupled T states to a diabatic
representation to remove the 8/0s and 82?/0s? coupling for a diatomic
molecule is the recent work of Gadéa et al.l?® In triatomics, there is a
mirror plane, and the symmetry under this reflection is conserved by inter-
nal and in-plane rotational degrees of freedom, while out-of-plane rotations
change this symmetry from (+) to (—) and vice versa. In other polyatomics
there is no symmetry in general. If, however, we have a quasi-rigid molecule
whose equilibrium configuration possesses symmetry, then one can derive
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selection rules for irreducible representations coupled by rotational and
internal motions.

Coriolis coupling, when nonzero, is not removable in general although it
may be zero in certain subspaces. For example, consider a diatomic molecule
where a I state is close in energy to two II states (II; and II, ), and all other
electronic states may be excluded. If the latitude angle 6 causes motion in
the space frame zz plane, the £ and II, states will mix when 6 is varied
and

1O—aO
F=-la 0 o}, (53)
*\o 0 o

where s was defined above as the internuclear distance, and « is a con-
stant characteristic of the particular system. Upon varying the longitudinal
angle ¢, if the molecular axis lies in the space frame zy plane, ¥ acquires
II, character and vice-versa exactly as with II; in the 6 case. But as the
molecular axis approaches the space frame z axis (i.e. as § approaches m/2
or 37/2), ¥ is less and less affected by ¢-motion while the two II states
rotate into each other. From these considerations, one may write

0 0 —asiné
0 —cosf | . (54)
asinf cosé 0

1
ssinf

Fy=

The quantity that must vanish to satisfy the generalized curl condition,
Eq. (41), is therefore

0 0 acotf
% - %% + [Fy, Fg] = 0 0 csc?0—o? |, (55)
acotd —csc?d — a? 0

and, since this is not zero, the coupling is not removable. Further discussion
relevant to Coriolis coupling effects is available elsewhere.17:45,81,129-142

In Sec. 3, when we refer to the potential energy surfaces and their cou-
plings, we mean either the adiabatic surfaces and the NACMs or the full
nondiagonal diabatic potential energy matrix.

2.5. Non-Abelian Case

Many readers may already have been struck by the similarity between
Eqgs. (35) and (15), especially if the former is recast in terms of

p=—iV; AW = _iFQ@, (56)
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The only difference is that in Eq. (35) the entity being acted upon is a
column vector of nuclear wave functions rather than a single function; and
that each component of the vector potential is now a matrix rather than
a single number. A further generalization would be to allow complex num-
bers, something that has already appeared in our theory of gauge trans-
formations. From this point of view, the g-dimensional case is called the
non-Abelian case, because the components of the vector potential, taken
at different places, are matrices that in general do not commute. The non-
commuting vector potentials make the calculations more complicated. For
example, there is no simple analog of Stokes’ theorem for integrals of A
around closed curves.

It is easy to see now how various relations from the one-state case gener-
alize to the non-Abelian case. The gauge transformation, Egs. (16) and (17),
for example, is replaced by Egs. (36) and (37). Also, just as in the one-state
case, attempts to avoid having a vector potential result in many-valuedness
of the electronic basis functions (not just two-valuedness).

If two or more electronic states are degenerate over all of R, then we do
not have the luxury of the one-state BO approximation even for portions of
the space. As we have already seen, degeneracy of electronic states occurs
normally only on an (n — 2)-dimensional submanifold of R. But there are
two exceptions to this.

The first exception, well-known in a way for years to molecular
theorists'43 but first studied from this point of view by Moody, Shapere,
and Wilczek,!3? is that of a diatomic molecule in a non-X state. This is also
a special case of the two-state generalized BO approximation (Sec. 2.4.5),
with a nonremovable coupling imposed by the spherical geometry of the
rotational variables.

The second exception is the case of an odd number of electrons with spin
included, where every electronic level is required by time-reversal symmetry
to be doubly degenerate (this is called Kramers degeneracy).87:88:95:144 Here
the nature of the spin interaction forces us to accept complex numbers,
and each component of the vector potential is a two-dimensional matrix,
with different components at different points in  not commuting. In this
case one always has the 2-fold Kramers degeneracy but for two Kramers
doublets to become degenerate, leading to a 4-fold degeneracy, requires
that 5 conditions be satisfied. Thus, the relevant submanifold for this 4-fold
degeneracy is of dimension (n — 5).8° We refer the reader to the literature
for more details on this topic.%5:144,145
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3. Dynamics
3.1. Semiclassical Trajectory Methods
3.1.1. General Considerations

The term “semiclassical” is used in the literature in a variety of differ-
ent contexts to signify that some combination of quantum mechanical and
classical mechanical ideas are being used to simplify a problem or calcu-
lation. In the context of modeling the full-dimensional dynamics of elec-
tronically nonadiabatic chemical systems, the most useful and widespread
approach is the use of what may be called the trajectory ensemble (TE)
approximation.42:43:146-154 Gpecifically, an ensemble of nuclear trajectories
is evolved classically under the influence of a set of Born—Oppenheimer
surfaces and their couplings, and the ensemble as a whole is supposed to
simulate a wave packet or a particular slice of a wave packet.

The separation of nuclear (slow) and electronic (fast) degrees of freedom
is the basis of the BO approximation, as discussed in Sec. 2, and a useful
further approximation in many cases is to treat the slow degrees of freedom
with classical mechanics. This approximation is expected to be completely
valid only under much more limited circumstances, for example when the
nuclei are much heavier than hydrogen and the experimental observables of
interest are not sensitive to quantization of energy levels and wave function
phases. However, the approximation can be very useful for approximate
treatments even of problems involving hydrogen. Furthermore, we note that
the partition of the nuclei as heavy particles and the electrons as light
particles is not always the most convenient separation of time scales. Proton
transfer, for example, may be modeled using an approach that considers the
coordinates corresponding to the nuclear motion of the hydrogen nucleus as
fast degrees of freedom while the remaining nuclear degrees of freedom are
treated classically.155:156 For clarity in this section, however, we will assume
that all of the nuclear motions are treated as slow degrees of freedom.

The TE approximation is a reasonable starting point for performing
approximate dynamics calculations, but there are obvious deficiencies, espe-
cially the lack of quantum effects such as zero-point energy and quantized
vibrations, tunneling, coherence, and electronic state transitions. In this
section, we will describe several methods for incorporating electronic state
transitions into the TE scheme. We will also see how coherence and tun-
neling effects play a role in nonadiabatic transitions, and how these quan-
tum effects may be treated within the context of nonadiabatic transitions.
Of course, tunneling and coherence effects may be important independent
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of their role in nonadiabatic transitions. The TE methods discussed here
explicitly treat only some of the quantum effects that are missing in the
classical treatment of the nuclear motion, namely nonadiabatic transitions.
This unequal treatment of quantum effects should not be thought of as a
severe deficiency, but rather the TE approach allows one to isolate these
effects and consider their importance for a given problem separately. This
approach not only provides a more affordable means of computation but
also provides insight into the role of quantum effects in molecular dynamics
in general.

As mentioned above, the fundamental assumption behind the TE
approximation is that the accurate quantum mechanical nuclear wave
packet for the system can be represented as an ensemble of classical trajec-
tories. The quantum wave packet has some inherent width in configuration
and momentum space, whereas classical trajectories are delta functions in
phase space. Equivalently, the position and momentum of a quantal particle
has some uncertainty, whereas these quantities are fully determined in a
classical system. An ensemble of trajectories (as opposed to a single trajec-
tory) is therefore required to approximate the full quantal situation, where
the initial conditions for each trajectory in the ensemble are distributed
to mimic the accurate quantal wave packet. In this sense, each trajectory
may be thought of as a basis function, and taken together, the ensemble of
trajectories approximates the full nuclear wave packet. Alternatively, each
trajectory may be thought of as a single chemical event governed by the
probability distribution inherent in the spread of the quantum mechanical
wave packet.

We note that before any dynamics may be carried out, one needs a reli-
able set of potential energy surfaces and their couplings, or one must be able
to calculate these quantities from electronic structure calculations carried
out “on-the-fly”; this latter approach is called direct dynamics. Obtaining
potential energy surfaces and their couplings is often difficult and can be
a significant source of error.'®"161 We will assume throughout this sec-
tion, however, that accurate potential energies and their coupling terms
are available or can be readily calculated.

A recent development that has had a significant impact on the develop-
ment of nonadiabatic semiclassical theories has been the ability to obtain
accurate converged quantum mechanical results for realistic systems.1"-47""4
This has allowed for the construction of a variety of three-body, two-
state benchmark systems with which one may test (and systematically
improve®7-74:154,162-165) the various semiclassical methods that have been
proposed. We will focus our attention on methods that have been validated
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in this way, and we note that although the semiclassical methods do not
predict the accurate quantal results quantitatively, the results are usually
within 20% of the quantal results,’>* allowing one to study trends and
gain physical insight. Semiclassical methods have not been widely applied
to systems larger than three atoms, mostly due to the lack of availability
of accurate potential surfaces for these systems. As mentioned above, the
semiclassical theories that will be discussed in detail in this section are
readily applicable to large systems and may be immediately employed once
potential energy surfaces and couplings become available for these systems.

3.1.2. Self-Consistency of the Electronic and Nuclear Degrees
of Freedom

The coupled equations for the nuclear wave function derived above in
Eq. (5) are interpreted semiclassically as follows: as the ensemble of nuclear
trajectories evolves in time, the nuclear motion causes a change in the
overall electronic state of the system (through F and G) which in turn
results in a new effective potential energy felt by the trajectories, affecting
the nuclear motion. As discussed in Sec. 2, this is the source of nonadia-
batic electronic state changes, and in order to properly treat nonadiabatic
effects, a self-consistent treatment of this nuclear-electronic coupling is nec-
essary (i.e. the electronic and nuclear degrees of freedom must somehow be
made to evolve simultaneously). Several methods for incorporating this self-
consistency into a TE theory have been proposed, and before we discuss
some of them specifically we will first consider the nuclear and electronic
degrees of freedom separately.

Each nuclear trajectory in the ensemble evolves classically according to
Hamilton’s equations of motion!66

P=_-VzV(R)

. (57)

R=P/M
where R is now the collection of classical nuclear coordinates (i.e. R(t)
defines a classical trajectory through configuration space) scaled to mass
M, P is the vector of the classical momenta associated with the components
of R, and the over-dot indicates differentiation with respect to time. The
semiclassical potential function V that appears in Eq. (57) will be explicitly
defined later and must be carefully chosen such that the self-consistency
discussed above is maintained.
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We will now discuss the behavior of the electronic degrees of freedom
along the classical trajectory. We make the generalized Born-Oppenheimer
approximation and restrict our attention to ¢ electronic states. We will
ignore the coupling of the states in @ to the states in the complement
of @, and we may therefore drop the (¢) superscript. The nuclear wave
function ;(R) is approximated in the TE approach by a set of classical
trajectories, i.e.

$i(R) = > ()8R — R*(t)), (58)

where §{R — R%(t)] is a delta function in configuration space that follows
the ath classical trajectory R%(t) in the ensemble, and the coefficient cj is
the probability amplitude that the electronic state of the system is state j
at time ¢.

We note that the expansion coefficients ¢} are complex quantities and
the ensemble of trajectories may be used to simulate quantum coherence
effects by allowing these coefficients to interfere with each other. We may
differentiate between coherence effects that arise from trajectories in dif-
ferent electronic states interfering with each other (inter-state coherence)
and those arising from trajectories in the same electronic state interfer-
ing with each other (intra-state coherence). Some researchers!6”-173 use
Eq. (58) as the starting point for including intra-state coherence effects
into the TE approximation by replacing 6{R — R*(t)] with some delocalized
function. The various trajectories may then be propagated simultaneously
and allowed to interfere with one another. These methods are promising,
but remain to be tested on realistic chemical systems, and we will focus
our attention on TE methods where the trajectories may be propagated
independently. In this way the intra-state coherence is not included, but
the computation is greatly simplified. We may therefore consider a single
trajectory and drop the superscript a, keeping in mind that the final results
of the simulation are obtained by averaging the results of an ensemble of
trajectories that differ in their initial conditions as discussed above. The
inter-state coherence may or may not be included in either type of method,
depending on how the nonadiabatic effects are treated in the simulation.
We will discuss the inter-state coherence below in the context of the specific
TE methods.

Using Eq. (58) and explicitly indicating the time dependence, one can
approximate Eq. (4) as

U(t) = &(t)45(R(),7] (59)
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where the over-bar indicates a general electronic basis and can be either
the adiabatic basis ¢; or some diabatic basis éj. The electronic state of the
system along the classical trajectory is given by the evolution of the coef-
ficients ;. By substituting Eq. (59) into the time-dependent Schrédinger

equation, one obtains coupled equations similar to those obtained earlier in
Eq. (5),1¢

éj = -~ Zk Ek(ih_lﬁjk +R- ﬁjk), (60)

where we have neglected G and other small terms involving the gra-
dient of ;. Note that if the adiabatic electronic basis is used, U will

equal the diagonal matrix U, while if a diabatic basis is used, F will
be neglected. Using Eq. (60), we can obtain an expression for the elec-

tronic state probability density as a function of time along the classical
trajectory R(t):146

p;jj = Zﬂmﬁ—l(ﬁkjﬁkj) + 2Re(ﬁkjf?, . ﬁkj), (61)
k#j

where we have made use of Eq. (8) to simplify the expression, and the
electronic state density matrix is defined by

Pik = Ej'c'};. (62)

A similar (but slightly more complicated) expression!”* may also be written
for the off-diagonal elements (coherences) of the electronic state density
matrix. Note that the NACM F appears in a dot product with the velocity
of the trajectory, i.e. only the component of F in the direction of the nuclear
motion is important in coupling the electronic states. Using Eq. (61) with
suitable initial conditions, the electronic state probability density for each
state 7 may be integrated along the with classical trajectory, i.e. along with
Eq. (57).

We are now in a position to discuss the semiclassical potential energy
function V that governs the trajectory. One may anticipate that V will be
some function of the potential surfaces, their couplings, and the electronic
state density matrix p. Several semiclassical algorithms have been proposed
with differing prescriptions for V and may be divided into two general cat-
egories: time-dependent self-consistent field methods and trajectory surface
hopping methods. Each category will be discussed in some detail below.
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3.1.3. Time-Dependent Self-Consistent Field Methods

The starting point for time-dependent self-consistent field (TDSCF) meth-
o0ds89:71-74,148,154,162,163,175-183 i the quantum Ehrenfest theorem!84:185
which states that the expectation values of the position and momentum
operators evolve according to classical equations of motion with a poten-
tial energy function given by the expectation value of the potential energy
operator. We may define a “semiclassical Ehrenfest” (SE)72148:154177 TE
method in this way by taking the expectation value of the Hamiltonian
using the time-dependent wave function given in Eq. (59), i.e.

Vse(R) = (Y|H(R,)[¥). (63)
In a diabatic representation this becomes

Vse(R) =Y _ pxUsk(R)- (64)
ik

We note briefly that an early version of the TDSCF method defined the
semiclassical potential V as the expectation value of the Hamiltonian aver-
aged over all the trajectories in the ensemble.71%° In this approach, the
trajectories are not independent and are propagated simultaneously, and
the semiclassical potential function may be considered to be a better repre-
sentation of the quantum mechanical expectation value as it is averaged over
all of the different parts of the wave function, i.e. over all the trajectories in
the ensemble. An additional advantage of this type of method is that intra-
state coherence effects are also included. However, as the system evolves
in time the distribution of trajectories may become nonlocalized, and the
mean-field approximation breaks down.!%* Using independent trajectories
(as in the SE method) one loses intra-state coherence effects but gains the
ability to model systems that feature divergent trajectories in phase space.

We return to our discussion of the SE semiclassical potential func-
tion defined by Eq. (63). Expectation values are unchanged by a uni-
tary transformation of basis functions, and therefore Vgg could also be
written in terms of the adiabatic electronic basis functions, and these
two formulations are equivalent. The adiabatic coupling terms are often
difficult to work with, and the SE method is usually discussed in the
diabatic representation.”148:154.177 The computational implementation of
the SE method involves integrating Eqs. (57) and (60) simultaneously
using Eq. (64).

Additional insight into the SE method may be gained by recognizing
that the expansion coefficients in Eq. (59) are complex quantities and may
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be rewritten (for the diabatic electronic basis) as'?®

& = %@. + i), (65)

where Z; and p; are electronic variables that can be shown to behave like

the position and momentum of a classical particle under the influence of
the potential energy function given by Eq. (64), i.e.

i vV,
i = SE ZPkUyk, (66)

B BV
by =- SE == Zkaak (67)

In one sense Egs. (66) and (67) are just the real and imaginary parts of
Eq. (60) written in terms of the diabatic basis. More importantly, however,
they allow the electronic variables to be dealt with in an entirely classical
way such that the nuclear and electronic motions may be treated on equal
footing.

To further illustrate the successes and failings of the SE method we will
consider as an example a reactive system with two electronic states (labeled
0 and 1), vanishing electronic-state coupling for the isolated reactants and
products, and initial conditions such that p11 = 1; poo = fo1 = P10 = 0,
i.e. the system starts as a pure state in the excited electronic state (state 1).
For a given trajectory in the ensemble, the semiclassical potential given by
Eq. (64) is initially equal to the excited state potential, and the trajectory
propagates in the pure excited state. When the trajectory enters a region of
strong coupling, there is a flow of probability density between the electronic
states (via Eq. (61)), and Vgg becomes a linear combination of the potential
energy surfaces. In this strong interaction region, the potential energy felt
by the SE trajectory is a weighted average of the potential energies felt by
hypothetical trajectories in each electronic state. This situation allows the
SE trajectory to be influenced by all of the electronic states at once and
thus explicitly treats the coherence between the electronic states.

Unfortunately, the SE method as described above has many disadvan-
tages that result from the mean-field assumption. Although at any instant
along an SE trajectory it is physically meaningful for a system to be influ-
enced by some average of the potential energies of all of the electronic states
(i.e. it is meaningful to consider inter-state coherence), it is not physically
meaningful for the nuclear motion corresponding to each electronic state
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to be described by a single trajectory. If the potential energies of the vari-
ous electronic states are similar in topography and energy, then the nuclear
motions in each state will be such that an average SE trajectory may pro-
vide a reasonable approximation. For many physically meaningful systems,
however, this is not the case, and it is not possible for a single trajectory to
approximate the motion in these different electronic states. An important
consequence of this arises in the case of low-frequency events. A SE trajec-
tory will be dominated by the character of the high-probability motions, and
low-probability motions may not be properly explored. Furthermore, it is
also not clear how to interpret the final state of a SE trajectory. In general,
a SE trajectory will finish the simulation in a mixed (inter-state coher-
ent) electronic state, whereas physically we expect isolated products to
be in pure electronic states (if there is no electronic state coupling in the
product region of phase space). The internal energy distribution of products
in a mixed electronic state is not reliable because it does not correspond
directly to the internal energy distribution of any single physically mean-
ingful product.

Several modifications of the SE method have been suggested to rem-
edy these deficiencies.69:154,162,163,182,186,187 Ty keeping with our aim of
discussing only those methods that have been tested using realistic sys-
tems, we will focus our discussion on the natural decay of mixing (NDM)
method.163:188 The NDM method is representative of the modified SE meth-
ods, which vary in their details but in general attempt to force the system
into a pure electronic state (i.e. they force the inter-state coherent SE tra-
jectory to decohere) as the system leaves the strong coupling region.

The NDM method starts from Eq. (64) but defines g such that the sys-
tem decoheres (dephases) to a pure electronic state in regions of vanishing
coupling. The NDM electronic density matrix is defined like the SE density
matrix, except that Eqgs. (66) and (67) are replaced with

~NDM 2 D
NDM B D
j =p;+DP;, ’ (69)

where %; and p; are the SE terms given in Eqgs. (66) and (67), and :i_? and
p?f are responsible for dephasing. These terms are defined as

D Gi G Pkk
S = (6 —1) [ —==2 )+6- =) =, 70
¢; = (Gix )( Srn JK2pjj§jTjk (70)

where ¢ is = or p, Tjx is the decoherence (dephasing) time for coupled
motions in states j and k, and K is the state towards which the system
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is collapsing. The target state K is allowed to change along the trajectory
and is determined stochastically such that the fraction of trajectories in the
ensemble that are decohering towards state K at any given time is equal
to the ensemble average of the value of px k.

At any instant along the NDM trajectory, the system is decohering from
each state j towards state a single state K at a rate ~1/7;x. In the original
formulation of the NDM method this rate was determined using the simple
formula

h E
|Uj - ﬁK' Toib ’
where E and Ty, are the total energy and vibrational energy of the system,
respectively. Equation (71) is reasonable, and although it cannot be rigor-
ously justified, it has been shown to work quite well for realistic chemical
systems.*®® Other physical arguments would give

3
Tipe == 7

jK U, - Ux| (72)
or a result depending on momentum components. Prezhdo and Rossky!8!
derived a formula for the decoherence time by considerations based on Gaus-
sian wave packets and Franck—Condon factors; however their result depends
on the width of the Gaussian wave packet, which is not a fundamental i)rop-
erty of the system.

A NDM trajectory behaves like a SE trajectory in strong coupling
regions and collapses to a pure state asymptotically. The method retains
the desirable feature of the SE method in that inter-state coherences are
included when the electronic states are strongly coupled. Additionally, it
is able to treat low-probability events and gives realistic product states.
We note that the NDM method may also be formulated in the adiabatic
representation’® and that in contrast to the SE method, these adiabatic
and diabatic formulations are not globally equivalent. However, because
the method tends toward SE dynamics in strongly coupled regions, it is
less sensitive to the adiabatic/diabatic choice than is the surface hopping
approach which will be discussed below.

The NDM method is in many respects similar to the stochastic mean
field (SMF) method of Prezhdo.}®? The SMF method is derived by consid-
ering a system coupled to the environment, and allowing the environment
to continuously partially collapse the wave function, eventually resulting in
a pure electronic state. The treatment of the decoherence effects leads to
terms that involve random changes in the nuclear velocities, and these must

TjK = (71)
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be compensated for by rescaling the velocities such that energy is conserved
(similar to a surface hop). The decoherence time scale is a parameter of the
method, and the results may be sensitive to this parameter.

3.1.4. Trajectory Surface Hopping Methods

The trajectory surface-hopping approach has a long his-

tory?2:44,46,68,70,73,74,111,112,151-153,174,189-200 gtarting with Landau-Zener

type approaches??190:191 where surface transitions were limited to
pre-defined seams and later!®* generalized to include methods based on
integrating the time-dependent quantities in Eq. (61) and allowing surface
transitions anywhere that there is significant electronic state coupling. In
general, the semiclassical potential is taken to be the diagonal element of
the potential energy matrix U that corresponds to the currently occupied

state j, i.e.
Vsu(R) = Uj;(R). (73)

This single-surface propagation is interrupted by instantaneous surface
transitions (called surface hops) to some other state k; these hops occur
with some time-dependent probability g;x that is integrated along the clas-
sical trajectory. The hopping probability g;x may be defined in various
ways, and we will discuss several of the prescriptions below.

The surface hopping method that has perhaps found the most use
in physical applications is the molecular dynamics with quantum tran-
sitions method of Tully; we will call this Tully’s fewest-switches (TFS)
method.174197 Trajectories are propagated locally under the influence of a
single-state potential energy function, and this propagation is interrupted
at time intervals At with hopping decisions. A hopping decision consists
of computing a probability for hopping from the currently occupied state j
to some other state k, and the TFS method defines this hopping probabil-
ity such that hopping is minimized in the sense that hopping only occurs
when there is a net flow (in an ensemble averaged sense) of electronic state
probability density out of the currently occupied state j. At each hopping
decision, gk is computed and compared with a random number to deter-
mine if a hop occurs.

For clarity we will again consider a two-state system. The TFS hopping
probability from state j to state k is defined as"4

g;k(t) = max (0, —&J;At) , (74)
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where At is time interval between hopping decisions, and 5;; is given by
Eq. (61). This formula for g;x has several desirable properties. For example,
the hopping probability is proportional to the step size At so the final
results are not dependent on this parameter. Also, if the fraction F; of
trajectories in an electronic state is equal to p;; at some time (say the
start of the simulation), then F; will equal to p;; for all time ¢ if hopping
occurs according to Eq. (74) and all hops that are called for by Eq. (74) are
allowed. The possibility of including hops that are not classically allowed
by the original TFS scheme is discussed below. Most importantly perhaps,
when using the TFS method, electronic transitions are minimized in that
only as many trajectories as are necessary to retain the self-consistency
of F; and p;; are allowed to hop. As discussed below, surface hops result
in a discontinuous semiclassical potential energy function Vggy, and it is
therefore desirable to minimize the number of surface hops.

In general, the potential energy of the currently occupied electronic state
7 and the state to which the system may hop k are not equal, i.e.

AU=U,-U; #0, (75)

and in order to conserve the total energy of the trajectory, the kinetic energy
must be adjusted by AU. In practice, the adjustment is made by scaling
the nuclear momentum in the direction of a unit vector called the hopping
vector A. The hopping vector is usually taken to be the direction of ﬁ'jk, and
this choice has been justified by both theoretical considerations!90:191,201,202
and numerical studies.”*"? This choice for % is not as clear when the dia-
batic representation is being used, but Ij"}k (to be distinguished from fjk)
is still commonly used to adjust the nuclear kinetic energy at a surface hop,
even in the diabatic representation.

The TFS method may be implemented in either the adiabatic or the dia-
batic representation.”#:1%4 Initially, it was recommended that the adiabatic
surfaces be used based on the idea that surface hops may provide a “dia-
batic passage” in the adiabatic representation and can thus model diabatic
behavior, whereas surface hops between diabatic states cannot approxi-
mate motion on the adiabatic surfaces.!52 It was shown using numerical
studies,”#154 however, that the error in the TFS method may be reduced
by using the diabatic representation if the diabatic surfaces are less coupled
to each other than are the adiabatic surfaces. In this case the diabatic sur-
faces provide a better description of the uncoupled motion and therefore of
the nonadiabatic process overall. A rule called the Calaveras County crite-
rion has been developed, and it leads to the prescription that one should
use the representation (adiabatic or diabatic) that gives the smaller number

T A T O T R RS R S




366 Modern Trends in Chemical Reaction Dynamics

of attempted hops in TFS simulations. {(One could equally well prescribe
the representation that leads to the smaller number of hops in the FSTU
surface-hopping method, which will described below.) The possibility of
optimizing the electronic basis for surface hopping has also been explored

by Herman.203,204

The accurate quantal picture is represented by a swarm of TFS trajecto-
ries, each hopping between the various electronic states at slightly different
locations. In this way, the flow of probability density (which may occur over
an extended region in phase space) is accurately modeled. One drawback of
TFS method is the lack of the proper treatment of decoherence (intra-state
and inter-state) effects. In the SE method, a single trajectory is used to rep-
resent the motion in all of the electronic states and the different motions
were thus allowed to interfere. In the TFS method, several trajectories are
required to model the nonadiabatic dynamics even for a single initial condi-
tion. (In practice, of course, each trajectory has different initial conditions,
but the important point is that in contrast to the SE method where there is
only one possible trajectory for each initial position and momentum, there
are several possible trajectories for a single initial position and momentum
in the TFS method which differ from each other in their hopping locations.)
In order to properly treat inter-state coherence, the TFS trajectories would
be required to interfere with each other, but they do not do so in the stan-
dard TFS method. This lack of decoherence effects can have a significant
effect on the final results because the coherences pr; show up in the expres-
sions for g;; in Eq. (61) and these quantities are used to compute the TFS
hopping probabilities. The trade-off for this lack of inter-state coherence is
the ability to model chemical processes that involve divergent trajectories
on different electronic states.

A significant problem that must be dealt with when using the TFS
formulation is the existence of classically forbidden electronic transitions,
also called “frustrated hops”.6870,74,165,199,200,205,206 The TFS algorithm
may have a nonzero hopping probability g;x in regions where the nuclear
momentum is insufficient along k to allow for an energy adjustment that will
conserve total energy, i.e. the energy gap between the occupied and target
electronic states is less than the kinetic energy in the modes parallel to h
and the system is hopping to a state with a higher potential energy than
the currently occupied state. When a frustrated hop is encountered in the
TFS method, it is either ignored or the momentum along his reversed, and
in both cases the trajectory does not change electronic states. Frustrated
hops therefore destroy the self-consistency of F; and p;; built into the TFS
method.
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The existence of frustrated hopping may be ascribed to two different
sources: one is a deficiency of the TFS method, and the other is a defi-
ciency of the TE approach in general. As discussed above, the TFS method
does not properly treat decoherence effects. If, for example, an excited sur-
face k is classically inaccessible the coherence term between the classically
inaccessible state and the currently occupied state j (p;x) should be zero,
i.e. there can be no coherence between two states if one state is completely
unoccupied. From Eqgs. (61) and (74) one can see that if gjx = 0, the
hopping probability will also be zero. The TFS method does not correctly
treat decoherence and p;r may be nonzero even when state k is highly
energetically forbidden, resulting in g;i being finite when the target state
is completely inaccessible. Frustrated hops caused by this lack of proper
treatment of decoherence are therefore considered an artifact of the TFS
formulation and are not physically meaningful.

We know, however, that quantum mechanically there is some proba-
bility density in regions of phase space that are classically forbidden due
to tunneling. These tails of the nuclear wave function decrease exponen-
tially, so we do not expect significant populations in “highly” classically
forbidden regions, but these tails may be important for regions that are
only “slightly” classically forbidden, i.e. regions that are somewhat close to
classically accessible regions. These tails in the quantum mechanical wave
function also contribute to the existence of frustrated hopping, and these
frustrated hops must be somehow allowed to switch electronic states in
order to model the proper nonadiabatic dynamics. Frustrated hopping can
be a severe problem, affecting anywhere from 10-80% of hopping trajecto-
ries for several realistic systems that have been recently studied.?0:165

The fewest-switches with time-uncertainty (FSTU) method!®5 has been
developed to correct this deficiency without explicitly including tunneling
or coherence effects. The FSTU method is identical to the TFS method
except when a frustrated hop is encountered. If a FSTU trajectory R(t)
experiences a frustrated hop at time tg, the trajectory is allowed to hop at
time ¢;, [or equivalently at the geometry R(t;)], where t5, is determined by

selecting the closest time to to (either forward or backward in time) such
that: (1) a hop at R(t;) is classically allowed, and (2) the difference between
to and tj is small enough that

'tO - thlAE < h/2a (76)

where AFE is the amount of energy that the system would have to “borrow”
to hop at time ¢y. This treatment is clearly inspired by the time-energy
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uncertainty relations,?9? and these nonlocal hops can be thought of as
approximating those parts of the quantal system that borrow energy and
tunnel into classically forbidden regions. If a suitable ¢, cannot be found
that meets the above criteria, then the frustrated hopping attempt is
ignored. The cutoff in Eq. (76) allows us to separate and treat differently
those frustrated hops caused by tunneling (and are therefore physically
meaningful) and those that are caused by the improper treatment of deco-
herence (and are not physically meaningful).

‘We note another type of surface-hopping method that may be applied to
physically meaningful systems. Early formulations of surface hopping?2197
defined g;« to be zero everywhere except at a predefined, localized transition
seam. This approach has been extensively studied and extended by Zhu and
Nakamura28:20° (ZN) by using idealized hopping seams and has recently
been tested against accurate quantum mechanics on a realistic three-atom
system.2® We will outline and discuss the method briefly for a two-state
system. First, the transition seam is defined as the line of minimum energy
gaps between the electronic states. Trajectories from an ensemble are prop-
agated, and whenever a trajectory crosses the transition seam, the hopping
probability gZ is computed. The hopping probability is a function of the
energies of the potential energy surfaces and the kinetic energy of the tra-
jectory in the direction perpendicular to the seam. The ZN form of g]z,z" may
be derived as a generalization of the analytic form given by Landau and
Zener®746:152 which is valid only if one assumes a constant translational
energy and diabatic coupling. When a surface hop occurs, the momentum
of the trajectory is adjusted to conserve energy with % taken to be a unit
vector perpendicular to the transition seam. If a hopping attempt is classi-
cally forbidden, the hop is allowed to occur nonlocally. Inter-state coherence
effects are treated accurately within the context of the nonadiabatic effects
being limited to a hopping seam.

The ZN method is mathematically elegant and physically illuminating
as to the processes of nonadiabatic energy transfer at transition seams.
The problem of identifying the transition seam and restricting transitions
to idealized seams limits the applicability of the ZN methods when one
considers large or complex chemical systems; in particular, the assumption
of constant diabatic coupling as one crosses a seam is a serious limitation.
An earlier trajectory surface hopping scheme employing idealized seams
was presented by Stine and Muckerman®!! and is criticized elsewhere.?12
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3.1.5. Approxzimate Wave Packet Methods

The methods described in the previous sub-sections were obtained by
adding quantum corrections to classical mechanics. Another approach to
developing semiclassical methods (advocated especially by Heller213:214)
is to start with the accurate time-dependent quantum theory and to
simplify it until it is affordable. The spawning method of Levine,
Martinez, and coworkers?!%216 (called full-multiple spawning or FMS)
is an example of a such a method that may be applied to chem-
ical systems. Recently a well defined, minimal version of spawn-
ing called FMS-M has been presented.!®* It has been systematically
tested!64 against accurate quantum mechanics, and so we will discuss it
briefly here.

The initial state of the system for a FMS-M calculation is constructed
from a relatively small set of Gaussian-shaped wave packets. The num-
ber of initial wave packets can be much less than the number of trajec-
tories used in the simulations described above because each wave packet
has some width. One must be careful, however, to be sure that the phase
space of the reactants is adequately sampled, and that the phase space
remains properly sampled over the course of the simulation. This is often
difficult and remains a significant drawback to the spawning method and
to wave packet methods in general. The initial wave packets are propa-
gated along a classical trajectory located at the center of the Gaussian.
The wave packets periodically “spawn” new wave packets on other elec-
tronic surfaces, and meanwhile electronic state population density is allowed
to flow between the wave packets on different surfaces. An attractive fea-
ture of spawning is that the algorithm adds new wave packets as needed
on-the-fly, and in this sense it is more efficient that simply saturating
the phase space with wave packets. A seeming advantage of the FMS
method is that one does not make arbitrary assumptions about where a
hop occurs or what component of the nuclear momentum to change when
a hop occurs. However these decisions are replaced by an equally arbitrary
set of choices concerning the placement of spawned packets, and as a result
the method has a strong underlying similarity to surface hopping. Nev-
ertheless, the FMS-M method can treat both inter-state and intra-state
coherence effects and some tunneling effects, and it remains an attractive
area of research.
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3.2. Quantum Mechanical Methods
3.2.1. General Considerations

Accurate quantum dynamics calculations are of fundamental interest and
provide important benchmarks for the approximate but more practical
semiclassical trajectory methods discussed in Sec. 3.1. For systems with two
or three atoms, an accurate quantum mechanical treatment of the nuclear
motion on coupled electronic potential energy surfaces is computationally
feasible. The computational requirements typically scale as Ng’ (or at best
NZ2) where N, denotes the size of the basis set. If n,(i) denotes the size of
the basis set required for an accurate quantum mechanical calculation on
the ith electronic potential energy surface and d the denotes the number
of coupled electronic states, then Nj = Zle np(7). If the same basis set is
used for each electronic state (i.e. all ny(z) are equal), the computational
requirements scale as d°. In this case, the computational requirements for
two coupled electronic states (d = 2) are 8 times larger than a calcula-
tion on a single (uncoupled) electronic potential energy surface. Often a
smaller basis set can be used for the excited electronic state, and when
this is the case a two-state calculation is less than 8 times more expensive
than a single-state calculation. Furthermore, a fully converged cross section
or bimolecular reaction rate involves contributions from a large number of
partial waves. A separate calculation is required for each value of total
angular momentum J and inversion parity P. If k£ denotes the size of the
basis set for J = 0 and if one uses complete sets of angular momentum pro-
jection quantum numbers, one has N, = k(J + 1) {for J + P even). In such
cases the computational requirements scale as J2. However, one can often
truncate the basis set for larger values of J to some maximum value Q of
the component of total angular momentum along a body-frame z axis.?!?
In this case the size of the basis set remains constant for J > Q which
makes the calculations much more affordable for large J. Since the com-
putational requirements increase significantly when more electronic states
are included, most of the accurate quantum mechanical studies to date are
limited to d = 1 when J > 0 or to d = 2 with J = 0. However, recent
improvements in the numerical methods coupled with the current genera-
tion of parallel supercomputers make calculations with d > 1 and J > 0
more practical. »

If the non-diagonal coupling cannot be neglected, we must solve the
generalized Born—Oppenheimer Eq. (35). As discussed in Secs. 2.4.2-2.4.4,
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a transformation to a diabatic electronic basis is often desirable. This trans-
formation removes the singular part of the vector NACT's that arises in the
adiabatic representation, leaving a “nonremovable” part. In some cases the
nonremovable part may be small enough to neglect, leaving only the scalar
coupling arising from the off-diagonal matrix elements of the diabatic elec-
tronic Hamiltonian. All of the converged quantum mechanical treatments
of polyatomic nonadiabatic dynamics to date utilize a diabatic electronic
representation and ignore the nonremovable part of the vector NACTs.

3.2.2. Computational Methodology

We will restrict our attention in this section to triatomic systems, which
have six nuclear degrees of freedom, excluding the center-of-mass motion.
Three of these degrees of freedom correspond to internal motion which we
will denote as z. The other three degrees of freedom give the orientation
of the body frame (BF) relative to the space frame (SF) and are usually
taken to be the three Euler angles, which we will denote as & = (¢, 5,7).
The first computational approach which we will discuss in detail is based
on the symmetrized hyperspherical coordinates £ = (p,6,).2'87222 The
radial coordinate p corresponds to a symmetric stretch motion, the polar
angle 0 represents a bending type motion where § = x/2 corresponds to
linear geometries and & = 0 corresponds to T-shaped arrangements (equilat-
eral triangles for equal mass nuclei), and the azimuthal angle ¢ corresponds
to an internal kinematic rotation (i.e. a pseudo-rotational motion). The BF
z axis is chosen perpendicular to the plane of the triatomic molecule, and
the BF z and y axes are chosen to lie along the instantaneous principal
axes of inertia (i.e. the § and § vectors of Ref. 223). The collective set
of coordinates is denoted by R = (p,0,¢,,8,7) or R = (z,%). The rel-
evant nuclear Schrédinger equation is solved in two steps.??® In the first
step, the radial variable p is partitioned into a large number of “sectors”
and the 5D surface (angular) differential equation is solved with p fixed
at the center of each sector. This step is independent of the scattering
energy. The surface function solutions are used to compute the potential
coupling and overlap matrices which appear in the coupled-channel (CC)
radial equations. In the second step, the CC radial equations are solved at
each scattering energy using a log-derivative??4~226 propagation technique.
Once one has solved the CC radial equation, one can apply the boundary

~ conditions to the log-derivative matrix at large p to obtain the scattering

matrix.223
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The surface function solutions are obtained by diagonalizing the 5D
surface differential equation, and this is usually the most computation-
ally demanding step. However, if more than about 200 scattering energies
are required then the propagation step can become the most computation-
ally demanding step. The 5D surface function solutions are expanded in
terms of a hybrid basis set consisting of a discrete variable representation
(DVR)#"-229 in the hyperangle § = n — 26, a finite basis representation
(FBR) in the azimuthal angle ¢, and the appropriate set of normalized
Wigner D(a, 8,) functions.?30 The hybrid basis set accurately treats both
of the Eckart?31:232 singularities which occur in the kinetic energy operator
at the north pole (§ = 0) and equator (§ = 7/2) of the 2D hypersphere
in (6,¢) (see Ref. 230 for more details). An accurate treatment of these
singularities is crucial for obtaining accurate scattering results especially at
the higher scattering energies associated with nonadiabatic dynamics.23°
(We note that these singularities do not arise in some other solution meth-
ods, e.g. Refs. 59-64, discussed below.) The hybrid basis set is also highly
parallelizable so that parallel supercomputers can be utilized.230,233:234

If the non-diagonal coupling can be neglected, then Eq. (15) is valid
and a single electronic state (usually the ground state) is sufficient. Most
single-surface dynamics calculations also ignore the vector potential terms
in Eq. (15). However, if the ground electronic state exhibits a conical inter-
section with an excited electronic state, then /_1‘00 can be non-zero [see
Eq. (26)]. If the energy of the nuclear motion is sufficient so that the nuclear
wave function has appreciable amplitude along a closed path around the
conical intersection, the effects of the geometric phase can be important.®!
If one uses a diabatic representation, the geometric phase is included auto-
matically. If one uses an adiabatic representation there are two ways to
proceed. First, accurate solution methods have been developed to solve
Eq. (15) with a non-zero Ago.!38139 These methods have been applied to
the H + Oz — OH -+ O reaction,!12138,139,235,236 the  + Dy — HD + D
reaction,?®3 and the H + Hy — Hy+ H and D + Hy — HD + H reactions.237
The same methodology has also been used to include geometric phase effects
in calculations of the vibrational spectra for HO3 112 and Nagj.236:238 Alter-
natively, as noted in Sec. 2.3.4, the geometric phase can be accounted for
by solving Eq. (15) with a zero Ay and double-valued boundary conditions
on . This is the approach used by Kuppermann and coworkers.!00-103
One of us has recently implemented the double-valued basis set approach
in calculations on the H + H; reaction (and its isotopic variants) and has
verified that it gives identical results to those based on the vector potential
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approach.?3” However, these geometric phase results are quite different than
those of Kuppermann and coworkers!?%~1%3 and will be discussed in detail
elsewhere.237

One possibly desirable way to proceed is to remove the entire longitu-
dinal part of the nonadiabatic coupling. As discussed in Sec. 2.4.5, in order
to remove the longitudinal part of the vector NACMs, one must solve the
Poisson Eq. (52) for A as a function of the nuclear coordinates. One can
then apply the transformation matrix of Eq. (44) to the adiabatic electronic
basis to obtain an effective Schrédinger equation for the nuclear motion with
non-singular (transverse) NACMs and a non-diagonal electronic potential
matrix [i.e. Eq. (35) but expressed in terms of the transformed quanti-
ties given in Egs. (37)—(39)]. Abrol and Kuppermann!?® have implemented
these steps for the H3 system. The relevant 3D Poisson equation in terms
of (p,0,p) was solved with appropriate boundary conditions using the
MUDPACK?3%240 library of subroutines. If one considers all six nuclear
degrees of freedom, then a 6D Poisson equation in terms of (p, 6, ¢, o, 5,7)
must be solved. A meshless solution method based on the Moving Least
Squares (MLS) approach could be used in this case.2!

Obtaining accurate numerical solutions of the Poisson equation can be
computationally demanding and may require more work than solving the
original nuclear Schrédinger equation. Fortunately, accurate solutions to
the Poisson equation are not usually needed because it is expected to often
be a reasonable strategy to only remove the singularities in the longitu-
dinal part of F that occur at conical intersections. It is hard to make
general arguments to justify the extra effort required to remove the lon-
gitudinal part of F far from an intersection because, far from a conical
intersection, the nonremovable coupling is in general the same order of
magnitude as the removable coupling [see the discussion below Eq. (52)).
For example, in the H3 system a conical intersection between the ground
and first excited electronic states occurs at § = 0 (equilateral triangles) for
all p. Thus, one can choose A = —¢/2 which is a solution of Eq. (46) in
an infinitesimal region near the conical intersection.?*! Furthermore, this
choice for A gives rise to an electronic basis which is single-valued around
the conical intersection.24? However, since the transformation involves /2
instead of 3¢/2, the nuclear permutation symmetry must be treated Wit{l

care.®? As the radial distance from the conical intersection increases, F
will contain non-zero longitudinal and transverse components,?43 but nei-
ther of these are singular. Even when one has successfully removed the
troublesome singularities in F, the Eckart?31:232 gingularities may still be
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present for some choices of coordinates, and an accurate numerical solution
must also account for them.230

For X3 systems with a single conical intersection located at equilateral
triangle (D3p) geometries (such as Hj), there is an alternative approach
for treating the singular NACMs without a transformation to a diabatic
electronic basis via A = —¢/2. In this approach a complex single-valued
adiabatic electronic basis is used, and there are non-zero diagonal matrix
elements of F (see Secs. 2.2, 2.3, and Ref. 242). The singularities in the
diagonal matrix elements of F can be grouped together with the Eckart
singularities, and all of the singularities can then be accurately treated
numerically by a suitable choice of Jacobi polynomials in the hyperan-
gle 6.23° One can show that the exact single-surface (uncoupled) nuclear
wave functions approach zero at the conical intersection so that matrix
elements of the singular terms in the non-diagonal coupling elements of F
should cause no problems.?4? We also note that the treatment of the nuclear
permutation symmetry is more straightforward in this approach.%1:242

The adiabatic approach described above has the advantage that mod-
ifications of the existing computer codes are relatively straightforward to
implement to treat two coupled adiabatic electronic potential energy sur-
faces, and one does not have to solve a Poisson equation. It also avoids an
adiabatic-to-diabatic transformation. One simply adds one more index to
the surface function basis set that labels the adiabatic states and dupli-
cates the code in the matrix-vector multiply routine (which is used by the
Lanzcos diagonalizer) so that one part acts on the vector components asso-
ciated with the excited electronic state, and the other part acts on the
vector components associated with the ground electronic state. The com-
puter code for the two parts are identical except for the matrix elements of
the adiabatic electronic potential energy surfaces. One then adds one more
part which computes the contributions due to the non-diagonal matrix ele-
ments of F (i.e. the coupling between the two adiabatic electronic states).
One must also write a subroutine which computes the matrix elements of
the non-diagonal terms in F with respect to our basis set in (6, ¥). This
subroutine is called prior to the diagonalization step. The log-derivative
propagation algorithm can be generalized to handle radial coupling terms
which also contain a first derivative with respect to p,!1? as can the Magnus
algorithm, the R-matrix method, and other numerical schemes.!® Apply-
ing boundary conditions for scattering problems requires the addition of an
electronic label on the asymptotic diatomic states. If the coupling between
the relevant electronic states vanishes asymptotically (e.g. for large p or a
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large value of the distance between any two separating subsystems), then
the appropriate boundary conditions involve adding an electronic label to
the single surface boundary conditions. However, if the coupling does not
vanish asymptotically, it must be taken into account when computing the
relevant asymptotic wave functions and energies.5:8%:8! The initial and final
scattering states will then be some linear superposition of these coupled
basis states.

For other triatomic molecules (i.e. ABC, AB;, and more complicated X3
molecules such as O3), the location of the conical intersection of interest is
not always fixed at § = 0. Thus, in the adiabatic approach the singularities
in the diagonal matrix elements of F cannot be grouped with the Eckart
singularities. For these more general situations a transformation to a dia-
batic basis is probably the best approach. However, even for these more
complicated systems, we can remove the troublesome singularities in F
without having to solve a Poisson equation (see Sec. 2.4.4). Once a suitable
A has been evaluated, one can implement the transformation of Eq. (44)
and solve Eq. (35). The modifications to our existing computer codes are
similar to those discussed above. However, the diabatic electronic potential
energy matrix contains non-diagonal matrix elements with respect to the
electronic label, and there are no diagonal matrix elements in F (or f‘)

Several other methods based on a variety of different approaches are
also available for quantum mechanical nonadiabatic dynamics calculations.
Some calculations propagate the solution of the time-independent coupled-
channel equations as a function of the hyperradius50-52:55-58,141 g4 are
similar to the hyperspherical approach discussed above. The treatment of
Kamisaka et al. utilized a 3 x 3 Diatomics-in-Molecules (DIM) potential
matrix to fit ab initio data for the DHJ system. The adiabatic represen-
tation is obtained by diagonalizing this matrix. The dynamics were car-
ried out for zero total angular momentum (J = 0) on the three diabatic
states using the DIM maitrix to represent the interaction. The nonadiabatic
transitions were observed to give rise to non-statistical behavior in the
resonance spectrum. The work by Schatz and Drukker51:141 investigated
the effects of spin-orbit and Coriolis coupling in the C1(2P) + HCl and
O('D) + H; reactions. For the former reaction, rate constants were evalu-
ated using the separable rotation approximation with the accurate J = 1 /2
calculations as reference. The activation energy was found to increase by
about 30% of the atomic 2Py, —2Pj, energy difference. More recent work
on this same reaction was undertaken by Whiteley et al.>2 including three
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coupled potential energy surfaces. Takayanagi and Kurosaki®® have inves-
tigated the Br(*Py/;) + H; reaction using a 2 x 2 diabatic model. They
found that electronically nonadiabatic transitions from Br(*Py/3) + Hz(v)
to Br(2Pj3/2)+Hz(v+1) effectively occur in the entrance region of the poten-
tial energy surface but that the contribution of the electronically nonadia-
batic reaction Br(?P,/2) + Ha(v) — HBr + H is small. Takayanagi et al.®
investigated the (D +Hj)* system using a 3 x 3 DIM potential matrix; they
compared the quantum mechanical results to a quasiclassical trajectory
surface hopping method and found generally good agreement. Takayanagi®®
has recently investigated the O(* D) + Hy, D2, and HD reactions including
three electronic states. Electronically nonadiabatic transitions were found
to be very important, but the effects of isotopic substitution were relatively
minor. Aquilanti et al.57 obtained converged quantum mechanical dynamics
using a hyperspherical coordinate approach for the F + Hj system.

Other coupled-channel calculations include those of Yang and

Alexander.4” They constructed a 4 x 4 diabatic electronic potential matrix-

and investigated the effects of nonadiabatic coupling in the predissocia-
tion dynamics of the CN(X2Z*, A%IT)Ne complex. The calculated reso-
nance energies were found to be in reasonably good agreement with the
experimental data. However, some of the calculated predissociation life-
times did not agree well with the experimental data, and the discrepancies
were attributed to uncertainties in ab initio electronic potential energy sur-
faces. Gilibert and Baer*® studied the effect of spin-orbit coupling for the
F(?P3/3,1/2)+Hz — HF +H reaction using model potential energy surfaces.
One of their main findings was that weak electronic diabatic coupling terms
significantly affect the reaction process taking place on the lower adiabatic
potential energy surface. This same reaction was later studied by Alexan-
der et al.*° using accurate ab initio potential energy surfaces. They reached
the opposite conclusion. That is, the overall dynamics of the F + Hj are
well described by calculations on a single, electronically adiabatic potential
energy surface. _

Accurate quantum mechanical nonadiabatic dynamics-calculations have
also been performed using a time-independent linear algebraic variational
method®®~"4. In this method (called the outgoing wave variational principle
or OWVP%3:244) the Schrédinger equation is solved by expanding the out-
going scattering waves in terms of internal-state channel functions for each
asymptotic chemical arrangement. The full Hamiltonian for each chemical
arrangement is partitioned into a distortion Hamiltonian that contains some
of the channel-channel coupling and a coupling potential that contains the
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remainder of the channel-channel coupling. The solution to the Schrédinger
equation can be written in integral form where the first term in the solution
is called the distorted-wave and is obtained by solving the distorted wave
Schrédinger equation numerically using finite differences. The contribution
to the scattering matrix from the coupling potential is obtained variation-
ally using a dynamically adapted basis set. Using this two-step scheme, the
full scattering matrix is written as the sum of two terms, where the first
term is the distorted-wave Born approximation for the scattering matrix
obtained using the distorted-wave functions, and the second term is the
contribution from the coupling potential.

Early treatments employing the OWVP method focused on the nonre-
active quenching process Na(3p) + Ha — Na(3s) + Hy for zero® %2 and
unit®? total angular momentum. Convergence was demonstrated®®:5? by
obtaining the same results using two entirely different methods—R-matrix
propagation?%:246 and the outgoing wave variational principle.?4 Accu-
rate quantum mechanical calculations were also obtained for the reactive
collisions H+HBr — Hy+Br(?P, ;) and H+HBr — H; +Br(?P3/2).% The
competition between electronically nonadiabatic reaction and electronic-
to-vibrational energy transfer was investigated for the Br(®Py/3) + Hy —
HBr + H reaction.55 Calculations for a series of three-body model sys-
tems exhibiting avoided crossings in the vicinity of the reaction barrier
showed strong nonadiabatic effects on reaction probabilities due to funnel
resonances.’6 OWVP calculations have been performed more recently on a
variety of model systems, and these results have been used as benchmarks
to assess the validity of the semiclassical approaches discussed in Sec. 3.1.
The benchmarks include three qualitatively different types of chemical sys-
tems: (1) systems with conical intersections, 570817274 (2) systems with
diabats that cross and adiabats that do not intersect,’® and (3) systems
with wide regions of weak coupling where the diabats and adiabats do not
cross.77 This set of benchmark calculations includes reactiveS”:69:70.72,73
and nonreactive’!'7? scattering collisions as well as unimolecular excited-
state decay processes.5874

Other quantum mechanical methods propagate wave packets as a func-
tion of both time and coordinates.535475"7 The study by Gray et al
investigated the dynamics of the O(* D) + H, — OH + H reaction including
two diabatic electronic states. They found that nonadiabaticity is not an
important issue if the initial wave packet starts on the ground electronic
state. However, if the initial wave packet starts on the excited electronic
state, then long range electronic transitions can occur. Wave packets have
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also been used to study the photodissociation of ozone.>* In this study, a
2 x 2 diabatic potential matrix was computed using @b initio methods. The
nonadiabatic coupling was found to be exceedingly strong so that the disso-
ciation processes were very fast (within one symmetric stretch period). The
photodissociation of collinear HF- - - Na van der Waals complexes has also
been investigated using wave packets.”® The quantum calculations showed a
substantial isotope effect. Comparing the quantum results with those of sev-
eral semiclassical theories showed that none of them were in even qualitative
agreement with the half lives and branching ratios inferred from this kind
of wave packet simulation. Converged quantum results using wave packets
have also been obtained for the unimolecular dissociation of the spin-orbit
coupled N,O7%77 system and the HCO™ and HNO" systems including
Renner-Teller coupling.

Many of the quantum mechanical methods discussed above treat the
nonadiabatic coupling using a diabatic representation and ignore the non-
removable part of the vector NACMs. Since the nonremovable coupling is
not always negligible, a complete treatment of nonadiabatic coupling should
include it.

4. Concluding Remarks

We reviewed the fundamental theory for both electronically adiabatic and
electronically nonadiabatic processes. The nonadiabatic coupling matrices
(NACMs) which appear in the coupled equations for the nuclear motion are
a priori of order magnitude unity. However, in the terms (called nonadia-
batic coupling terms or NACTs) in which these coupling matrices appear
in the coupled equations for the nuclear motion, they are multiplied by the
small quantity 1/M so that a power series expansion for the molecular wave
function, energy, and other quantities of interest in terms of k = (1/M)'/* is
possible. For low-energy bound states and low-energy dynamical processes,
the off-diagonal matrix elements of the NACTs can often be neglected, and
we have a situation which is usually referred to ds the “Born—Oppenheimer
approximation” in which the nuclear motion is governed by the effective
potential generated by a single adiabatic electronic state.

However, even under the Born—-Oppenheimer approximation there can
be additional complications due to conical intersections, even if the nuclear-
motion wave function is significantly different from zero only in regions
where the NACT's are negligible and the Born—-Oppenheimer approximation
is valid, provided that the nuclear wave function has significant amplitude
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along the whole length of a path enclosing a conical intersection. A conical
intersection causes the real adiabatic electronic wave function to change
sign for any closed path in the nuclear parameter space which encircles a
conical intersection (i.e., is double-valued). This sign change is a special
case of the geometric phase. Since the total molecular wave function must
be single-valued, the nuclear wave function must also be double-valued and
a correct theoretical treatment must take this into account. One approach
applies a phase transformation on the real electronic basis to give a single-
valued complez electronic basis. The effective Schrodinger equation for the
nuclear motion contains a vector potential (i.e., a non-zero diagonal NACT)
and the nuclear wave functions are single-valued. Another approach is to
implement the double-valuedness directly into the nuclear wave functions
by implementing suitable boundary conditions on the basis functions. There
is no vector potential in this approach. A third approach is to use diabatic
representations that include the geometric phase implicitly so that it need
not be dealt with explicitly. If implemented fully (including the residual
nonadiabatic coupling in the diabatic case and including all nonadiabatic
coupling in the adiabatic case), all three approaches will give the same
results for physical observables.

A conical intersection (degeneracy) between two adiabatic electronic
states occurs in submanifolds of the nuclear parameter space. The number
of conditions or constraints which define these submanifolds is two. Thus,
the dimensionality of these submanifolds is n—2 where n = 3N—6 for N > 3
nuclei. Any closed path in the nuclear parameter space which encircles a
conical intersection manifold results in a sign change on the two relevant real
adiabatic electronic wave functions (i.e., conical intersection manifolds are
transition manifolds). Furthermore, by considering the singular properties
of the NACMs, we have shown that conical intersection manifolds are the
only transition manifolds. In general, there may be more than one conical
intersection manifold and it may be possible that two of these intersect.
Such intersections are called “confluences” and the number of conditions
which must be satisfied for them to occur is 4, leaving n — 4 degrees of
freedom on the confluence. The number of conditions can be further reduced
to 3 in the presence of symmetry.

For high-energy bound states and high-energy dynamical processes or
when two or more electronic states are degenerate or nearly degenerate for
any nuclear geometry where the nuclear wave function has significant ampli-
tude, the off-diagonal matrix elements of the NACTs cannot be ignored,
and we must include more than one electronic state. However, in many
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cases we can still limit attention to a finite number of electronic states,
and in such cases we have a situation that is referred to as the “general-
ized Born—-Oppenheimer approximation”. We investigated the effects of a
unitary transformation on the relevant adiabatic electronic subspace and
showed that a strictly diabatic basis (i.e. a basis for which the NACMs are
identically zero) does not exist. However, there is one troublesome part of
the NACMs that can be removed by a suitable transformation, and that is
the part that becomes singular near a conical intersection. The nonremov-
able part is, in general, of order unity, and because it appears multiplied
by 1/M, it is often neglected. The corresponding electronic basis is often
referred to as a quasidiabatic or diabatic basis. For a two-dimensional elec-
tronic subspace, we showed how to decompose the coupling into longitudinal
(irrotational) and transverse (solenoidal) parts. The longitudinal part con-
tains the singular terms and is removable. However, in order to completely

remove the longitudinal part of the coupling, a Poisson equation must be

solved. Since, far from a conical intersection, the non-removable coupling
is in general the same order of magnitude as the removable coupling, we
do not necessarily need to solve a Poisson equation and remove all of the
longitudinal coupling. Instead, we can take advantage of the arbitrariness of
the diabatic representation to remove only the troublesome singular terms.

Our discussion of semiclassical methods focused mainly on methods in
which an ensemble of trajectories represents, in some sense, a quantum
mechanical wave packet or a slice through such a wave packet, and we pre-
sented detailed discussions only of semiclassical methods that have been
tested against accurate quantum dynamics for full-dimensional three-body
problems. In order to properly treat nonadiabatic effects, a self-consistent
treatment of the nuclear-electronic coupling is necessary. We considered tra-
jectory ensemble (TE) methods where the trajectories may be propagated
independently and derived the coupled equations for the time evolution
of the coefficients representing the probability amplitudes for the relevant
electronic states. We discussed two general categories of semiclassical algo-
rithms with differing prescriptions for the potential energy function V:
time-dependent self-consistent field (TDSCF) methods and trajectory sur-
face hopping (TSH) methods.

The TDSCF methods are based on a semiclassical version of the quan-
tum Ehrenfest theorem. In the semiclassical Ehrenfest (SE) approach, the
potential energy felt by the SE trajectory is a weighted average of the
potential energies felt by hypothetical trajectories in each electronic state.
Thus, the coherence effects between the electronic states are treated in this
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approach. However, the SE approach has many disadvantages that result
from the mean-field assumption. In particular, a SE trajectory will finish
the simulation in a mixed electronic state, whereas physically we expect
isolated products to be in pure electronic states (assuming that the elec-
tronic states chosen as a basis are uncoupled in the product region of phase
space). Several modifications of the SE method have been proposed to over-
come these problems. We discussed the natural decay of mixing (NDM)
method which modifies the time derivatives of the density matrix elements
by adding a dephasing term. The dephasing terms cause the mixed states
to decohere or collapse into a pure electronic state asymptotically, and this
mimics what happens in quantum mechanical wave packet treatments due
to the dephasing of different parts of the wave packet.

In the TSH methods the potential is taken to be the diagonal element
of the potential energy matrix that corresponds to the currently occupied
electronic state. The single-surface propagation is interrupted by instan-
taneous surface transitions (called surface hops) to some other electronic
state. These hops occur with some time-dependent probability, and we dis-
cussed several ways of defining this hopping probability. Tully’s fewest-
switches (TFS) method minimizes the number of surface hops, and either
the adiabatic or diabatic representation is used depending upon which rep-
resentation gives the fewest number of attempted hops in the TFS simula-
tion. (This criterion is called the Calaveras County criterion.) Unlike the SE
approach, the TFS method does not treat inter-state coherence effects. Also,
a significant problem that must be dealt with when using the TF'S approach
is the existence of classically forbidden electronic transitions or “frustrated
hops”. Some frustrated hops originate from the inability of the TFS method
to properly treat decoherence effects and are considered to be an artifact
of the TFS method. However, many frustrated hops are due to quantum
mechanical tunneling effects and should be somehow accounted for. We dis-
cussed the fewest switches with time-uncertainty (FSTU) method, which
addresses this deficiency without explicitly including tunneling or coherence
effects. This approach is inspired by the time-energy uncertainty relations
and allows us to separate and treat differently those frustrated hops caused
by tunneling and those that are caused by the improper treatment of deco-
herence.

We also discussed another surface hopping method which defines the
hopping probability to be zero everywhere except at a predefined, localized,
idealized transition seam. Inter-state coherence effects are treated accu-
rately within the context of the nonadiabatic effects being limited to such
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an idealized hopping seam. However, the transition seam becomes harder
to identify for large or complex systems, and restricting transitions to an
idealized seam limits the applicability of this approach. We also discussed
approximate wave packet methods which approximate the solution of the
accurate time-dependent Schrédinger equation such that the calculations
are computationally affordable. In particular the full multiple spawning
(FMS) method and its well defined minimal version, FMS-M, were dis-
cussed. This approach spawns (creates) new wave packets as needed on-
the-fly and can treat both inter-state and intra-state coherence effects and
some tunneling effects.

We began our discussion of accurate quantum mechanical methods by
discussing the scaling of the computational cost as a function of the number
of atoms, the number of electronic states, and the total angular momentum
quantum number J and by noting that all of the nonadiabatic quantum
mechanical studies to date have been limited to systems with two or three
atoms, two electronic states, and J = 0 or 1. We discussed in detail a
coupled-channel approach based on body-frame symmetrized hyperspheri-
cal coordinates that may be used for computing the nuclear dynamics for
triatomic molecules. This method accurately treats the Eckart singulari-
ties that occur in body-frame coordinate systems. An accurate treatment
of these singularities is crucial for obtaining accurate scattering results
in body-frame coordinate systems especially at the high collision energies
associated with nonadiabatic dynamics. This method is also highly paral-
lelizable so that the full power of the latest generation of parallel super-
computers can be utilized.

If the off-diagonal NACTs can be neglected, then the nuclear dynamics
can be confined to a single adiabatic electronic potential energy surface.
However, if a conical intersection occurs, additional complications due to
the geometric phase arise. In particular, a vector potential (i.e. a nonzero
diagonal NACT) can appear in the nuclear Schrédinger equation. We dis-
cussed recent calculations which include geometric phase effects by solving
the nuclear Schrédinger equation with a vector potential.

"If the off-diagonal NACTs cannot be neglected, then we must include
more than one electronic state and solve a generalized Born—-Oppenheimer
equation. Furthermore, the NACMs contain troublesome singularities at
conical intersections. For two electronic states, we can solve a Poisson equa-
tion to determine an adiabatic-to-diabatic transformation angle ) as a func-
tion of the internal nuclear coordinates. This approach removes all of the
longitudinal (irrotational) part of the NACMs including the singular terms.
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However, an accurate solution to the Poisson equation can be computation-
ally challenging. An alternative approach is to take advantage of the arbi-
trariness of diabatic representations and choose an appropriate functional
form for the angle A which removes only the singular terms. We discussed
how such an approach could be implemented for the Hz molecule. From
simple X3 systems such as H3 where the conical intersection happens to
occur at the same location as one of the Eckart singularities, one can also
solve the problem directly in the adiabatic representation (i.e. a transfor-
mation to a diabatic basis is not required) by choosing an appropriate set
of Jacobi polynomials in the hyperangle 6.

We also discussed several quantum mechanical nonadiabatic dynam-
ics calculations of both bimolecular and unimolecular processes that are
based on a variety of other methods, such as a time-independent coupled-
channel approach that propagates the solution as a function of a radial or
hyperradial coordinate, a time-independent linear algebraic method, and
a time-dependent wave packet approach. The linear -algebraic method, in
particular, has proved to be a powerful method for solving a variety of
electronically nonadiabatic dynamics problems.

Quantum mechanic¢al treatments are important for understanding the
fundamental mechanisms associated with electronically nonadiabatic chem-
ical reactions. They are also important for benchmarking the approximate
but more computationally practical semiclassical methods. However, much
work remains to be done, such as extending the benchmark calculations
to higher values of total angular momentum to obtain fully converged
cross sections and reaction rates and generalizing the quantum mechani-
cal methods to include treatment of the nonremovable part of the vector

NACMs.
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